首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to investigate the spatial structure of nocturnal fish communities at settlement on coral reefs in Moorea Island lagoon, French Polynesia; and the temporal consistency of habitat selection between winter (April to June 2001) and summer (November 2001). The Moorea lagoon was divided into 12 habitat zones (i.e., coral reef zones), which were distinct in terms of depth, wave exposure, and substratum composition. Nocturnal visual censuses among the 12 habitats found that the recently settled juveniles of 25 species recorded were dispatched among three communities spatially distributed according to the distance from the reef crest (reef crest, barrier reef, and fringing reef communities). This spatial communities structure of nocturnal juveniles was consistent in both winter and summer and would be explained primarily by a current gradient in Moorea lagoon (current speed was high near the reef crest and decreased towards the beach) and by the topographic characteristics of reef zones. Among the 25 species, 13 were recorded in both winter and summer. A comparison of the spatial distribution between summer and winter for 13 species that occurred during both seasons found that only 4 differed between the two seasons. For these species, habitat selection would be organized primarily by some stochastic processes such as inter- and intraspecific competition, predation, and food availability. Overall, the present study allowed us to highlight that most nocturnal coral reef fish juveniles at Moorea Island exhibited striking patterns in their distribution and current and topographic characteristics of reef zones might exert considerable influence on the distribution of fishes.  相似文献   

2.
Adults of many closely related coral reef fish species are segregated along gradients of depth or habitat structure. Both habitat selection by new settlers and subsequent competitive interactions can potentially produce such patterns, but their relative importance is unclear. This study examines the potential roles of habitat selection and aggression in determining the spatial distribution of adults and juveniles of four highly aggressive damselfishes at Lizard Island, northern Great Barrier Reef. Dischistodus perspicillatus, D. prosopotaenia, D. melanotus, and D. pseudochrysopoecilus maintain almost non-overlapping distributions across reef zones, with adults of one species dominating each reef zone. Juveniles exhibit slightly broader distributional patterns suggesting that subsequent interactions reduce overlap among species. Although habitat choice experiments in aquaria suggest that associations between juveniles and substrata types in the field are partly due to habitat selection, large overlaps in the use of substrata by the different species were also found, suggesting that substratum selection alone is insufficient in explaining the discrete spatial distributions of adults. The strength of aggressive interactions among all four species was tested by a "bottle" experiment, in which an adult or juvenile of each species was placed in the territories of adult fish on the reef. The greatest levels of interspecific aggression were directed against adults and juveniles of neighbouring species. The highest levels of aggression were associated with species exhibiting the greatest levels of overlap in resource use. Evidently both habitat selection and interspecific aggression combine to determine the adult distributions of these species.  相似文献   

3.
The prevalence of major habitat shifts in tropical fishes between juvenile and adult stages (ontogenetic shifts) in one of the northernmost coral reefs in the world (Kudaka Island, Japan) is given. The comparative analysis of spatial distribution of juveniles v . adults highlighted four ontogenetic patterns: no change in habitat use between juveniles and adults (five species), a decrease in the number of habitats used by adults compared to juveniles (three species), an increase in the number of habitats used during the adult stage (four species) and use of nursery areas by juveniles followed by extensive movements to different adult habitats (three species). The comparative analysis of fish distribution over time ( i.e. during three consecutive settlement months) showed that 84% of species had temporal consistency in ontogenetic patterns of habitat use.  相似文献   

4.
The habitat associations of species are vital in determining an organism’s vulnerability to environmental and anthropogenic stress. In the marine environment, post-settlement processes such as ontogenetic shifts in habitat use can affect this vulnerability by subjecting a species to differing biological and environmental conditions at various life stages. This study documents the habitat associations of adult and juvenile butterflyfishes on an inshore reef of the Great Barrier Reef (GBR) to investigate if ontogenetic shifts in habitat use occur, and if such shifts relate to the trophic ecologies of species. Coral-feeding species displayed highly concordant distributions among adults and juveniles. In contrast, adults and juveniles of species with wider dietary selectivities (generalists) displayed significantly different distributions across reef zones. Juvenile generalist feeders were limited to the shallow, patchy areas of the reef flat whilst adult conspecifics displayed comparatively wide distributions. Butterflyfishes with a heavy reliance on corals for food appear to settle preferentially in areas with high abundances of adult conspecifics, which may partially explain why coral specialists are more vulnerable to localized depletion events. In contrast, generalist species utilize distinct habitats as adults and juveniles, suggesting that generalist butterflyfishes expand their ranges and are therefore subjected to changing environmental conditions as they reach adulthood.  相似文献   

5.
The present study describes ontogenetic shifts in habitat use for 15 species of coral reef fish at Rangiroa Atoll, French Polynesia. The distribution of fish in different habitats at three ontogenetic stages (new settler, juvenile, and adult) was investigated in coral-dominated and algal-dominated sites at two reefs (fringing reef and inner reef of motu). Three main ontogenetic patterns in habitat use were identified: (1) species that did not change habitats between new settler and juvenile life stages (60% of species) or between juvenile and adult stages (55% of species—no ontogenetic shift); (2) species that changed habitats at different ontogenetic stages (for the transition “new settler to juvenile stage”: 15% of species; for the transition “juvenile to adult stage”: 20% of species); and (3) species that increased the number of habitats they used over ontogeny (for the transition “new settler to juvenile stage”: 25% of species; for the transition “juvenile to adult stage”: 25% of species). Moreover, the majority of studied species (53%) showed a spatial variability in their ontogenetic pattern of habitat use according to alternate reef states (coral reef vs algal reef), suggesting that reef state can influence the dynamics of habitat associations in coral reef fish.  相似文献   

6.
Surgeonfish (Acanthuridae) are prominent, herbivorous members of coral reef communities that occur as dispersed individuals and small, loose groups ('non-schooling fish') or as members of large, highly aggregated, mixed-species schools ('schooling fish'). We examined the relationships among fish size, habitat use and schooling in two species of surgeonfish on a fringing reef in Barbados, West Indies. Both ocean surgeonfish, Acanthurus bahianus, and blue tangs, A. coeruleus, appeared to show ontogenetic habitat shifts. The density of juvenile ocean surgeonfish was highest in the back reef (inshore), lower on the reef crest (intermediate) and lowest in the spurs and grooves (offshore) zone, but schooling adults were most abundant in the spurs and grooves zone. In a multiple regression considering the effects of depth, algal cover, rugosity and distance from shore, the density of non-schooling ocean surgeonfish was positively associated with percent algal cover on the substratum and negatively with distance from shore. Newly settled blue tangs occurred only in the reef crest and spurs and grooves zones, but larger juveniles were more common in the back reef, while adults were more evenly distributed across zones. The density of non-schooling blue tang was positively associated with rugosity, distance from shore, and percent algal cover. In both species, schooling occurred primarily in adults; small juveniles never participated in the large, dense schools. The proportion of adults that were schooling increased from the back reef to the reef crest to the spurs and grooves zone. These results are consistent with the hypothesis that schooling permits adult surgeonfish access to higher quality food in the territories of damselfish (Pomacentridae) that predominate on the reef crest and spurs.  相似文献   

7.
Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ13C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65–72%) as opposed to inshore vegetated habitats (28–35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.  相似文献   

8.
Many coral reef fishes exhibit distinct ontogenetic shifts in habitat use while some species settle directly in adult habitats, but there is not any general explanation to account for these differences in settlement strategies among coral reef fishes. This study compared distribution patterns and habitat associations of juvenile (young of the year) butterflyfishes to those of adult conspecifics. Three species, Chaetodon auriga, Chaetodon melannotus, and Chaetodon vagabundus, all of which have limited reliance on coral for food, exhibited marked differences in habitat association of juvenile versus adult individuals. Juveniles of these species were consistently found in shallow-water habitats, whereas adult conspecifics were widely distributed throughout a range of habitats. Juveniles of seven other species (Chaetodon aureofasciatus, Chaetodon baronessa, Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon plebeius, Chaetodon rainfordi, and Chaetodon trifascialis), all of which feed predominantly on live corals, settled directly into habitat occupied by adult conspecifics. Butterflyfishes with strong reliance on corals appear to be constrained to settle in habitats that provide access to essential prey resources, precluding their use of distinct juvenile habitats. More generalist butterflyfishes, however, appear to utilize distinct juvenile habitats and exhibit marked differences in the distribution of juveniles versus adults.  相似文献   

9.
1. The impact of environmental disturbance and habitat loss on associated species is expected to be dependent on a species' level of specialization. We examined habitat use and specialization of coral reef fish from the diverse and ecologically important family Pomacentridae, and determined which species are susceptible to declines in coral cover due to disturbance induced by crown-of-thorns seastar (COTS, Acanthaster planci L.). 2. A high proportion of pomacentrid species live in association with live coral as adults (40%) or juveniles (53%). Adults of many species had strong affiliations with branching corals, while juveniles favoured plating growth forms, reflecting the sizes of refuge provided by coral types. 3. Juveniles of species that associated with coral had narrower niche breadths than adult conspecifics, due to associations with specific coral types. The especially high coral association and narrower niche breadth of juveniles suggest that the presence of live coral is crucial for many species during early life history, and that disturbance-induced coral loss may have serious flow-on effects on adult abundance. 4. Microhabitat availability was a poor predictor of fish species abundance. Significant correlations between coverage of coral types and abundance of five adults and two juvenile species were detected; however, these relationships explained <35% and <10% of the variation in abundance of adult and juvenile species, respectively. 5. Niche breadth explained 74% of the variation in species' mean response to coral decline and it is clear that disturbance has a greater impact on resource specialists, suggesting that increasing frequency and intensity of coral loss will cause reef fish communities to become dominated by habitat generalists at the expense of coral-dwelling specialists.  相似文献   

10.
Live corals are the key habitat forming organisms on coral reefs, contributing to both biological and physical structure. Understanding the importance of corals for reef fishes is, however, restricted to a few key families of fishes, whereas it is likely that a vast number of fish species will be adversely affected by the loss of live corals. This study used data from published literature together with independent field based surveys to quantify the range of reef fish species that use live coral habitats. A total of 320 species from 39 families use live coral habitats, accounting for approximately 8 % of all reef fishes. Many of the fishes reported to use live corals are from the families Pomacentridae (68 spp.) and Gobiidae (44 spp.) and most (66 %) are either planktivores or omnivores. 126 species of fish associate with corals as juveniles, although many of these fishes have no apparent affiliation with coral as adults, suggesting an ontogenetic shift in coral reliance. Collectively, reef fishes have been reported to use at least 93 species of coral, mainly from the genus Acropora and Porities and associate predominantly with branching growth forms. Some fish associate with a single coral species, whilst others can be found on more than 20 different species of coral indicating there is considerable variation in habitat specialisation among coral associated fish species. The large number of fishes that rely on coral highlights that habitat degradation and coral loss will have significant consequences for biodiversity and productivity of reef fish assemblages.  相似文献   

11.
In marine species with a pelagic larval stage, search behavior and selection of a suitable reef habitat can maximize the settlement success of recently settled juveniles and their subsequent performance (growth and survival of juveniles). Our objective was to test this hypothesis for a single target coral reef fish species (Chromis viridis) at Moorea Island. C. viridis settle on living coral colonies of Porites rus already populated with conspecifics. In the present study (conducted in experimental cages), we found that: 1) mortality rate of recently settled juveniles of C. viridis was lower in the settlement habitat (living coral colonies of P. rus) than in other habitats having physical structure different from those of P. rus colonies; 2) C. viridis juveniles preferentially colonized coral heads of P. rus with conspecifics present rather than uninhabited coral heads and they also preferentially colonized uninhabited coral heads rather than coral heads with heterospecifics; 3) mortality rate of C. viridis juveniles did not vary with the presence or absence of conspecifics or heterospecifics on P. rus colonies. Overall, the study allows us to highlight that site selection by juveniles for habitat containing conspecifics does not benefit their short term mortality rates, suggesting that in the short term at least, site selection has little importance.  相似文献   

12.
Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres) 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting) were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and protecting reefs resilient to this should be a conservation priority.  相似文献   

13.
Influence of habitat degradation on fish replenishment   总被引:1,自引:0,他引:1  
Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.  相似文献   

14.
Juvenile and adult reef fishes often undergo migration, ontogenic habitat shifts, and nocturnal foraging movements. The orientation cues used for these behaviours are largely unknown. In this study, the use of sound as an orientation cue guiding the nocturnal movements of adult and juvenile reef fishes at Lizard Island, Great Barrier Reef was examined. The first experiment compared the movements of fishes to small patch reefs where reef noise was broadcast, with those to silent reefs. No significant responses were found in the 79 adults that were collected, but the 166 juveniles collected showed an increased diversity each morning on the reefs with broadcast noise, and significantly greater numbers of juveniles from three taxa (Apogonidae, Gobiidae and Pinguipedidae) were collected from reefs with broadcast noise. The second experiment compared the movement of adult and juvenile fishes to reefs broadcasting high (>570 Hz), or low (<570 Hz) frequency reef noise, or to silent reefs. Of the 122 adults collected, the highest diversity was seen at the low frequency reefs; and adults from two families (Gobiidae and Blenniidae) preferred these reefs. A similar trend was observed in the 372 juveniles collected, with higher diversity at the reefs with low frequency noises. This preference was seen in the juvenile apogonids; however, juvenile gobiids were attracted to both high and low sound treatments equally, and juvenile stage Acanthuridae preferred the high frequency noises. This evidence that juvenile and adult reef fishes orientate with respect to the soundscape raises important issues for management, conservation and the protection of sound cues used in natural behaviour.  相似文献   

15.
This study examined how habitat associations changed with ontogeny in the tiger tail seahorse Hippocampus comes Cantor, 1850, over four reef zones in a coral reef ecosystem. Hippocampus comes showed ontogenetic differences in their use of habitat at the scale of reef zones (macrohabitat) and holdfasts (microhabitat). Across reef zones, juvenile size classes (25–105 mm standard length, L S) were most abundant in wild macroalgal beds ( Sargassum spp.) (55·7%), while adults (>105 mm L S) occupied both coral reefs (39·7%) and macroalgal beds (42·7%). Microhabitat use also varied with ontogeny. Juveniles generally used macroalgal holdfasts, while adults >135 mm L S used a greater diversity of specialized microhabitats that included branching sponges, branching corals and tall seagrass. Ontogenetic changes in habitat association, as well as size-related shifts in crypsis and aggregation, suggest that H. comes experiences fitness trade-offs that vary with size; juveniles may associate with habitat that reduces predation, while larger individuals may use distinct microhabitat in reef zones to optimize reproductive success. Results are discussed in the context of targeted exploitation, expanding artisanal mariculture, habitat damage from illegal fishing and reserve design.  相似文献   

16.
17.
There is limited knowledge of the orientation cues used by reef fish in their movement among different habitats, especially those cues used during darkness. Although acoustic cues have been found to be important for settlement-stage fish as they seek settlement habitats, only a small number of studies support the possible role of acoustic cues in the orientation of post-settled and adult reef fish. Therefore, the aim of this study was to determine whether habitat-specific acoustic cues were involved in the nocturnal movements of juvenile reef fish to small experimental patch reefs that were broadcasting sound previously recorded from different habitats (Fringing Reef, Lagoon, Silent). Juvenile fish arriving at each patch reef were caught the next morning by divers and were identified. There were a greater number of occasions when juvenile fish (from all species together) moved onto the patch reefs broadcasting Fringing Reef and Lagoon sound (43 and 38%, respectively) compared to Silent reefs (19%) (χ2 = 33.5; P < 0.05). There were significantly more occasions when juvenile fish from the family Nemipteridae were attracted to the patch reefs broadcasting Lagoon sound (63%) versus those reefs broadcasting either Fringing Reef sound (31%) or Silent (6%). In contrast, there were more occasions when juveniles from the family Pomacentridae were attracted to the patch reefs broadcasting Fringing Reef sound (56%) than either Lagoon (24%) or Silent patch reefs (20%) (χ2 = 19.5; P < 0.05). These results indicate that some juvenile fish use specific habitat sounds to guide their nocturnal movements. Therefore, the fish are able to not only use the directional information contained in acoustic cues, but can also interpret the content of the acoustic signals for relevant habitat information which is then used in their decision-making for orientation.  相似文献   

18.
The ecological role of parasites in the early life-history stages of coral reef fish is far from clear. Parasitism in larval, recently settled and juvenile stages of a coral reef fish damselfish (Pomacentridae) was therefore investigated by quantifying the ontogenetic change in parasite load and comparing the growth rates of parasitized juvenile fish to those of unparasitized ones. Parasite prevalence in two lunar pulses of Pomacentrus moluccensis was 4 and 0% for larval stage fish, 34 and 56% for recently settled fish and 42 and 49% for juveniles. A significant increase in parasite prevalence with age group was found; the most marked increase occurred immediately after larval fish had settled. Standard length did not model prevalence well; as length is a proxy for age, this indicates that the higher prevalence in recently settled and juvenile fish compared with larvae was not a simple result of parasites accumulating with age. In one of three cohorts, there was some evidence that parasitism affected the growth rate of juveniles, as measured by otolith width. The study suggests that settling on the reef exposes young fish to potentially harmful parasites. This supports the idea that the pelagic phase may have the effect of reducing the exposure of young fish to the debilitating effects of parasites.  相似文献   

19.
The present study aimed to investigate the spatial structure of fish communities at juvenile and adult stages on coral reefs at Kudaka Island (Ryukyu Archipelago, Japan) and to relate spatial patterns in the structure of the fish communities to gradients in environmental variables. Diurnal visual censuses allowed us to record 2,602 juveniles belonging to 60 species and 1,543 adults belonging to 53 species from October to December 2005. The distribution of species highlighted that the juvenile community was organised into three distinct assemblages, rather than exhibiting gradual change in community structure along the cross-reef gradient. Correlations between spatial patterns of juvenile community and environmental variables revealed that the most significant factors explaining variation in community structure were coral rubble and coral slab. In contrast, the adult community was organised into one assemblage, and the most significant variation factors in community structure were depth, live coral in massive form, live coral in branched form, dead coral and sand. Overall, the present study showed that most juvenile and adult coral reef fish at Kudaka Island exhibited striking patterns in their distribution and depth and some biological factors (e.g., abundance of live coral, dead coral and coral rubble) might exert considerable influence on the distribution of fishes.  相似文献   

20.
The ecological role of parasites in the early life-history stages of coral reef fish, and whether this varies between fish with and without a pelagic phase, was investigated. The susceptibility to, and effect of reef-based micropredatory gnathiid isopods on larval, recently settled, and juvenile fishes was tested using two damselfishes (Pomacentridae): Neopomacentrus azysron, which has pelagic larvae, and Acanthochromis polyacanthus, which does not. When larval and recently settled stages of N. azysron and very young A. polyacanthus juveniles (smaller than larval N. azysron) were exposed to one or three gnathiids, the proportion of infections did not vary significantly among the three host types or between the number of gnathiids to which the fish were exposed. The overall infection was 35%. Mortality, however, differed among the three gnathiid-exposed host types with most deaths occurring in larval N. azysron; no mortalities occurred for recently settled N. azysron exposed to one or three gnathiids, and A. polyacanthus exposed to one gnathiid. Mortality did not differ significantly between larval N. azysron and A. polyacanthus juveniles, failing to provide support for the hypothesis that reef-based A. polyacanthus juveniles are better adapted to gnathiid attack than fish with a pelagic phase. The study suggests that settling on the reef exposes young fish to potentially deadly micropredators. This supports the idea that the pelagic phase may allow young fish to avoid reef-based parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号