首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of alkaline-labile sites in DNA by S9-activated benzo[a]pyrene (B[a]P) and the repair of those lesions were investigated using the technique of alkaline elution in cultured Chinese hamster V79 cells.When the cells were treated with B[a]P (1–5 μg/ml) there was negligible increase in DNA elution at pH 12.1 as compared to untreated controls. However, the elution of DNA increased at pH 12.6 with a concentration dependency, thereby indicating formation of alkaline-labile sites in DNA by B[a]P. After 4 h of repair incubation the elution of DNA at pH 12.6 of B[a]P (5 μg/ml) treated cells returned to the control lavels. The half-life of alkaline-labile sties formed by B[a]P was approximately 1.5 h. Inhibitors of DNA-repair synthesis, hydroxyrea (HU) and 1-β-arabinofuranosly cytosine (ara-C) when added simultaneously with S9-activated B[a]P for 3 h showed an increase in elution of DNA at pH 12.1 indicating that a population of B[a]P-induced DNA lesions could be removed by a rapid DNA-repair process.These results indicate that at least two kinds of DNA lesions, repairable alkaline-labile sites rapidly repairable DNA single-strand breaks, are detected after B[a]P treatment by the use of the alkaline elution procedure, by changing elution pH.  相似文献   

2.
The modes of genotoxicity of a novel macromolecular antitumor antibiotic (SN-07) were examined using both prokaryotic and eukaryotic cells in vitro. The antibiotic induced a frameshift-type reverse mutation in Ames Salmonella typhimurium TA98 at 1.6-400 ng/plate with and without S9 mix. SN-07 also induced chromosomal aberrations and a forward mutation (6-TGr) in Chinese hamster V79 cells after 1 h treatment at 12.5-100 ng/ml without metabolic activation. The alkaline elution technique revealed that SN-07 induced interstrand DNA cross-linking dose-dependently after treatment with 2.5-10 micrograms/ml for 1 h followed by elution at pH 12.1, but it did not induce the dose-dependent cross-linking after the same treatment followed by elution at pH 12.6. It was also found that SN-07 induced single-strand DNA breaks (pH 12.1) and alkali-labile (pH 12.6) sites after treatment with 0.1-10 micrograms/ml for 1 h followed by 24-h post-incubation.  相似文献   

3.
Cultured Chinese hamster ovary cells were treated with ethylating agents. DNA lesions giving rise to single-strand breaks (SSB) or alkali-labile sites were measured by elution through membrane filters at pH 12.0 and pH 12.6, and by centrifugation in alkaline sucrose gradients after 1 h and 21 h lysis in alkali. Two agents with different tendencies to ethylate preferentially either at N or O atoms were compared, namely N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) and diethyl sulphate (DES). The compounds differed greatly in their potency to induce lesions, but the ratios of SSB, measured with different methods after a treatment for 30 min, did not differ significantly. This suggested that the spectrum of lesions induced by the two compounds is very similar. However, when both agents were studied with alkaline elution at pH 12.0 after a short treatment time (5 min) only ENNG was found to induce rapidly-repairable SSB. Most of these were rejoined already within 5 min after treatment. These results suggest that rapidly-repairable lesions occurring in DNA after treatment of mammalian cells with ethylating agents are due mainly to alkylation at O-atoms.  相似文献   

4.
The alkaline and neutral (or nondenaturing) filter elution assays are popular methods for the measurement of DNA strand breakage and its repair in eukaryotic cells. In both alkaline and neutral elution, it is recommended practice to wash the filter support after removal of the filter and to analyze the DNA recovered by this procedure together with that remaining on the filter as uneluted DNA, although it is not obvious why the DNA in the filter support wash should be so interpreted. We have observed that the sum of the DNA on the filter and that recovered in the filter support wash is approximately constant when the pH of the alkaline filter elution assay for total strand breaks is increased from 12.1 to 12.6, whereas the fraction on the filter itself is markedly smaller at the higher pH. This behavior characterized DNA elution from undamaged cells, as well as from cells treated with various DNA-damaging agents. These findings are consistent with the "tug-of-war" mechanism that has been proposed for alkaline elution, but are inconsistent with the simplest mechanism of the "sieve" class. In the neutral filter elution assay for double-strand breaks, by contrast, the distribution of DNA between the filter and the filter support wash is pH-independent. This suggests that single- and double-stranded DNA segments traverse a filter by different physical mechanisms. Our observations underscore the importance of carrying out the filter support wash and the analysis of the DNA it contains as uneluted DNA in alkaline elution, while indicating that a different analysis of this DNA might be appropriate for neutral elution.  相似文献   

5.
Alkaline sucrose gradient sedimentation analysis was used to detect DNA lesions induced by benzo[a]pyrene B(a)P in Chinese hamster ovary cells. The number of lesions detected immediately following treatment with 10(-4) M B(a)P was related directly to the duration of treatment. When treated cells were incubated in a B(a)P-free medium, the majority of lesions disappeared rapidly and could no longer be detected 15 min following treatment. These data indicate that a population of B(a)P-induced DNA lesions may be removed by a rapid DNA-repair process. The transient nature of such lesions should be considered when assays for DNA damage or repair are designed and interpreted.  相似文献   

6.
DNA damage induced in germinating barley embryos by mutagenic and sublethal doses (0.1–2 mM, 2 h) of sodium azide, applied at pH 3, was measured by alkaline elution. Isolated nuclei were lysed at a high pH with either 2% SDS or 2 M NaCl on polyvinyl chloride filters and digested with proteinase K or with Micrococcus luteus endonuclease prior to elution. The azide treatments resulted in a dose-dependent increase of proteinase K-sensitive sites and an appearance of Micrococcus luteus endonuclease-sensitive sites. These sites were detected as DNA single-strand breaks after digestion of the DNA with either one or both of the enzymes. The two types of lesion were additive and occurred in a ratio of about 1:1. The additive effect suggested independent origin for the two types of lesion. Breaks independent of proteinase K digestion appeared only when DNA was analysed 24 h after the action of azide. The nature and significance of these DNA lesions are discussed.  相似文献   

7.
The induction of DNA damage in cells heated at hyperthermic (43-48 degrees C) temperatures was determined by alkaline filter elution and alkaline sucrose gradient-sedimentation analysis of cell DNA denatured at pH 13.0. A class of DNA lesion which converted to strand breaks during denaturation of DNA at pH 13.0 was produced randomly throughout the cell DNA at temperatures as low as 43 degrees C. Induction of this lesion occurred with a T0 of 90 and 10 min at 45 and 48 degrees C, respectively. We estimate that these pH 13.0-detectable DNA lesions are produced in the cell DNA with a frequency of approximately 75 and 660 per min of heating at 45 and 48 degrees C, respectively. Since the lesions were quantitatively converted to DNA strand breaks at pH 13.0 with a half-time of 30 min, or less, we suggest that these pH 13.0-detectable DNA lesions are heat-induced, abasic DNA sites. The induction of these lesions does not appear to be directly involved in the initial heat-induced inhibition of DNA synthesis. The presence of these lesions cannot be excluded as an explanation for the long-term inhibition of replicon initiated in heated cells.  相似文献   

8.
This study tried to clarify the question if nuclear genotoxicity played a role in 3'-azido-3'-deoxythymidine (AZT) toxicity. We investigated cytotoxic and DNA-damaging effects of AZT on human hepatoma HepG2 and human colonic CaCo-2 cells as well as on human diploid lung fibroblasts HEL. The amount of induced DNA damage was measured by standard alkaline single cell gel electrophoresis (SCGE). The nature of induced DNA lesions was evaluated (1) by modified SCGE, which includes treatment of lysed cells with DNA repair enzymes Endo III and Fpg and enables to recognize oxidized bases of DNA, and (2) by SCGE processed in parallel at pH 13.0 (standard technique) and pH 12.1, which enables to recognize alkali labile DNA lesions and direct DNA strand breaks. Cytotoxicity of AZT was evaluated by the trypan blue exclusion technique. Our findings showed that 3-h treatment of cells with AZT decreased the viability of all cell lines studied. SCGE performed in the presence of DNA repair enzymes proved that AZT induced oxidative lesions to DNA in all cell types. In hepatoma HepG2 cells and embryonic lung fibroblasts HEL the majority of AZT-induced DNA strand breaks were pH-independent, i.e. they were identified at both pH values (12.1 and 13.0). These DNA lesions represented direct DNA breaks. In colonic Caco-2 cells DNA lesions were converted to DNA strand breaks particularly under strong alkaline conditions (pH>13.0), which is characteristic for alkali-labile sites of DNA. DNA strand break rejoining was investigated by the standard comet assay technique during 48 h of post-AZT-treatment in HepG2 and Caco-2 cells. The kinetics of DNA rejoining, considered an indicator of DNA repair, revealed that AZT-induced DNA breaks were repaired in both cell types slowly, though HepG2 cells seemed to be more repair proficient with respect to AZT-induced DNA lesions.  相似文献   

9.
The genotoxic potential of the beta-adrenergic blocker penbutolol was assessed using the Ames and HGPRT tests, unscheduled DNA synthesis (UDS) and alkaline elution assays. In the Ames test, penbutolol was tested for cytotoxicity and genotoxic activity in concentration ranges of 0.8-500 micrograms/plate and 0.1-125 micrograms/ml in the HGPRT, UDS and alkaline elution assays. In the Ames test penbutolol showed significant toxicity above 500 micrograms/plate. In the mammalian cells (V79) used for the HGPRT test and A459 cells used for alkaline elution and UDS assays, penbutolol was cytotoxic at concentrations above 30 micrograms/ml. In another series of experiments, male Wistar rats were treated i.p. with penbutolol (1, 10 and 100 mg/kg) and after 2 h liver nuclei were isolated and formation of single DNA-strand breaks was measured. The results of the present study demonstrate the absence of genotoxic activity of penbutolol in the 5 strains of Salmonella typhimurium (TA98, TA100, TA1535, TA1537 and TA1538) and in the strain of Escherichia coli WP2 uvrA in the presence or absence of metabolic activation. In V79 cells, penbutolol showed no mutagenic effects at the HGPRT locus in the presence or absence of metabolic activation. Additionally, no significant incorporation of [3H]thymidine into the DNA in the UDS test or formation of DNA-strand breaks in the alkaline elution assay was detected in the non-toxic concentration range of penbutolol with or without metabolic activation. Furthermore, penbutolol did not cause DNA damage in liver nuclei isolated from penbutolol-treated rats.  相似文献   

10.
DNA damage induced by the antihistaminic drug methapyrilene hydrochloride   总被引:1,自引:0,他引:1  
Treatment of primary cultures of rat hepatocytes with the antihistaminic drug, methapyrilene hydrochloride, stimulated DNA-repair synthesis up to 7-fold and caused the formation of alkaline-labile lesions in hepatocellular DNA. These data clearly demonstrate that methapyrilene hydrochloride is a DNA damaging agent. In view of a recent report and our own findings we suggest that this antihistamine has the properties of a complete carcinogen.  相似文献   

11.
In Chinese hamster ovary (CHO) cells, benzo[a]pyrene induces both persistent and transient lesions that are detected by alkaline sucrose gradient sedimentation analysis (ASG sites). The transient lesions disappear within 15 min while the persistent lesions can be detected for several hours following treatment. Although the persistent ASG sites are believed to be repaired by excision repair, the process responsible for the disappearance of the transient ASG sites is unknown. To determine the contribution of excision repair to the removal of these transient lesions, CHO cells were treated with benzo[a]pyrene (B(a)P) in the presence of the inhibitors of excision repair, araC and novobiocin. The results indicate that: (1) araC inhibits the removal of persistent, but not the transient B(a)P-induced ASG sites; (2) novobiocin, a putative inhibitor of the incision step of DNA excision repair, reduced the number of lesions detected immediately following treatment, indicating that many of these lesions may represent single-strand discontinuities generated during repair; and (3) the lesions detected in the presence of novobiocin disappear rapidly following treatment. Based on these results, we concluded that B(a)P-induced transient ASG sites are repaired by a process other than excision repair.  相似文献   

12.
Although benzo[a]pyrene (B[a]P) is a well-known genotoxic agent, little is known about the extent of DNA effects induced by B[a]P in rat tissues after pulmonary exposure. The alkaline single-cell gel electrophoresis (comet assay) was used to measure DNA single-strand breaks in alveolar macrophages, lung cells, peripheral lymphocytes and hepatocytes of OFA Sprague-Dawley rats exposed to a single dose of B[a]P by endotracheal administration.Statistically significant damage was observed in all organs tested after 3, 24 and 48h of pulmonary exposure to 3mg of B[a]P per animal, with a time-dependent relationship. The maximum damage was observed in the four cell types 24h after exposure. The higher level of damage was observed both in lung cells and peripheral lymphocytes; in alveolar macrophages and hepatocytes the level of damage was increased, but at a lower level than in the two other cell types. Furthermore, B[a]P demonstrated a clear dose-related genotoxic activity in the lung cells when tested at doses of 0.75, 1.5 and 3mg.The current study shows that B[a]P caused DNA single-strand breaks in the respiratory tract of endotracheally treated OFA Sprague-Dawley rats. The study also suggests that pulmonary exposure to B[a]P can induce a high level of DNA damage in peripheral lymphocytes. The clear relationship between lung exposure to B[a]P and consequences observed in lymphocytes suggests that the comet assay in peripheral lymphocytes can be used as a sensitive marker in human monitoring studies.  相似文献   

13.
The filter elution technique using nondenaturing conditions is widely used to assay DNA double-strand break (DSB) induction and repair. It has been reported that in the measurement of strand breaks higher rates of elution and of initial rejoining are obtained at pH 9.6 compared to pH 7.2. In the present experiments neutral elution at pH 7.2 and 9.6 were compared in the assay of damage to DNA induced by X rays, 125I decay, and restriction enzyme digestion, in an effort to explain this discrepancy and to determine whether the higher rate of elution observed at pH 9.6 corresponds to a greater number of DSBs. X-ray damage to cellular DNA resulted in significantly different elution profiles at the two pH values. In contrast the elution profiles of the DSB induced by intragenomic 125I decays or restriction endonuclease were independent of the pH of the elution buffer. When gamma-irradiated SV40 DNA was exposed to pH 7.2 or 9.6 elution buffer prior to analysis by gel electrophoresis, a significantly greater number of DNA DSBs were detected in the DNA exposed to pH 9.6. We conclude that X and gamma radiation produce lesions (pH 9.6-labile lesions), in proportion to dose, that have the potential of becoming measurable DSBs following incubation under the mildly alkaline condition of pH 9.6. The data suggest that these lesions may result from single-hit events.  相似文献   

14.
Paracetamol was studied for possible genotoxic effects in V79 Chinese hamster cells. Paracetamol (0.5 mM for 30 min) reduced the rate of DNA synthesis in exponentially growing V79 cells to about 50% of control. A further decrease in the DNA synthesis was seen during the first 30 min after termination of paracetamol exposure. Paracetamol (3 and 10 mM for 2 h) caused a small increase in DNA single-strand breaks, as measured by the alkaline elution technique. After 16 h elution, the amount of DNA retained on the filters was 79 and 70% of controls in cells treated with 3 and 10 mM paracetamol respectively. No indication of DNA damage was seen in measuring the effect of paracetamol (0.25-10 mM for 2 h) on unscheduled DNA synthesis in growth-arrested cultures of V79 cells. At the highest concentrations (3 and 10 mM paracetamol), decreased unscheduled DNA synthesis was observed. Also UV-induced DNA-repair synthesis was inhibited by 3 and 10 mM paracetamol. DNA-repair synthesis was, however, inhibited at a much higher concentration than that inhibiting replicative DNA synthesis. The number of sister-chromatid exchanges (SCE) increased in a dose-dependent manner on 2 h exposure to paracetamol from 1 mM to 10 mM. At the highest dose tested (10 mM), the number of SCE increased to 3 times the control value. Co-culturing the V79 cells with freshly isolated mouse hepatocytes had no further effect on the paracetamol induced sister-chromatid exchanges. The present study indicates that paracetamol may cause DNA damage in V79 cells without any external metabolic activation system added.  相似文献   

15.
The aim of the present study was to evaluate both sensitivity and specificity of an in vivo skin comet assay using chemically treated, hairless mouse dorsal skin as a model. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.0125-0.2%), 4-nitroquinoline-1-oxide (4NQO, 0.01-0.25%), mitomycin C (MMC, 0.0125-0.05%), benzo[a]pyrene (B[a]P, 0.25-2%), and 7,12-dimethylbenz[a]anthracene (DMBA, 0.25-1%) were each applied once to the dorsal skin of hairless male mice; after 3h, epidermal skin cells were isolated, and the alkaline comet assay was performed. The assay was performed after 24h for only the B[a]P and DMBA. Furthermore, B[a]P and DMBA were evaluated by alkaline comet assay using liver cells after both 3 and 24h. The mean percent of DNA (%DNA) in tail in the 0.05-0.2% MNNG and 0.1-0.25% 4NQO treatment groups was markedly higher than in the control group at 3h post-application. Although the mean %DNA values in the tail in the B[a]P and DMBA groups were the same as the controls at 3h post-application, the 2% B[a]P and 1% DMBA groups showed significantly higher values versus controls 24h after application. No significant increases in the mean %DNA in the tail were observed in the MMC group. No clear increases in %DNA in the tail were observed in the B[a]P and DMBA groups at 3 or 24h after application in the liver. These results suggest that the in vivo skin comet assay is able to accurately identify DNA-damaging potential with a skin-specific response and is a useful method to detect the DNA-damaging potential of genotoxic chemicals on the skin.  相似文献   

16.
The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms.  相似文献   

17.
Polyadenosine- and adenosine-diphosphoribosylated proteins of hamster liver were quantitatively isolated with the aid of m-aminophenyl boronic acid glutaryl hydrazide polyacrylamide affinity resin by selective adsorption at pH 8.2 and elution at pH 4.0. Polymer-free proteins, DNA, and RNA are readily separated from adenosine-diphosphoribosylated proteins. The total quantity of proteins that is covalently modified by the homopolymer is 14.3 micrograms/mg of DNA or 37.4 micrograms/g of liver in controls and 38.7 micrograms/mg of DNA or 116 micrograms/g of liver in dimethylnitrosamine-treated hamsters. Polymer content increases from 9 to 15 nmol/mg of DNA to 42 to 118 nmol/mg of DNA following treatment with dimethylnitrosamine. Pulse labeling with [14C]ribose results in a parallel doubling in dimethylnitrosamine-treated animals of the specific activities of adenosine- diphosphoribose and NAD+ and of the [14C]ribose content of polyadenosine-diphosphoribose of chain length between 20 and 40, indicating chain elongation of pre-existing larger polymers. Two groups of proteins that are isolated as polyadenosine-diphosphoribose adducts are increased significantly after treatment with dimethylnitrosamine, one minor component of a mass between 100-112 X 10(3) daltons, and a major group exhibiting a mass of 158-162 X 10(3) daltons. Polyadenosine-diphosphoribose synthetase activity of isolated hepatic nuclei is increased by 32-37% after dimethylnitrosamine treatment, and since the change in glycohydrolase activity is negligible relative to the increase in synthetase, the augmentation of polyadenosine-diphosphoribosylated proteins can be explained by the increased synthetase of nuclei. The molecular size distribution of DNA in liver nuclei of control and dimethylnitrosamine-treated hamsters is indistinguishable.  相似文献   

18.
The sensitivity for quantitation of DNA excision repair caused by a carcinogen is increased when the resynthesis of DNA is inhibited with dideoxythymidine (ddThd), a chain terminator. Incorporation of ddThd in primary liver cell cultures leaves discontinuities in the DNA chain at sites of reparative synthesis in response to benzo(a)pyrene [B(a)P] treatment. This is detectable by the accumulation of cellular DNA with reduced molecular weight on alkaline sucrose gradients. Up to 78 percent of the DNA in cells incubated with B(a)P and ddThd had greatly reduced molecular weight compared to control cells, whereas only 32 percent of the DNA in cells treated with B(a)P but not incubated with ddThd was affected similarly.  相似文献   

19.
Low-molecular-weight peptides are linked to the chromatin DNA of several tissues, from which they can be dissociated by alkaline extraction at pH 9.5. The level of the active peptide fraction ranges between 10 and 35 micrograms/mg DNA. The removal of peptides from DNA causes a relevant amplification of DNA template capacity for prokaryotic and eukaryotic RNA polymerases. Gel filtration on Sephadex G-25 or BioGel P4 shows that the chromatin peptide fraction from purified DNA migrates as a sharp peak with an elution volume corresponding to a molecular weight of about 1000. The chromatin peptides are further purified by Sephadex G-10 and high-performance liquid chromatography. Four active fractions are isolated, one of which shows very high inhibition activity on the RNA synthesis in vitro. The amino acid analysis and the inhibition mechanism of the purified peptides are reported.  相似文献   

20.
Genotoxic end-points are routinely measured in various sentinel organisms in aquatic environments in order to monitor the impact of water pollution on organisms. As a first step towards the evaluation of oxidative DNA damage (8-oxodG) in organisms exposed to chemical water pollution, we have optimized the association between the comet assay and the hOGG1 enzyme for use on zebra mussel (Dreissena polymorpha) gill cells by in vitro exposure to H?O?. Firstly, we observed that in vitro exposure of D. polymorpha gill cells to benzo[a]pyrene (B[a]P, 98.4nM) induced an increase of the Olive Tail Moment (OTM) in both the comet-hOGG1 and comet-Fpg assays, indicating that B[a]P causes oxidative DNA damage. By contrast, methylmethane sulfonate (MMS, 33μM) only induced an increase of the Fpg-sensitive sites, indicating that MMS caused alkylating DNA damage and confirming that hOGG1 does not detect alkylating damage. Thus, the hOGG1 enzyme seems to be more specific towards oxidative DNA damage, such as 8-oxodG than Fpg. Secondly, as was observed in vitro, the in vivo exposure of D. polymorpha to B[a]P (24.6 and 98.4nM) increased oxidative DNA damage in gill cells, whereas only Fpg-sensitive sites were detected in mussels exposed to MMS (240μM). These results show that the comet-hOGG1 assay detects oxidative DNA lesions induced in vitro by H?O? and in vivo with BaP. The comet-hOGG1 assay will be used to detect oxidative DNA lesions (8-oxodG) in mussels exposed in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号