首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil-borne barley yellow mosaic virus disease, caused by different strains of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), is one of the most important diseases of winter barley (Hordeum vulgare L.) in Europe and East Asia. The recessive resistance gene rym11 located in the centromeric region of chromosome 4HL is effective against all so far known strains of BaMMV and BaYMV in Germany. In order to isolate this gene, a high-resolution mapping population (10,204 meiotic events) has been constructed. F2 plants were screened with co-dominant flanking markers and segmental recombinant inbred lines (RILs) were tested for resistance to BaMMV under growth chamber and field conditions. Tightly linked markers were developed by exploiting (1) publicly available barley EST sequences, (2) employing barley synteny to rice, Brachypodium distachyon and sorghum and (3) using next-generation sequencing data of barley. Using this approach, the genetic interval was efficiently narrowed down from the initial 10.72 % recombination to 0.074 % recombination. A marker co-segregating with rym11 was developed providing the basis for gene isolation and efficient marker-assisted selection.  相似文献   

2.
Hordeum bulbosum represents the secondary gene pool of barley and constitutes a potential source of various disease resistances in barley breeding. Interspecific crosses of H. vulgare × H. bulbosum resulted in recombinant diploid-barley progeny with immunity to BaMMV after mechanical inoculation. Tests on fields contaminated with different viruses demonstrated that resistance was effective against all European viruses of the soil-borne virus complex (BaMMV, BaYMV-1, -2). Genetic analysis revealed that resistance was dominantly inherited. Marker analysis in a F5 mapping family was performed to map the introgression in the barley genome and to estimate its size after several rounds of recombination. RFLP anchor-marker alleles indicative of an H. bulbosum introgression were found to cover an interval 2.9 cM in length on chromosome 6HS. The soil-borne virus resistance locus harboured by this introgressed segment was designated Rym14Hb. For marker-assisted selection of Rym14Hb carriers, a diagnostic codominant STS marker was derived from an AFLP fragment amplified from leaf cDNA of homozygous-resistant genotypes inoculated with BaMMV.Communicated by F. Salamini  相似文献   

3.
Barley yellow mosaic disease caused by the bymoviruses barley mild mosaic virus (BaMMV) and barley yellow mosaic virus (BaYMV) is one of the economically most important diseases of winter barley in Europe. In European barley breeding programmes, resistance is currently due to only two genes—rym4, which is effective against viruses BaMMV and BaYMV-1, and rym5, which is effective against BaYMV-2. Diversification of resistance is therefore an important task. Because the accession PI1963 confers immunity against all European strains of barley yellow mosaic disease and is not allelic to rym5, we have attempted to develop closely linked markers in order to facilitate the efficient introgression of this resistance into adapted germplasm. By means of restriction fragment length polymorphism analysis, we located a gene locus for resistance to BaMMV, BaYMV-1 and BaYMV-2 of PI1963 on chromosome 4HL using a mapping population (W757) comprising 57 doubled haploid (DH) lines. Subsequent tests for allelism indicated that the BaMMV resistance gene in PI1963 is allelic to rym11. Two DH populations, IPK1 and IPK2, comprising 191 and 161 DH lines, respectively, were derived from the initial mapping population W757 and used for further analysis. As random amplified polymorphic DNA development did not facilitate the identification of more closely linked markers, simple sequence repeat (SSR) analyses were conducted. For population IPK1, the closest SSRs detected were Bmac181 and Bmag353, which flank the gene at 2.1 cM and 2.7 cM, respectively. For the IPK2 population, the SSR markers HVM3 and Bmag353 are located proximally at 2.5 cM and distally at 8.2 cM, respectively. In order to develop markers more tightly linked to rym11, a targeted amplified fragment length polymorphism (AFLP) marker identification approach was adopted using bulks comprising lines carrying recombination events proximal and distal to the target interval. Using this approach we identified six AFLP markers closely linked to rym11, with the two markers, E56M32 and E49M33, co-segregating with rym11 in both populations. The SSRs and AFLPs identified in this study represent useful tools for marker-assisted selection.  相似文献   

4.
 Thirty-six Hordeum vulgare varieties and 12 H. spontaneum germplasms originating from different parts of the world and showing different reactions to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) were analyzed for genetic similarity using RAPDs. On the basis of an analysis of 20 selected RAPD-primers corresponding to 544 bands genetic similarity according to Nei and Li (1979) was estimated to be between 0.685 and 0.964. Associations between the 48 genotypes were calculated using UPGMA-clustering and principal coordinate analysis. By applying these methods we were able to separate H. spontaneum accessions from H. vulgare varieties, and within these groups all the genotypes were clustered correctly according to their origin. Consequently, RAPD analysis can be considered a very useful and efficient tool for the fast estimation of genetic relationships in barley. The correlation between genetic similarity with respect to German varieties and adaptation of exotic barley varieties to German growing conditions is discussed. Received: 21 May 1996 / Accepted: 5 July 1996  相似文献   

5.
RFLP mapping of BaYMV resistance gene rym3 in barley (Hordeum vulgare)   总被引:1,自引:0,他引:1  
The rym3 (formerly designated ym3) gene conferring resistance to barley yellow mosaic virus (BaYMV) is effective against all strains of the virus but up to now has not been mapped to any chromosome. We performed a linkage analysis, using DNA extracted from individually harvested mature leaves of 153 F2 plants derived from a cross between BaYMV-resistant cv ’Ishuku Shirazu’ carrying rym3 and susceptible cv ’Ko A’. Additionally, the F3 lines derived from F2 plants were grown in the BaYMV-infested field and examined for their reaction to BaYMV. Our results indicated that rym3 is located on the short arm of chromosome 5H and flanked by RFLP markers MWG28and ABG705A at distances of 7.2 and 11.7 cM, respectively. The chromosomal configuration estimated by DNA markers around rym3 and the utilization of these molecular markers for pyramiding with the BaYMV resistance genes in barley breeding programs are discussed. Received: 24 August 1998 / Accepted: 30 January 1999<@head-com-p1a.lf>Communicated by F. Salamini  相似文献   

6.
Ninety-three F(1)-derived doubled haploid (DH) lines from a complex breeders' cross involving the Japanese genotype 'Chikurin Ibaraki 1', which is resistant to barley mild mosaic virus (BaMMV) and two strains of barley yellow mosaic virus (BaYMV and BaYMV-2), three susceptible varieties ('Hamu', 'Julia' and a breeding line) and cv. 'Carola', which carries rym4 conferring resistance to BaMMV and BaYMV, were analysed for resistance to BaMMV, BaYMV and BaYMV-2. The DH lines fell into four phenotypic classes. In addition to completely resistant and susceptible genotypes, DHs were observed which were either resistant to BaMMV and BaYMV or to BaYMV and BaYMV-2. For BaMMV and BaYMV-2 resistance, segregation ratios approaching 1r:1s were observed, suggesting the presence of single resistance genes. In contrast, the segregation ratio for BaYMV fits a 3r:1s segregation ratio, suggesting the presence of two independently inherited genes. From the genetic analysis, we conclude that a resistance locus effective against BaYMV and BaYMV-2 originates from Chikurin Ibaraki 1 and segregates independently from the Carola-derived rym4 resistance that is effective against BaYMV and BaMMV. The BaMMV resistance in Chikurin Ibaraki 1 has probably been lost during population development. This hypothesis was tested using a simple-sequence repeat (SSR) marker (Bmac29) linked to rym4. All BaMMV-resistant DH lines supported amplification of the rym4-resistance diagnostic allele. To identify the genetic location of the Chikurin Ibaraki 1-derived resistance against BaYMV/BaYMV-2, bulked DNA samples were constructed from the four resistance classes, and bulked segregant analysis was performed using a genome-wide collection of SSRs. Differentiating alleles were observed at two linked SSRs on chromosome 5H. The location of this BaYMV/BaYMV-2 resistance locus was confirmed and further resolved by linkage analysis on the whole population using a total of five linked SSRs.  相似文献   

7.

Key message

The Ror1 gene was fine-mapped to the pericentric region of barley chromosome 1HL.

Abstract

Recessively inherited loss-of-function alleles of the barley (Hordeum vulgare) Mildew resistance locus o (Mlo) gene confer durable broad-spectrum disease resistance against the obligate biotrophic fungal powdery mildew pathogen Blumeria graminis f.sp. hordei. Previous genetic analyses revealed two barley genes, Ror1 and Ror2, that are Required for mlo-specified resistance and basal defence. While Ror2 was cloned and shown to encode a t-SNARE protein (syntaxin), the molecular nature or Ror1 remained elusive. Ror1 was previously mapped to the centromeric region of the long arm of barley chromosome 1H. Here, we narrowed the barley Ror1 interval to 0.18 cM and initiated a chromosome walk using barley yeast artificial chromosome (YAC) clones, next-generation DNA sequencing and fluorescence in situ hybridization. Two non-overlapping YAC contigs containing Ror1 flanking genes were identified. Despite a high degree of synteny observed between barley and the sequenced genomes of the grasses rice (Oryza sativa), Brachypodium distachyon and Sorghum bicolor across the wider chromosomal area, the genes in the YAC contigs showed extensive interspecific rearrangements in orientation and order. Consequently, the position of a Ror1 homolog in these species could not be precisely predicted, nor was a barley gene co-segregating with Ror1 identified. These factors have prevented the molecular identification of the Ror1 gene for the time being.  相似文献   

8.
Polymorphism at the Hor 1 locus of barley (Hordeum vulgare L.)   总被引:1,自引:0,他引:1  
The Hor 1 locus of barley encodes a group of seed storage polypeptides called C hordein. Two-dimensional electrophoretic analysis of C-hordein fractions from six cultivars with different alleles at the Hor 1 locus showed extensive polymorphism. A total of 34 major polypeptides was mapped, with between 4 and 18 present in each cultivar. There was less variation among the same cultivars in the numbers (6 to 10) of restriction fragments of genomic DNA which hybridized to a cDNA clone related to C hordein. The total number of restriction fragments was also lower (22), and most pairs of cultivars had more restriction fragments than polypeptides in common. A total number of about 20–30 C-hordein genes per haploid genome was estimated. The results indicate that cultivars differ mainly in the extent of gene and polypeptide divergence, rather than in the degree of gene reiteration. They are consistent with the proposed origin of the multiple structural genes at the Hor 1 locus by the duplication and divergence of a single ancestral gene.NACB was supported by a grant from the Home Grown Cereals Authority.  相似文献   

9.
Association mapping of salt tolerance in barley (Hordeum vulgare L.)   总被引:1,自引:0,他引:1  
A spring barley collection of 192 genotypes from a wide geographical range was used to identify quantitative trait loci (QTLs) for salt tolerance traits by means of an association mapping approach using a thousand SNP marker set. Linkage disequilibrium (LD) decay was found with marker distances spanning 2–8 cM depending on the methods used to account for population structure and genetic relatedness between genotypes. The association panel showed large variation for traits that were highly heritable under salt stress, including biomass production, chlorophyll content, plant height, tiller number, leaf senescence and shoot Na+, shoot Cl? and shoot, root Na+/K+ contents. The significant correlations between these traits and salt tolerance (defined as the biomass produced under salt stress relative to the biomass produced under control conditions) indicate that these traits contribute to (components of) salt tolerance. Association mapping was performed using several methods to account for population structure and minimize false-positive associations. This resulted in the identification of a number of genomic regions that strongly influenced salt tolerance and ion homeostasis, with a major QTL controlling salt tolerance on chromosome 6H, and a strong QTL for ion contents on chromosome 4H.  相似文献   

10.
Summary Three acrotrisomic lines, Triplo IL1S, 3L3S, and 4L4S, each carrying an extra acrocentric chromosome, were used for cytogenetic linkage mapping of barley chromosomes. The cytological structures of the acrocentric chromosome of the three acrotrisomic lines were studied with an improved Giemsa N-banding technique. The long (1L) and short arm (1S) of chromosome 1 had deficiencies of approximately 38% and 65%, respectively. The percentages of deficiencies were 0 and 77.8% for 3L and 3S, and 31.7 and 59.3% for 4L and 4S, respectively. All three genes tested (br, f c , gs3) in 1S and all three genes tested, f8, n and 1k2 in 1L showed a disomic ratio indicating that they are located in the deficient segments. Two genes (a c , yst2) located in the middle segment of 3S in linkage map showed a trisomic ratio, and two others a n , x s showed a disomic ratio. The only gene(f9) tested in 4L showed a trisomic ratio. Two genes (1g4, g1) located in the proximal segment of 4S in the linkage map showed a trisomic ratio, whereas two genes (br2, g13) located distally in 4S showed a disomic ratio, indicating that the breakage occurred between g1 and br2. This experiment demonstrates a new method for physical localization of genes on chromosome segments in material such as barley in which pachytene analysis can not be effectively used for accurate determination of break points in structural changes. Problems associated with this new technique are discussed.Contribution from the Department of Agronomy and published with the approval of the Director of Colorado State University Experiment Station as Scientific Series Paper No. 2823. Supported by USDA/SEA Competitive Research Grant Nos. 5901-0410-9-0334-0 and 82-CRCR-1-1020 and USDA-CSU Cooperative Research Grant 58-9AHZ-2-265  相似文献   

11.
Pomortsev AA  Martynov SP  Lialina EV 《Genetika》2007,43(11):1542-1549
Starch gel electrophoresis has been used to study the polymorphism of hordeins encoded by the Hrd A, Hrd B, and Hrd F loci in 93 landrace specimens of barley assigned to 17 ancient provinces located in modem Turkey. Forty-five alleles of Hrd A with frequencies of 0.11-29.34%, 51 alleles of Hrd B with frequencies of 0.11-8.07%, and 5 alleles of Hrd F with frequencies of 0.75-41.29% have been detected. Cluster analysis of the matrix of allele frequencies has demonstrated that barley populations from different old provinces of Turkey are similar to one another. Cluster structure of local barley populations has been found, most populations (82%) falling into three clusters. The first cluster comprises barley populations from six provinces (Thracia, Bithynia, Pontus, Lydia, Cappadocia, and Armenia); the second cluster, populations from five provinces (Paphlagonia, Galatia, Lycaonia, Cilicia, and Mesopotamia); and the third one, populations from three provinces (Phrygia, Karia, and Lycia). Barley populations from Mysia, Pamphlya, and Syria do not fall in any cluster.  相似文献   

12.
 Boron toxicity has been recognised as an important problem limiting production in the low-rainfall regions of southern Australia, West Asia and North Africa. Genetic variation for boron toxicity tolerance in barley has been characterised but the mode of inheritance and the location of genes controlling tolerance were not previously known. A population of 150 doubled-haploid lines from a cross between a boron toxicity tolerant Algerian landrace, Sahara 3771, and the intolerant Australian cultivar Clipper was screened in four tolerance assays. An RFLP linkage map of the Clipper×Sahara population was used to identify chromosomal regions associated with boron tolerance in barley. Interval regression-mapping allowed the detection of four chromosomal regions involved in the boron tolerance traits measured. A region on chromosome 2H was associated with leaf-symptom expression, a region on chromosome 3H was associated with a reduction of the affect of boron toxicity on root growth suppression, a region on chromosome 6H was associated with reduced boron uptake, and a region on chromosome 4H was also associated with the control of boron uptake as well as being associated with root-length response, dry matter production and symptom expression. The benefits and potential of marker-assisted selection for boron toxicity tolerance are discussed. Received: 18 December 1997 / Accepted: 28 November 1998  相似文献   

13.
The resorcinolic lipid content and homologue composition of winter barley grains harvested at two field locations were evaluated. Depending on the crop location, the predominant alkylresorcinols identified were 1,3-dihydroxy-5-n-heneicosylbenzene or 1,3-dihydroxy-5-n-pentacosylbenzene. Both resorcinol concentration and their homologue profiles were diverse in samples harvested at different fields indicating a prevailing role of the environment upon the alkylresorcinol biosynthesis in cereals.  相似文献   

14.
Pyrenophora graminea is the seed-borne pathogen causal agent of barley leaf stripe disease. Near-isogenic lines (NILs) carrying resistance of the cv ”Thibaut” against the highly virulent isolate Dg2 were obtained by introgressing the resistance into the genetic background of the susceptible cv ”Mirco”. The segregation of the resistance gene was followed in a F2 population of 128 plants as well as on the F3 lines derived from the F2 plants; the segregation fitted the 1:2:1 ratio for a single gene. By using NILs, a RAPD marker associated with the resistance gene was identified; sequence-specific (STS) primers were designed on the basis of the amplicon sequence and a RILs mapping population with an AFLP-based map were used to position this molecular marker to barley chromosome 1 S (7HS). STS and CAPS markers were developed from RFLPs mapped to the telomeric region of barley chromosome 7HS and three polymorphic PCR-based markers were developed. The segregation of these markers was followed in the F2 population and their map position with respect to the resistance gene was determined. Our results indicate that the Thibaut resistance gene, which we designated as Rdg2a, maps to the telomeric region of barley chromosome 7HS and is flanked by the markers OPQ-9700 and MWG 2018 at distances of 3.1 and 2.5 cM respectively. The suitability of the PCR-based marker MWG2018 in selection- assisted barley breeding programs is discussed. Received: 22 June 2000 / Accepted: 16 October 2000  相似文献   

15.
For genetic analysis of Ppd-1 homoeologs controlling photoperiodic response of wheat (Triticum aestivum L.), bulk segregant analysis was performed using a doubled haploid (DH) population derived from a cross of Japanese wheat genotypes Winter-Abukumawase and Chihokukomugi. Based on the segregation of simple sequence repeat markers linked to the Ppd-1 homoeologs, Winter-Abukumawase carried insensitive alleles Ppd-B1a and Ppd-D1a and Chihokukomugi carried a single insensitive allele (Ppd-A1a) that was first found in common wheat. The genomic sequence of Ppd-1 homoeologs including the 5′ upstream region was determined and compared between the two genotypes. Ppd-D1a of Winter-Abukumawase had a deletion of 2,089 bp that was already reported for Ciano 67. Critical sequence polymorphism causing photoperiod insensitivity was not detected from the translation start codon to the 3′ untranslated region of Ppd-A1 and Ppd-B1. However, novel mutations were found in the 5′ upstream region. Ppd-A1a of Chihokukomugi had a deletion of 1,085 bp and Ppd-B1a of Winter-Abukumawase had an insertion of 308 bp. A total of 80 DH lines were classified into eight genotypes by PCR-based genotyping using specific primer sets to detect the In/Dels in the 5′ upstream region of three Ppd-1 genes. The heading dates of the DH lines differed significantly between the eight genotypes, showing that each of the three insensitive alleles accelerates heading by 7–9 days compared with the photoperiod-sensitive genotype. Interaction between the three genes was also significant.  相似文献   

16.
In many temperate areas of the world, leaf rust is becoming an important disease of barley. In the last decade, new races of Puccinia hordei G. Otth have emerged which are virulent against the so-far most-effective race-specific resistance genes, such as Rph7. Marker-assisted selection greatly facilitates the pyramidization of two or more resistance genes in a single variety in order to achieve a more comprehensive resistance. Such a strategy requires the development of efficient and reliable markers. Here, we have developed a linkage map and found RFLP markers closely linked to the Rph7.g resistance gene on chromosome 3HS of barley. The receptor-like kinase gene Hv3Lrk that maps at 3.2 cM from Rph7.g was used to develop a PCR-based marker by exploiting a single nucleotide polymorphism. This marker was detected in 11 out of 12 (92%) barley lines having Rph7 and represents a valuable tool for marker-assisted selection. In addition, the identification of markers flanking Rph7.g provides the basis for positional cloning of this gene. Received: 1 December 1999 / Accepted: 28 February 2000  相似文献   

17.
Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings   总被引:3,自引:0,他引:3  
The response of seedlings of the monocot Hordeum vulgare L. cv. Bronze to 0,25 and 50 M aluminium in factorial combination with 0, 1.4, 2.0 and 2.8 mM Si was tested in hydroponic culture at pH 4.5. Nutrient solution (500 M calcium nitrate) and Al/Si treatments were designed to avoid the precipitation of Al from solution. Silicon treatments gave significant amelioration of the toxic effects of Al on root and shoot growth and restored calcium levels in roots and shoots at harvest to levels approaching those of control plants. Aluminium uptake by roots was also significantly diminished in the presence of Si. Silicon alone gave a slight stimulation of growth, insufficient to explain its ameliorative effect on Al toxicity. The mechanism of the Si effect on Al toxicity in monocotyledons awaits further investigation.Abbreviations ICP inductively coupled plasma  相似文献   

18.
 The complex Mla locus of barley determines resistance to the powdery mildew pathogen Erysiphe graminis f. sp. hordei. With a view towards gene isolation, a population consisting of 950 F2 individuals derived from a cross between the near-isogenic lines ‘P01’ (Mla1) and ‘P10’ (Mla12) was used to construct a high-resolution map of the Mla region. A fluorescence-based AFLP technique and bulked segregant analysis were applied to screen for polymorphic, tightly linked AFLP markers. Three AFLP markers were selected as suitable for a chromosome-landing strategy. One of these AFLP markers and a closely linked RFLP marker were converted into sequence-specific PCR markers. PCR-based screening of approximately 70 000 yeast artificial chromosome (YAC) clones revealed three identical YACs harbouring the Mla locus. Terminal insert sequences were obtained using inverse PCR. The derived STS marker from the right YAC end-clone was mapped distal to the Mla locus. Received: 17 July 1998 / Accepted: 9 August 1998  相似文献   

19.
The deployment of genetic markers is of interest in crop assessment and breeding programmes, due to the potential savings in cost and time afforded. As part of the internationally recognised framework for the awarding of Plant Breeders’ Rights (PBR), new barley variety submissions are evaluated using a suite of morphological traits to ensure they are distinct, uniform and stable (DUS) in comparison to all previous submissions. Increasing knowledge of the genetic control of many of these traits provides the opportunity to assess the potential of deploying diagnostic/perfect genetic markers in place of phenotypic assessment. Here, we identify a suite of 25 genetic markers assaying for 14 DUS traits, and implement them using a single genotyping platform (KASPar). Using a panel of 169 UK barley varieties, we show that phenotypic state at three of these traits can be perfectly predicted by genotype. Predictive values for an additional nine traits ranged from 81 to 99?%. Finally, by comparison of varietal discrimination based on phenotype and genotype resulted in correlation of 0.72, indicating that deployment of molecular markers for varietal discrimination could be feasible in the near future. Due to the flexibility of the genotyping platform used, the genetic markers described here can be used in any number or combination, in-house or by outsourcing, allowing flexible deployment by users. These markers are likely to find application where tracking of specific alleles is required in breeding programmes, or for potential use within national assessment programmes for the awarding of PBRs.  相似文献   

20.
Electrophoresis in starch gel has been used to study the polymorphism of hordeins encoded by loci Hrd A, Hrd B, and Hrd F in 140 local barley populations from the Near East, including 60, 34, 33, 8, and 5 populations from Syria, Jordan, Iraq, Palestine, and Israel, respectively. Fifty-seven Hrd A, 87 Hrd B, and 5 Hrd F alleles have been found. The alleles of these loci considerably differ in frequencies and distribution in populations from different Near Eastern countries. Cluster analysis of the matrix of the frequencies of hordein locus alleles in barley populations from the Near East, North Africa, Ethiopia, and South Arabia has yielded two clusters. The first cluster includes barley populations from Israel, Palestine, Morocco, Tunisia, Algeria, and Egypt; the second cluster, populations from Iraq, Syria, Jordan, Yemen, and Ethiopia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号