首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kirwan, John P., Donal O'Gorman, and William J. Evans.A moderate glycemic meal before endurance exercise can enhance performance. J. Appl. Physiol. 84(1):53-59, 1998.The purpose of this study was to determine whetherpresweetened breakfast cereals with various fiber contents and amoderate glycemic index optimize glucose availability and improveendurance exercise performance. Six recreationally active women ate 75 g of available carbohydrate in the form of breakfast cereals: sweetenedwhole-grain rolled oats (SRO, 7 g of dietary fiber) or sweetenedwhole-oat flour (SOF, 3 g of dietary fiber) and 300 ml of water orwater alone (Con). The meals were provided 45 min before semirecumbentcycle ergometer exercise to exhaustion at 60% of peakO2 consumption (O2 peak). Diet andphysical activity were controlled by having the subjects reside in theGeneral Clinical Research Center for 2 days before each trial. Bloodsamples were drawn from an antecubital vein for glucose, free fattyacid (FFA), glycerol, insulin, epinephrine, and norepinephrinedetermination. Breath samples were obtained at 15-min intervals aftermeal ingestion and at 30-min intervals during exercise. Muscle glycogenconcentration was determined from biopsies taken from the vastuslateralis muscle before the meal and immediately after exercise. PlasmaFFA concentrations were lower (P < 0.05) during the SRO and SOF trials for the first 60 and 90 min ofexercise, respectively, than during the Con trial. Respiratory exchangeratios were higher (P < 0.05) at 90 and 120 min of exercise for the SRO and SOF trials, respectively, than for the Con trial. At exhaustion, glucose, insulin, FFA, glycerol, epinephrine, and norepinephrine concentrations, respiratory exchange ratio, and muscle glycogen use in the vastus lateralis muscle weresimilar for all trials. Exercise time to exhaustion was 16% longer(P < 0.05) during the SRO thanduring the Con trial: 266.5 ± 13 and 225.1 ± 8 min,respectively. There was no difference in exercise time for the SOF(250.8 ± 12) and Con trials. We conclude that eating ameal with a high dietary fiber content and moderate glycemic index 45 min before prolonged moderately intense exercise significantly enhancesexercise capacity.

  相似文献   

2.
Phillips, S. M., H. J. Green, M. A. Tarnopolsky, G. J. F. Heigenhauser, R. E. Hill, and S. M. Grant. Effects of training duration on substrate turnover and oxidation during exercise. J. Appl. Physiol. 81(5):2182-2191, 1996.Adaptations in fat and carbohydrate metabolismafter a prolonged endurance training program were examined using stableisotope tracers of glucose([6,6-2H2]glucose),glycerol([2H5]glycerol),and palmitate([2H2]palmitate).Active, but untrained, males exercised on a cycle for 2 h/day[60% pretraining peak O2consumption (O2 peak) = 44.3 ± 2.4 ml · kg1 · min1]for a total of 31 days. Three cycle tests (90 min at 60% pretraining O2 peak) wereadministered before training (PRE) and after 5 (5D) and 31 (31D) daysof training. Exercise increased the rate of glucose production(Ra) and utilization(Rd) as well as the rate oflipolysis (glycerol Ra) and freefatty acid turnover (FFA Ra/Rd).At 5D, training induced a 10% (P < 0.05) increase in total fat oxidation because of an increase inintramuscular triglyceride oxidation (+63%,P < 0.05) and a decreased glycogenoxidation (16%, P < 0.05).At 31D, total fat oxidation during exercise increased a further 58%(P < 0.01). The pattern of fatutilization during exercise at 31D showed a reduced reliance on plasmaFFA oxidation (FFA Rd) and agreater dependence on oxidation of intramuscular triglyceride, whichincreased more than twofold (P < 0.001). In addition, glucose Raand Rd were reduced at all timepoints during exercise at 31D compared with PRE and 5D. We concludethat long-term training induces a progressive increase in fatutilization mediated by a greater oxidation of fats from intramuscularsources and a reduction in glucose oxidation. Initial changes arepresent as early as 5D and occur before increases in muscle maximalmitochondrial enzyme activity [S. M. Phillips, H. J. Green, M. A. Tarnopolsky, G. J. F. Heigenhauser, and S. M. Grant.Am. J. Physiol. 270 (Endocrinol. Metab. 33):E265-E272, 1996].

  相似文献   

3.
Effect of tryptophan and of glucose on exercise capacity of horses   总被引:1,自引:0,他引:1  
We hypothesized that central fatigue may have a role in limitingthe endurance capacity of horses. Therefore, we tested the effect ofinfusing tryptophan and/or glucose on endurance time and plasmaconcentrations of free tryptophan and other substrates thought toaffect tryptophan uptake into the brain of seven mares (3-4 yr ofage, 353-435 kg) that ran on a treadmill at 50% of maximalO2 consumption to fatigue. Withuse of a counterbalanced crossover design, the horses were infused withtryptophan (100 mg/kg in saline solution) or a similar volume of salinesolution (placebo) before exercise. During exercise, horses receivedinfusions of glucose (2 g/min, 50% wt/vol) or a similar volume ofsaline. Thus the treatments were 1)tryptophan and glucose (T & G), 2) tryptophan and placebo (T & P), 3)placebo and glucose (P & G), and 4)placebo and placebo (P & P). Mean heart rate, hematocrit, andconcentration of plasma total solids before and during exercise weresimilar for all trials. Mean time to exhaustion was reduced (P < 0.05) for T & P and T & Gcompared with P & P [86.1 ± 6.9 and 87.1 ± 6.8 vs. 102.3 ± 10.3 (SE) min], whereas endurance for P & G(122.4 ± 11.9 min) was greater than for all other trials (P < 0.05). Compared withnontryptophan trials, during the tryptophan trials plasma prolactinincreased (P < 0.05) nearlythreefold before exercise and almost twofold early in exercise. Muscleglycogen concentrations were reduced(P < 0.05) below preexercise values in the P & G and P & P trials only. However, glucose infusions (P & G)did not affect (P > 0.05)concentrations of plasma free fatty acids or ratios of branched-chainamino acids to free tryptophan. In conclusion, tryptophan infusionreduced endurance time, which was consistent with the central fatiguehypothesis. The failure of glucose infusion to alleviate the effects oftryptophan and the absence of significant muscle glycogen reduction inthe tryptophan trials suggest that the early onset of fatigue in thetryptophan trials is not due to a lack of readily available substrate.

  相似文献   

4.
Metabolic and exercise endurance effects of coffee and caffeine ingestion   总被引:3,自引:0,他引:3  
Caffeine (Caf) ingestion increases plasmaepinephrine (Epi) and exercise endurance; these results are frequentlytransferred to coffee (Cof) consumption. We examined theimpact of ingestion of the same dose of Caf in Cof or in water. Ninehealthy, fit, young adults performed five trials after ingesting(double blind) either a capsule (Caf or placebo) with water or Cof(decaffeinated Cof, decaffeinated with Caf added, or regularCof). In all three Caf trials, the Caf dose was 4.45 mg/kgbody wt and the volume of liquid was 7.15 ml/kg. After 1 h of rest, thesubject ran at 85% of maximal O2consumption until voluntary exhaustion (~32 min in the placebo anddecaffeinated Cof tests). In the three Caf trials, the plasma Caf andparaxanthine concentrations were very similar. After 1 h of rest, theplasma Epi was increased (P < 0.05)by Caf ingestion, but the increase was greater(P < 0.05) with Caf capsules thanwith Cof. During the exercise there were no differences in Epi amongthe three Caf trials, and the Epi values were all greater(P < 0.05) than in the othertests. Endurance was only increased(P < 0.05) in the Caf capsule trial; there were no differences among the other four tests. One cannot extrapolate the effects of Caf to Cof; there must be a component(s) ofCof that moderates the actions of Caf.

  相似文献   

5.
To assessthe impact of continuous negative-pressure breathing (CNPB) on theregulation of skin blood flow, we measured forearm blood flow (FBF) byvenous-occlusion plethysmography and laser-Doppler flow (LDF) at theanterior chest during exercise in a hot environment (ambienttemperature = 30°C, relative humidity = ~30%). Seven malesubjects exercised in the upright position at an intensity of 60% peakoxygen consumption rate for 40 min with and without CNPB after 20 minof exercise. The esophageal temperature(Tes) in both conditionsincreased to 38.1°C by the end of exercise, without any significantdifferences between the two trials. Mean arterial pressure (MAP)increased by ~15 mmHg by 8 min of exercise, without any significantdifference between the two trials before CNPB. However, CNPB reducedMAP by ~10 mmHg after 24 min of exercise (P < 0.05). The increasein FBF and LDF in the control condition leveled off after 18 min ofexercise above a Tes of37.7°C, whereas in the CNPB trial the increase continued, with arise in Tes despite the decreasein MAP. These results suggest that CNPB enhances vasodilation of skinabove a Tes of ~38°C bystretching intrathoracic baroreceptors such as cardiopulmonarybaroreceptors.

  相似文献   

6.
Fothergill, D. M., and N. A. Carlson. Effects ofN2O narcosis on breathing andeffort sensations during exercise and inspiratory resistive loading.J. Appl. Physiol. 81(4):1562-1571, 1996.The influence of nitrous oxide(N2O) narcosis on the responses toexercise and inspiratory resistive loading was studied in thirteen maleUS Navy divers. Each diver performed an incremental bicycle exercisetest at 1 ATA to volitional exhaustion while breathing a 23%N2O gas mixture and a nonnarcoticgas of the same PO2, density, andviscosity. The same gas mixtures were used during four subsequent30-min steady-state submaximal exercise trials in which the subjectsbreathed the mixtures both with and without an inspiratory resistance(5.5 vs. 1.1 cmH2O · s · l1at 1 l/s). Throughout each test, subjective ratings of respiratory effort (RE), leg exertion, and narcosis were obtained with acategory-ratio scale. The level of narcosis was rated between slightand moderate for the N2O mixturebut showed great individual variation. Perceived leg exertion and thetime to exhaustion were not significantly different with the twobreathing mixtures. Heart rate was unaffected by the gas mixture andinspiratory resistance at rest and during steady-state exercise but wassignificantly lower with the N2O mixture during incremental exercise (P < 0.05). Despite significant increases in inspiratory occlusionpressure (13%; P < 0.05),esophageal pressure (12%; P < 0.001), expired minute ventilation (4%;P < 0.01), and the work rate ofbreathing (15%; P < 0.001) when the subjects breathed the N2O mixture,RE during both steady-state and incremental exercise was 25% lowerwith the narcotic gas than with the nonnarcotic mixture(P < 0.05). We conclude that the narcotic-mediated changes in ventilation, heart rate, and RE induced by23% N2O are not of sufficientmagnitude to influence exercise tolerance at surface pressure.Furthermore, the load-compensating respiratory reflexes responsible formaintaining ventilation during resistive breathing are not depressed byN2O narcosis.

  相似文献   

7.
Haskell, Andrew, Ethan R. Nadel, Nina S. Stachenfeld, KeiNagashima, and Gary W. Mack. Transcapillary escape rate of albuminin humans during exercise-induced hypervolemia. J. Appl. Physiol. 83(2): 407-413, 1997.To test thehypotheses that plasma volume (PV) expansion 24 h after intenseexercise is associated with reduced transcapillary escape rate ofalbumin (TERalb) and that localchanges in transcapillary forces in the previously active tissues favorretention of protein in the vascular space, we measured PV,TERalb, plasma colloid osmoticpressure (COPp), interstitialfluid hydrostatic pressure (Pi), and colloid osmotic pressure in legmuscle and skin and capillary filtration coefficient (CFC) in the armand leg in seven men and women before and 24 h after intense uprightcycle ergometer exercise. Exercise expanded PV by 6.4% at 24 h (43.9 ± 0.8 to 46.8 ± 1.2 ml/kg, P < 0.05) and decreased total protein concentration (6.5 ± 0.1 to6.3 ± 0.1 g/dl, P < 0.05) andCOPp (26.1 ± 0.8 to 24.3 ± 0.9 mmHg, P < 0.05), although plasmaalbumin concentration was unchanged. TERalb tended to decline (8.4 ± 0.5 to 6.5 ± 0.7%/h, P = 0.11) and was correlated with the increase in PV(r = 0.69,P < 0.05). CFC increased in the leg(3.2 ± 0.2 to 4.3 ± 0.5 µl · 100 g1 · min1 · mmHg1,P < 0.05), and Pi showed a trend toincrease in the leg muscle (2.8 ± 0.7 to 3.8 ± 0.3 mmHg, P = 0.08). These datademonstrate that TERalb isassociated with PV regulation and that local transcapillary forcesin the leg muscle may favor retention of albumin in the vascular spaceafter exercise.

  相似文献   

8.
This studyexamines the effects of weight loss by caloric restriction (WL) andaerobic exercise plus weight loss (AEx+WL) on total and regional bonemineral density (BMD) in older women. Healthy,postmenopausal women [age 63 ± 1 (SE) yr] not onhormone-replacement therapy underwent 6 mo of WL(n = 15) consisting of dietarycounseling one time per week with a caloric deficit (250-350kcal/day) or AEx+WL (n = 15)consisting of treadmill exercise three times per week in addition tothe weight loss. Maximal aerobic capacity increased only in the AEx+WLgroup (P < 0.001). Body weight,percent fat, and fat mass decreased similarly in both groups(P < 0.005), with no changesin fat-free mass. Total body BMD (by dual-energy X-rayabsorptiometry) decreased in both groups(P < 0.05). Femoral neck, Ward'striangle, and greater trochanter BMD decreased in the WL group(P  0.05) but were not significantlydifferent after AEx+WL.L2-L4BMD did not significantly change in either group. Thus WL andAEx+WL both result in losses of totalbody BMD; however, AEx+WL appears to prevent the loss in regional BMDseen with WL alone in healthy, older women. This suggests that theaddition of exercise to weight-loss programs may reduce the risk forbone loss.

  相似文献   

9.
Important role of carotid afferents in control of breathing   总被引:5,自引:0,他引:5  
The purpose of the present study was todetermine the effect on breathing in the awake state of carotid bodydenervation (CBD) over 1-2 wk after denervation. Studies werecompleted on adult goats repeatedly before and1) for 15 days after bilateral CBD (n = 8),2) for 7 days after unilateral CBD(n = 5), and3) for 15 days after sham CBD(n = 3). Absence of ventilatorystimulation when NaCN was injected directly into a common carotidartery confirmed CBD. There was a significant(P < 0.01) hypoventilation during the breathing of room air after unilateral and bilateral CBD. Themaximum PaCO2 increase (8 Torr forunilateral and 11 Torr for bilateral) occurred ~4 days afterCBD. This maximum was transient because by 7 (unilateral)to 15 (bilateral) days after CBD, PaCO2 was only 3-4 Torr above control.CO2 sensitivity was attenuated from control by 60% on day 4 afterbilateral CBD and by 35% on day 4 after unilateral CBD. This attenuation was transient, because CO2 sensitivity returned tocontrol temporally similar to the return ofPaCO2 during the breathing of room air.During mild and moderate treadmill exercise 1-8 days afterbilateral CBD, PaCO2 was unchanged fromits elevated level at rest, but, 10-15 days after CBD,PaCO2 decreased slightly from restduring exercise. These data indicate that1) carotid afferents are animportant determinant of rest and exercise breathing and ventilatoryCO2 sensitivity, and2) apparent plasticity within theventilatory control system eventually provides compensation for chronicloss of these afferents.

  相似文献   

10.
Lang, Chim C., Don B. Chomsky, Javed Butler, Shiv Kapoor,and John R. Wilson. Prostaglandin production contributes toexercise-induced vasodilation in heart failure. J. Appl. Physiol. 83(6): 1933-1940, 1997.Endothelial release of prostaglandins may contribute toexercise-induced skeletal muscle arteriolar vasodilation in patientswith heart failure. To test this hypothesis, we examined the effect ofindomethacin on leg circulation and metabolism in eight chronic heartfailure patients, aged 55 ± 4 yr. Central hemodynamics and legblood flow, determined by thermodilution, and leg metabolic parameterswere measured during maximum treadmill exercise before and 2 h afteroral administration of indomethacin (75 mg). Leg release of6-ketoprostaglandin F1 was alsomeasured. During control exercise, leg blood flow increased from 0.34 ± 0.03 to 1.99 ± 0.19 l/min(P < 0.001), legO2 consumption from 13.6 ± 1.8 to 164.5 ± 16.2 ml/min (P < 0.001), and leg prostanoid release from 54.1 ± 8.5 to267.4 ± 35.8 pg/min (P < 0.001).Indomethacin suppressed release of prostaglandinF1(P < 0.001) throughout exercise anddecreased leg blood flow during exercise(P < 0.05). This was associated witha corresponding decrease in leg O2 consumption (P < 0.05) and a higher level offemoral venous lactate at peak exercise(P < 0.01). These data suggest thatrelease of vasodilatory prostaglandins contributes to skeletal musclearteriolar vasodilation in patients with heart failure.

  相似文献   

11.
Brooks, E. M., A. L. Morgan, J. M. Pierzga, S. L. Wladkowski, J. T. O'Gorman, J. A. Derr, and W. L. Kenney. Chronic hormone replacement therapy alters thermoregulatory and vasomotor function in postmenopausal women. J. Appl.Physiol. 83(2): 477-484, 1997.This investigationexamined effects of chronic (2 yr) hormone replacement therapy (HRT),both estrogen replacement therapy (ERT) and estrogen plus progesteronetherapy (E+P), on core temperature and skin blood flow responses ofpostmenopausal women. Twenty-five postmenopausal women [9 not onHRT (NO), 8 on ERT, 8 on E+P] exercised on a cycle ergometer for1 h at an ambient temperature of 36°C. Cutaneous vascularconductance (CVC) was monitored by laser-Doppler flowmetry, and forearmvascular conductance (FVC) was measured by using venous occlusionplethysmography. Iontophoresis of bretylium tosylate was performedbefore exercise to block local vasoconstrictor (VC) activity at oneskin site on the forearm. Rectal temperature (Tre) was ~0.5°C lower forthe ERT group (P < 0.01) comparedwith E+P and NO groups at rest and throughout exercise. FVC: mean body temperature (Tb) and CVC:Tb curves were shifted~0.5°C leftward for the ERT group(P < 0.0001). Baseline CVC wassignificantly higher in the ERT group(P < 0.05), but there was nointeraction between bretylium treatment and groups once exercise wasinitiated. These results suggest that1) chronic ERT likely acts centrally to decrease Tre,2) ERT lowers theTre at which heat-loss effector mechanisms are initiated, primarily by actions on active cutaneous vasodilation, and 3) addition ofexogenous progestins in HRT effectively blocks these effects.

  相似文献   

12.
The purpose ofthis study was to determine the threshold of exercise energyexpenditure necessary to change blood lipid and lipoproteinconcentrations and lipoprotein lipase activity (LPLA) in healthy,trained men. On different days, 11 men (age, 26.7 ± 6.1 yr; bodyfat, 11.0 ± 1.5%) completed four separate, randomly assigned,submaximal treadmill sessions at 70% maximalO2 consumption. During eachsession 800, 1,100, 1,300, or 1,500 kcal were expended. Compared withimmediately before exercise, high-density lipoprotein cholesterol(HDL-C) concentration was significantly elevated 24 h after exercise(P < 0.05) in the 1,100-, 1,300-, and 1,500-kcal sessions. HDL-C concentration was also elevated(P < 0.05) immediately after and 48 h after exercise in the 1,500-kcal session. Compared with values 24 hbefore exercise, LPLA wassignificantly greater (P < 0.05) 24 h after exercise in the 1,100-, 1,300-, and 1,500-kcal sessions andremained elevated 48 h after exercise in the 1,500-kcal session. Thesedata indicate that, in healthy, trained men, 1,100 kcal of energyexpenditure are necessary to elicit increased HDL-C concentrations.These HDL-C changes coincided with increased LPLA.

  相似文献   

13.
Hinchcliff, K. W., K. H. McKeever, W. W. Muir, and R. A. Sams. Furosemide reduces accumulated oxygen deficit inhorses during brief intense exertion. J. Appl.Physiol. 81(4): 1550-1554, 1996.We theorizedthat furosemide-induced weight reduction would reduce the contributionof anaerobic metabolism to energy expenditure of horses during intenseexertion. The effects of furosemide on accumulatedO2 deficit and plasma lactateconcentration of horses during high-intensity exercise were examined ina three-way balance randomized crossover study. Nine horses completedeach of three trials: 1) a control(C) trial, 2) a furosemide-unloaded(FU) trial in which the horse received furosemide 4 h before running, and 3) a furosemide weight-loaded(FL) trial during which the horse received furosemide and carriedweight equal to the weight lost after furosemide administration. Horsesran for 2 min at ~120% maximalO2 consumption. Furosemide (FU)increased O2 consumption (ml · 2 min1 · kg1)compared with C (268 ± 9 and 257 ± 9, P < 0.05), whereas FL was notdifferent from C (252 ± 8). AccumulatedO2 deficit (ml O2 equivalents/kg) wassignificantly (P < 0.05) lowerduring FU (81.2 ± 12.5), but not during FL (96.9 ± 12.4), thanduring C (91.4 ± 11.5). Rate of increase in blood lactateconcentration (mmol · 2 min1 · kg1)after FU (0.058 ± 0.001), but not after FL (0.061 ± 0.001), was significantly (P < 0.05) lower than after C (0.061 ± 0.001). Furosemide decreased theaccumulated O2 deficit and rate ofincrease in blood lactate concentration of horses during briefhigh-intensity exertion. The reduction in accumulatedO2 deficit in FU-treated horseswas attributable to an increase in the mass-specific rate ofO2 consumption during thehigh-intensity exercise test.

  相似文献   

14.
Babb, T. G. Ventilatory response to exercise insubjects breathing CO2 orHeO2.J. Appl. Physiol. 82(3): 746-754, 1997.To investigate the effects of mechanical ventilatory limitationon the ventilatory response to exercise, eight older subjects with normal lung function were studied. Each subject performed graded cycleergometry to exhaustion once while breathing room air; once whilebreathing 3% CO2-21%O2-balanceN2; and once while breathing HeO2 (79% He and 21%O2). Minute ventilation(E) and respiratory mechanics weremeasured continuously during each 1-min increment in work rate (10 or20 W). Data were analyzed at rest, at ventilatory threshold (VTh),and at maximal exercise. When the subjects were breathing 3%CO2, there was an increase(P < 0.001) inE at rest and at VTh but not duringmaximal exercise. When the subjects were breathingHeO2,E was increased(P < 0.05) only during maximalexercise (24 ± 11%). The ventilatory response to exercise belowVTh was greater only when the subjects were breathing 3% CO2(P < 0.05). Above VTh, theventilatory response when the subjects were breathingHeO2 was greater than whenbreathing 3% CO2(P < 0.01). Flow limitation, aspercent of tidal volume, during maximal exercise was greater(P < 0.01) when the subjects werebreathing CO2 (22 ± 12%) thanwhen breathing room air (12 ± 9%) or when breathingHeO2 (10 ± 7%)(n = 7). End-expiratory lung volumeduring maximal exercise was lower when the subjects were breathingHeO2 than when breathing room airor when breathing CO2(P < 0.01). These data indicate thatolder subjects have little reserve for accommodating an increase inventilatory demand and suggest that mechanical ventilatory constraintsinfluence both the magnitude of Eduring maximal exercise and the regulation ofE and respiratory mechanics duringheavy-to-maximal exercise.

  相似文献   

15.
González-Alonso, José, RicardoMora-Rodríguez, Paul R. Below, and Edward F. Coyle.Dehydration markedly impairs cardiovascular function inhyperthermic endurance athletes during exercise. J. Appl. Physiol. 82(4): 1229-1236, 1997.Weidentified the cardiovascular stress encountered by superimposingdehydration on hyperthermia during exercise in the heat and themechanisms contributing to the dehydration-mediated stroke volume (SV)reduction. Fifteen endurance-trained cyclists [maximalO2 consumption(O2 max) = 4.5 l/min] exercised in the heat for 100-120 min and either became dehydrated by 4% body weight or remained euhydrated by drinkingfluids. Measurements were made after they continued exercise at 71%O2 max for 30 minwhile 1) euhydrated with anesophageal temperature (Tes) of38.1-38.3°C (control); 2)euhydrated and hyperthermic (39.3°C);3) dehydrated and hyperthermic withskin temperature (Tsk) of34°C; 4) dehydrated withTes of 38.1°C and Tsk of 21°C; and5) condition4 followed by restored blood volume. Compared withcontrol, hyperthermia (1°C Tesincrease) and dehydration (4% body weight loss) each separatelylowered SV 7-8% (11 ± 3 ml/beat;P < 0.05) and increased heart ratesufficiently to prevent significant declines in cardiac output.However, when dehydration was superimposed on hyperthermia, thereductions in SV were significantly (P < 0.05) greater (26 ± 3 ml/beat), and cardiac output declined 13% (2.8 ± 0.3 l/min). Furthermore, mean arterialpressure declined 5 ± 2%, and systemic vascular resistanceincreased 10 ± 3% (both P < 0.05). When hyperthermia wasprevented, all of the decline in SV with dehydration was due to reducedblood volume (~200 ml). These results demonstrate that thesuperimposition of dehydration on hyperthermia during exercise in theheat causes an inability to maintain cardiac output and blood pressurethat makes the dehydrated athlete less able to cope with hyperthermia.

  相似文献   

16.
The female sexhormone 17-estradiol (E2) has been shown to increaselipid and decrease carbohydrate utilization in animals. Weadministrated oral E2 and placebo (randomized, doubleblind, crossover) to eight human male subjects for 8 days (~3 mg/day) and measured respiratory variables, plasma substrates, hormones (E2, testosterone, leptin, cortisol, insulin, andcatecholamines), and substrate utilization during 90 min of enduranceexercise. [6,6-2H]glucose and[1,1,2,3,3-2H]glycerol tracers were used to calculatesubstrate flux. E2 administration increased serumE2 (0.22 to 2.44 nmol/l, P < 0.05) anddecreased serum testosterone (19.4 to 11.5 nmol/l, P < 0.05) concentrations, yet there were no treatment effects on any of theother hormones. Glucose rates of appearance (Ra) anddisappearance (Rd) were lower, and glycerolRa-to-Rd ratio was not affected byE2 administration. O2 uptake, CO2production, and respiratory exchange ratio were not affected byE2; however, there was a decrease in heart rate (P < 0.05). Plasma lactate and glycerol wereunaffected by E2; however, glucose was significantly higher(P < 0.05) during exercise after E2administration. We concluded that short-term oral E2 administration decreased glucose Ra and Rd,maintained plasma glucose homeostasis, but had no effect on substrateoxidation during exercise in men.

  相似文献   

17.
Fuel metabolism in men and women during and after long-duration exercise   总被引:5,自引:0,他引:5  
This study aimed to determine gender-baseddifferences in fuel metabolism in response to long-duration exercise.Fuel oxidation and the metabolic response to exercise were compared inmen (n = 14) and women(n = 13) during 2 h (40% of maximalO2 uptake) of cycling and 2 h ofpostexercise recovery. In addition, subjects completed a separatecontrol day on which no exercise was performed. Fuel oxidation wasmeasured using indirect calorimetry, and blood samples were drawn forthe determination of circulating substrate and hormone levels. Duringexercise, women derived proportionally more of the total energyexpended from fat oxidation (50.9 ± 1.8 and 43.7 ± 2.1% forwomen and men, respectively, P < 0.02), whereas men derived proportionally more energy from carbohydrateoxidation (53.1 ± 2.1 and 45.7 ± 1.8% for men and women,respectively, P < 0.01). Thesegender-based differences were not observed before exercise, afterexercise, or on the control day. Epinephrine(P < 0.007) and norepinephrine(P < 0.0009) levels weresignificantly greater during exercise in men than in women (peakepinephrine concentrations: 208 ± 36 and 121 ± 15 pg/ml in menand women, respectively; peak norepinephrine concentrations: 924 ± 125 and 659 ± 68 pg/ml in men and women, respectively). Ascirculating glycerol levels were not different between the two groups,this suggests that women may be more sensitive to the lipolytic action of the catecholamines. In conclusion, these data support the view thatdifferent priorities are placed on lipid and carbohydrate oxidationduring exercise in men and women and that these gender-based differences extend to the catecholamine response to exercise.

  相似文献   

18.
This study examined the efficacy of glycerol andwater hyperhydration (1 h before exercise) on tolerance andcardiovascular strain during uncompensable exercise-heat stress. Theapproach was to determine whether 1-h preexercise hyperhydration (29.1 ml H2O/kg lean body mass with orwithout 1.2 g/kg lean body mass of glycerol) provided a physiologicaladvantage over euhydration. Eight heat-acclimated men completed threetrials (control euhydration before exercise, and glycerol and waterhyperhydrations) consisting of treadmill exercise-heat stress (ratio ofevaporative heat loss required to maximal capacity of climate = 416).During exercise (~55% maximalO2 uptake), there was nodifference between glycerol and water hyperhydration methods forincreasing (P < 0.05) total bodywater. Glycerol hyperhydration endurance time (33.8 ± 3.0 min) waslonger (P < 0.05) than for control(29.5 ± 3.5 min), but was not different(P > 0.05) from that of waterhyperhydration (31.3 ± 3.1 min). Hyperhydration didnot alter (P > 0.05) core temperature, whole body sweating rate, cardiac output, blood pressure, total peripheral resistance, or core temperature tolerance. Exhaustion from heat strain occurred at similar core and skin temperatures andheart rates in each trial. Symptoms at exhaustion included syncope andataxia, fatigue, dyspnea, and muscle cramps(n = 11, 10, 2, and 1 cases,respectively). We conclude that 1-h preexercise glycerolhyperhydration provides no meaningful physiological advantage overwater hyperhydration and that hyperhydration per se only provides theadvantage (over euhydration) of delaying hypohydration duringuncompensble exercise-heat stress.

  相似文献   

19.
We used anexercise paradigm with repeated bouts of heavy forearm exercise to testthe hypothesis that alterations in local acid-base environment thatremain after the first exercise result in greater blood flow andO2 delivery at the onset of the second bout of exercise.Two bouts of handgrip exercise at 75% peak workload were performed for5 min, separated by 5 min of recovery. We continuously measured bloodflow using Doppler ultrasound and sampled venous blood forO2 content, PCO2, pH, and lactateand potassium concentrations, and we calculated muscle O2uptake (O2). Forearm blood flow waselevated before the second exercise compared with the first andremained higher during the first 30 s of exercise (234 ± 18 vs. 187 ± 4 ml/min, P < 0.05). Flow was notdifferent at 5 min. Arteriovenous O2 content difference waslower before the second bout (4.6 ± 0.9 vs. 7.2 ± 0.7 mlO2/dl) and higher by 30 s of exercise(11.2 ± 0.7 vs. 10.8 ± 0.7 ml O2/dl,P < 0.05). Muscle O2was unchanged before the start of exercise but was elevated during thefirst 30 s of the transition to the second exercise bout(26.0 ± 2.1 vs. 20.0 ± 0.9 ml/min, P < 0.05). Changes in venous blood PCO2, pH, andlactate concentration were consistent with reduced reliance onanaerobic glycolysis at the onset of the second exercise bout. Thesedata show that limitations of muscle blood flow can restrict theadaptation of oxidative metabolism at the onset of heavy muscular exertion.

  相似文献   

20.
The purpose ofthe present investigation was to determine the independent effects ofhypoxia and physical exercise on peripheral cholecystokinin (CCK)metabolism in humans. Thirty-two physically active men wererandomly assigned in a double-blind manner to either a normoxic (N;n = 14) or hypoxic (H; n = 18) group.During the acute study, subjects in the H group only participated in two tests, separated by 48 h, which involved a cycling test to exhaustion in normobaric normoxia and normobaric hypoxia (inspired O2 fraction = 0.21 and 0.16, respectively). In theintermittent study, N and H groups cycle-trained for 4 wk at the samerelative exercise intensity in both normoxia and hypoxia. Acutenormoxic exercise consistently raised plasma CCK during both studies by 290-723%, which correlated with increases in the plasma ratio offree tryptophan to branched chain amino acids (r = 0.58-0.71, P < 0.05). In contrast, acute hypoxicexercise decreased CCK by 7.0 ± 5.5 pmol/l, which correlated withthe decrease in arterial oxygen saturation (r = 0.56, P < 0.05). In the intermittent study, plasma CCKresponse at rest and after normoxic exercise was not altered afterphysical training, despite a slight decrease in adiposity. We concludethat peripheral CCK metabolism 1) is more sensitive to acutechanges than chronic changes in energy expenditure and 2) ispotentially associated with acute changes in tissue PO2 and metabolic precursors of cerebralserotoninergic activity.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号