首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Wu MY  Jiang M  Zhai X  Beaudet AL  Wu RC 《PloS one》2012,7(4):e34348
Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS.  相似文献   

2.
3.
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder that arises from lack of expression of paternally inherited genes known to be imprinted and located in the chromosome 15q11-q13 region. PWS is considered the most common syndromal cause of life-threatening obesity and is estimated at 1 in 10,000 to 20,000 individuals. A de novo paternally derived chromosome 15q11-q13 deletion is the cause of PWS in about 70% of cases, and maternal disomy 15 accounts for about 25% of cases. The remaining cases of PWS result either from genomic imprinting defects (microdeletions or epimutations) of the imprinting centre in the 15q11-q13 region or from chromosome 15 translocations. Here, we describe the clinical presentation of PWS, review the current understanding of causative cytogenetic and molecular genetic mechanisms, and discuss future directions for research.  相似文献   

4.
5.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders resulting from deficiency of imprinted gene expression from paternal or maternal chromosome 15q11-15q13, respectively. In humans, expression of the imprinted genes is under control of a bipartite cis-acting imprinting center (IC). Families with deletions causing PWS imprinting defects localize the PWS-IC to 4.3 kb overlapping with SNRPN exon 1. Families with deletions causing AS imprinting defects localize the AS-IC to 880 bp 35 kb upstream of the PWS-IC. We report two mouse mutations resulting in defects similar to that seen in AS patients with deletion of the AS-IC. An insertion/duplication mutation 13 kb upstream of Snrpn exon 1 resulted in lack of methylation at the maternal Snrpn promoter, activation of maternally repressed genes, and decreased expression of paternally repressed genes. The acquisition of a paternal epigenotype on the maternal chromosome in the mutant mice was demonstrated by the ability to rescue the lethality and growth retardation in a mouse model of a PWS imprinting defect. A second mutation, an 80-kb deletion extending upstream of the first mutation, caused a similar imprinting defect with variable penetrance. These results suggest that there is a mouse functional equivalent to the human AS-IC.  相似文献   

6.
7.
Prader-Willi syndrome (PWS) is a contiguous gene syndrome caused by the loss of function of genes situated within the 15q11-q13 region. The loss of function arises as a result of paternally derived mutations complemented by maternal imprinting. The molecular events underlying the disorder include interstitial deletions (70%), uniparental disomy (UPD) (25%), imprinting center defects (<5%), and rarely chromosomal translocations (<1%). The standard diagnosis of PWS is based on clinical observations and genetic investigations involving DNA methylation studies and fluorescence in situ hybridization (FISH) analysis. The absence of a paternal methylation pattern within 15q11 is sufficient for a diagnosis of PWS, and FISH analyses are used for the additional categorization of patients as either deletion or nondeletion. The main limitation of these investigations is that they neither determine the size of the molecular deletions nor permit detection of individuals with microdeletions in the PWS imprinting center that regulates imprinting in this region. We have designed and implemented a real-time PCR assay using genomic DNA and SYBR green I intercalating dye to determine the size of the chromosomal deletions in patients with PWS. This has been successfully performed on genomic DNA isolated from both peripheral blood leukocytes and buccal epithelial cells. Through this assay, the two common deletion classes in PWS were observed, and all results were 100% concordant with previous FISH assays performed on the same patients.  相似文献   

8.
The Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) are caused by the loss of function of imprinted genes in proximal 15q. In approximately 2%-4% of patients, this loss of function is due to an imprinting defect. In some cases, the imprinting defect is the result of a parental imprint-switch failure caused by a microdeletion of the imprinting center (IC). Here we describe the molecular analysis of 13 PWS patients and 17 AS patients who have an imprinting defect but no IC deletion. Heteroduplex and partial sequence analysis did not reveal any point mutations of the known IC elements, either. Interestingly, all of these patients represent sporadic cases, and some share the paternal (PWS) or the maternal (AS) 15q11-q13 haplotype with an unaffected sib. In each of five PWS patients informative for the grandparental origin of the incorrectly imprinted chromosome region and four cases described elsewhere, the maternally imprinted paternal chromosome region was inherited from the paternal grandmother. This suggests that the grandmaternal imprint was not erased in the father's germ line. In seven informative AS patients reported here and in three previously reported patients, the paternally imprinted maternal chromosome region was inherited from either the maternal grandfather or the maternal grandmother. The latter finding is not compatible with an imprint-switch failure, but it suggests that a paternal imprint developed either in the maternal germ line or postzygotically. We conclude (1) that the incorrect imprint in non-IC-deletion cases is the result of a spontaneous prezygotic or postzygotic error, (2) that these cases have a low recurrence risk, and (3) that the paternal imprint may be the default imprint.  相似文献   

9.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis.  相似文献   

10.
To examine the chromatin basis of imprinting in chromosome 15q11-q13, we have investigated the status of histone acetylation of the SNURF-SNRPN locus, which is a key imprinted gene locus in Prader-Willi syndrome (PWS). Chromatin immunoprecipitation (ChIP) studies revealed that the unmethylated CpG island of the active, paternally derived allele of SNURF-SNRPN was associated with acetylated histones, whereas the methylated maternally derived, inactive allele was specifically hypoacetylated. The body of the SNURF-SNRPN gene was associated with acetylated histones on both alleles. Furthermore, treatment of PWS cells with the DNA methyltransferase inhibitor 5-azadeoxycytidine (5-aza-dC) induced demethylation of the SNURF-SNRPN CpG island and restoration of gene expression on the maternal allele. The reactivation was associated with increased H4 acetylation but not with H3 acetylation at the SNURF-SNRPN CpG island. These findings indicate that (1) a significant role for histone deacetylation in gene silencing is associated with imprinting in 15q11-q13 and (2) silenced genes in PWS can be reactivated by drug treatment.  相似文献   

11.
Prader-Willi syndrome (PWS) is a complex neurobehavioral disorder that results from loss of function of 10 clustered, paternally expressed genes in a 1.5-Mb region of chromosome 15q11-q13. Many of the primary PWS region genes appear to have nuclear RNA regulatory functions, suggesting that multiple genetic pathways could be secondarily affected in PWS. Using a transgenic mouse model of PWS (TgPWS) with an approximately 4-Mb chromosome 7C deletion of paternal origin that models the neonatal phenotype of the human syndrome we compared by oligonucleotide microarrays expression levels of approximately 12,000 genes and ESTs in TgPWS and wild-type brain. Hybridization data were processed with two distinct statistical algorithms and revealed a dramatically reduced expression of 4 imprinted genes within the deletion region in TgPWS mice, with 2 nonimprinted, codeleted genes reduced twofold. However, only 3 genes outside the deletion were significantly altered in TgPWS mouse brain, with approximately 1.5-fold up-regulation of mRNA levels. Remarkably, these genes map to a single chromosome domain (18B3), and by quantitative RT-PCR we show that 8 genes in this domain are up-regulated in TgPWS brain. These 18B3 genes were up-regulated in an equivalent manner in Angelman syndrome mouse (TgAS) brain, which has the same deletion but of maternal origin. Therefore, the trans-regulation of the chromosome 18B3 domain is due to decreased expression of a nonimprinted gene within the TgPWS/AS mouse deletion in mouse chromosome 7C. Most surprisingly, since 48-60% of the genome was screened, it appears that the imprinted mouse PWS loci do not widely regulate mRNA levels of other genes and may regulate RNA structure.  相似文献   

12.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurogenetic disorders that are caused by the loss of function of imprinted genes in 15q11-q13. In a small group of patients, the disease is due to aberrant imprinting and gene silencing. Here, we describe the molecular analysis of 51 patients with PWS and 85 patients with AS who have such a defect. Seven patients with PWS (14%) and eight patients with AS (9%) were found to have an imprinting center (IC) deletion. Sequence analysis of 32 patients with PWS and no IC deletion and 66 patients with AS and no IC deletion did not reveal any point mutation in the critical IC elements. The presence of a faint methylated band in 27% of patients with AS and no IC deletion suggests that these patients are mosaic for an imprinting defect that occurred after fertilization. In patients with AS, the imprinting defect occurred on the chromosome that was inherited from either the maternal grandfather or grandmother; however, in all informative patients with PWS and no IC deletion, the imprinting defect occurred on the chromosome inherited from the paternal grandmother. These data suggest that this imprinting defect results from a failure to erase the maternal imprint during spermatogenesis.  相似文献   

13.
14.
15.
16.
Imprinting in 15q11-q13 is controlled by a bipartite imprinting center (IC), which maps to the SNURF-SNRPN locus. Deletions of the exon 1 region impair the establishment or maintenance of the paternal imprint and can cause Prader-Willi syndrome (PWS). Deletions of a region 35 kb upstream of exon 1 impair maternal imprinting and can cause Angelman syndrome (AS). So far, in all affected sibs with an imprinting defect, an inherited IC deletion was identified. We report on two sibs with AS who do not have an IC deletion but instead have a 1-1.5 Mb inversion separating the two IC elements. The inversion is transmitted silently through the male germline but impairs maternal imprinting after transmission through the female germline. Our findings suggest that the close proximity and/or the correct orientation of the two IC elements are/is necessary for the establishment of a maternal imprint.  相似文献   

17.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurogenetic disorders caused by the loss of function of imprinted genes in the chromosomal region 15q11q13. An approximately 2 Mb region inside 15q11q13 is subject to genomic imprinting. As a consequence the maternal and paternal copies in this region are different in DNA methylation and gene expression. The most frequent genetic lesions in both disorders are an interstitial de novo deletion of the chromosomal region 15q11q13, uniparental disomy 15, an imprinting defect or, in the case of AS, a mutation of the UBE3A gene. Microdeletions in a small number of patients with PWS and AS with an imprinting defect have led to the identification of the chromosome 15 imprinting centre (IC) upstream of the SNURF-SNRPN gene, which acts in cis to regulate imprinting in the whole 15q imprinted domain. The IC consists of two critical elements: one in the more centromeric part which is deleted in patients with AS and which is thought to be responsible for the establishment of imprinting in the female germ line, and one in the more telomeric part which is deleted in patients with PWS and which is required to maintain the paternal imprint.  相似文献   

18.
Thirty-seven patients presenting features of the Prader-Willi syndrome (PWS) have been examined using cytogenetic and molecular techniques. Clinical evaluation showed that 29 of these patients fulfilled diagnostic criteria for PWS. A deletion of the 15q11.2-q12 region could be identified molecularly in 21 of these cases, including several cases where the cytogenetics results were inconclusive. One clinically typical patient is deleted at only two of five loci normally included in a PWS deletion. A patient carrying a de novo 13;X translocation was not deleted for the molecular markers tested but was clinically considered to be "atypical" PWS. In addition, five cases of maternal heterodisomy and two of isodisomy for 15q11-q13 were observed. All of the eight patients who did not fulfill clinical diagnosis of PWS showed normal maternal and paternal inheritance of chromosome 15 markers; however, one of these carried a ring-15 chromosome. A comparison of clinical features between deletion patients and disomy patients shows no significant differences between the two groups. The parental ages at birth of disomic patients were significantly higher than those for deletion patients. As all typical PWS cases showed either a deletion or disomy of 15q11.2-q12, molecular examination should provide a reliable diagnostic tool. As the disomy patients do not show either any additional or more severe features than typical deletion patients do, it is likely that there is only one imprinted region on chromosome 15 (within 15q11.2-q12).  相似文献   

19.
Genetic imprinting has been implicated in the etiology of two clinically distinct but cytogenetically indistinguishable disorders--Angelman syndrome (AS) and Prader-Willi syndrome (PWS). This hypothesis is derived from two lines of evidence. First, while the molecular extents of de novo cytogenetic deletions of chromosome 15q11q13 in AS and PWS patients are the same, the deletions originate from different parental chromosomes. In AS, the deletion occurs in the maternally inherited chromosome 15, while in PWS the deletion is found in the paternally inherited chromosome 15. The second line of evidence comes from the deletion of an abnormal parental contribution of 15q11q13 in PWS patients without a cytogenetic and molecular deletion. These patients have two maternal copies and no paternal copy of 15q11q13 (maternal uniparental disomy) instead of one copy from each parent. By qualitative hybridization with chromosome 15q11q13 specific DNA markers, we have now examined DNA samples from 10 AS patients (at least seven of which are familial cases) with no cytogenetic or molecular deletion of chromosome 15q11q13. Inheritance of one maternal copy and one paternal copy of 15q11q13 was observed in each family, suggesting that paternal uniparental disomy of 15q11q13 is not responsible for expression of the AS phenotype in these patients.  相似文献   

20.
Prader-Willi syndrome (PWS) results from loss of function of a 1.0- to 1.5-Mb domain of imprinted, paternally expressed genes in human Chromosome (Chr) 15q11-q13. The loss of imprinted gene expression in the homologous region in mouse Chr 7C leads to a similar neonatal PWS phenotype. Several protein-coding genes in the human PWS region are intronless, possibly arising by retrotransposition. Here we present evidence for continued acquisition of genes by the mouse PWS region during evolution. Bioinformatic analyses identified a BAC containing four genes, Mkrn3, Magel2, Ndn, Frat3, and the Atp5l-ps1 pseudogene, the latter two genes derived from recent L1-mediated retrotransposition. Analyses of eight overlapping BACs indicate that these genes are clustered within 120 kb in two inbred strains, in the order tel–Atp5l-ps1–Frat3–Mkrn3–Magel2–Ndn–cen. Imprinting analyses show that Frat3 is differentially methylated and expressed solely from the paternal allele in a transgenic mouse model of Angelman syndrome, with no expression from the maternal allele in a mouse model of PWS. Loss of Frat3 expression may, therefore, contribute to the phenotype of mouse models of PWS. The identification of five intronless genes in a small genomic interval suggests that this region is prone to retroposition in germ cells or their zygotic and embryonic cell precursors, and that it allows the subsequent functional expression of these foreign sequences. The recent evolutionary acquisition of genes that adopt the same imprint as older, flanking genes indicates that the newly acquired genes become `innocent bystanders' of a primary epigenetic signal causing imprinting in the PWS domain. Received: 22 May, 2001 / Accepted: 16 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号