首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5–10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non‐recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost‐effective option in the management of hyperuricemia.  相似文献   

2.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5-10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non-recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost-effective option in the management of hyperuricemia.  相似文献   

3.
This study was carried out on carotid artery plaque and plasma of 50 patients. We analyzed uric acid, hypoxanthine, xanthine, and allantoin levels to verify if enzymatic purine degradation occurs in advanced carotid plaque; we also determined free radicals and sulphydryl groups to check if there is a correlation between oxidant status and purine catabolism. Comparing plaque and plasma we found higher levels of free radicals, hypoxanthine, xanthine, and a decrease of some oxidant protectors, such as sulphydryl groups and uric acid, in plaque. We also observed a very important phenomenon in plaque, the presence of allantoin due to chemical oxidation of uric acid, since humans do not have the enzyme uricase. The hypothetical elevated activity of xanthine oxidase in atherosclerosis could be reduced by specific therapies using its inhibitors, such as oxypurinol or allopurinol.  相似文献   

4.
This study was carried out on carotid artery plaque and plasma of 50 patients. We analyzed uric acid, hypoxanthine, xanthine, and allantoin levels to verify if enzymatic purine degradation occurs in advanced carotid plaque; we also determined free radicals and sulphydryl groups to check if there is a correlation between oxidant status and purine catabolism. Comparing plaque and plasma we found higher levels of free radicals, hypoxanthine, xanthine, and a decrease of some oxidant protectors, such as sulphydryl groups and uric acid, in plaque. We also observed a very important phenomenon in plaque, the presence of allantoin due to chemical oxidation of uric acid, since humans do not have the enzyme uricase. The hypothetical elevated activity of xanthine oxidase in atherosclerosis could be reduced by specific therapies using its inhibitors, such as oxypurinol or allopurinol.  相似文献   

5.
尿酸氧化酶在大肠杆菌中的表达、纯化及活性鉴定   总被引:1,自引:0,他引:1  
尿酸氧化酶(urate oxidase,Uricase,EC.1.7.3.3)是一种能将尿酸氧化为尿囊素的蛋白酶。合成黄曲霉(Aspergillus flavus)尿酸氧化酶基因,构建表达载体pET43.1a/uox,重组质粒经双酶切鉴定和序列分析,证明插入序列正确,转化到大肠杆菌(Escherichia coli)JM109,菌株经诱导表达尿酸氧化酶蛋白,目的蛋白经过超声破碎,经检测以可溶性蛋白为主;菌体经超声破碎后,上清经过阴离子柱和阳离子柱两步纯化,得到尿酸氧化酶纯品,纯品以分光光度法进行体外酶活性测定。结果显示:尿酸氧化酶在大肠杆菌中获得高效表达,目的蛋白占菌体总蛋白的50%;表达产物经过两步层析柱纯化,获得电泳扫描纯度为95%的纯品;在体外活性测定中具有分解尿酸的能力,在临床检测和治疗中有重要意义。  相似文献   

6.
A new HPLC method was set up for the simultaneous evaluation of the amount of uric acid and NADH produced by incubation of tissue fractions containing xanthine oxidase, from which the activity of both type "O" (oxidase) and type "D" (dehydrogenase) xanthine oxidase can be calculated. After incubation of the enzyme fraction and ethanol extraction, HPLC analysis is directly carried out. Sensitivity of the method is high enough for the evaluation of xanthine oxidase activity at the lowest reported tissue values. The reliability of the method was tested measuring the enzyme activity in rat heart and kidney extracts.  相似文献   

7.
Mammals that degrade uric acid are not affected by gout or urate kidney stones. It is not fully understood how they convert uric acid into the much more soluble allantoin. Until recently, it had long been thought that urate oxidase was the only enzyme responsible for this conversion. However, detailed studies of the mechanism and regiochemistry of urate oxidation have called this assumption into question, suggesting the existence of other distinct enzymatic activities. Through phylogenetic genome comparison, we identify here two genes that share with urate oxidase a common history of loss or gain events. We show that the two proteins encoded by mouse genes catalyze two consecutive steps following urate oxidation to 5-hydroxyisourate (HIU): hydrolysis of HIU to give 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and decarboxylation of OHCU to give S-(+)-allantoin. Urate oxidation produces racemic allantoin on a time scale of hours, whereas the full enzymatic complement produces dextrorotatory allantoin on a time scale of seconds. The use of these enzymes in association with urate oxidase could improve the therapy of hyperuricemia.  相似文献   

8.
Summary Distribution of urate oxidase in subcellular components such as nuclei, mitochondria, lysosomes, microsomes, and cell sap, was investigated by both enzymatic and immunochemical methods. The subcellular components were prepared from mouse liver homogenate by differential centrifugation and the resulting microbody-rich mitochondrial fraction was fractionated by sucrose density gradient centrifugation. The enzymatically determined urate oxidase was distributed mainly in mitochondrial and lysosome fractions. The immunochemically assayed urate oxidase antigen was localized in mitochondrial, lysosome, and microsome fractions. The antigen to enzyme ratio was 1.0 in the mitochondrial and lysosome fractions, and about 2.0 in the microsome fraction.Sucrose density gradient centrifugation of the mitochondrial fraction indicated that the urate oxidase antigen was distributed around three density bands of 1.07, 1.15, and 1.24. The main band (1.24) was consistent with the microbody fraction. From these results, it was suggested that a precursor protein (proenzyme) might be located in the microsome fraction.This work was supported in part by a grant 777007 from the Ministry of Education, Japan, in 1972.  相似文献   

9.
Summary Carp liver was fractionated by differential and density gradient centrifugation and assayed for enzymes of purine catabolism. While urate oxidase is an excusively peroxisomal enzyme, only a very small percentage of the enzymes xanthine oxidase, allantoinase and allantoicase is associated with subcellular or ganelle fractions. There is no general purine catabolizing subcellular compartment.There is some but not yet conclusive evidence for the assumption that urate oxidase is a membrane bound enzyme.  相似文献   

10.
1. A new method was used to diminish the autoxidation of GSH. 2. The oxidation of GSH by liver homogenates was studied with regard to concentration of homogenate, concentration of GSH, time, pH and anaerobiosis. 3. GSH was oxidized by recombinations of the supernatant with microsomes and with mitochondria. Each fraction alone caused little oxidation. 4. Proteins in the supernatant were required to obtain the effect, and low-molecular-weight compounds in the same fraction increased its effect. 5. GSH diminished the formation of malonaldehyde in homogenates. 6. GSH prevented a stimulating effect of the supernatant on the formation of malonaldehyde in microsomes and in mitochondria. 7. The malonaldehyde formation in microsomes together with the supernatant did not start until the concentration of endogenous low-molecular-weight thiols had decreased to a low level. 8. It is suggested that part of the oxidation of GSH in homogenates is coupled to a mechanism that counteracts the peroxidation of membrane lipids.  相似文献   

11.
Allopurinol (4-hydroxypyrazolo (3,4-d)-pyrimidine) is a potent xanthine oxidase inhibitor which inhibits the oxidation of naturally occurring oxypurines, thus decreasing uric acid formation. The clinical and metabolic effects of this agent were studied in 80 subjects with primary and secondary gout and other disorders of uric acid metabolism. Allopurinol has been universally successful in lowering the serum uric acid concentration and uric acid excretion to normal levels, while not significantly affecting the clearance of urate or other aspects of renal function. Oxypurine excretion increased concomitantly with the fall in urine uric acid. The agent is particularly valuable in the management of problems of gout with azotemia, acute uric acid nephropathy and uric acid urolithiasis. The minor side effects, clinical indications and theoretical complications are discussed.  相似文献   

12.
The course of the reaction sequence hypoxanthine leads to xanthine leads to uric acid, catalysed by the NAD+-dependent activity of xanthine oxidoreductase, was investigated under conditions either of immediate oxidation of the NADH formed or of NADH accumulation. The enzymic preparation was obtained from rat liver, and purified 75-fold (as compared with the 25000 g supernatant) on a 5'-AMP-Sepharose 4B column; in this preparation the NAD+-dependent activity accounted for 100% of total xanthine oxidoreductase activity. A spectrophotometric method was developed for continuous measurements of changes in the concentrations of the three purines involved. The time course as well as the effects of the concentrations of enzyme and of hypoxanthine were examined. NADH produced by the enzyme lowered its activity by 50%, resulting in xanthine accumulation and in decreases of uric acid formation and of hypoxanthine utilization. The inhibition of the Xanthine oxidoreductase NAD+-dependent activity by NADH is discussed as a possible factor in the regulation of IMP biosynthesis by the 'de novo' pathway or (from unchanged hypoxanthine) by ther salvage pathway.  相似文献   

13.
A new yeast species, Trichosporon adeninovorans, was isolated from soil by the enrichment culture method. Apart from adenine, the strain utilized uric acid, guanine, xanthine, hypoxanthine, 6,8-dihydroxypurine, putrescine, propylamine, butylamine, pentylamine, hexylamine and octylamine as sole source of carbon, nitrogen and energy.The structure of the cell wall of Tr. adeninovorans was ascomycetous. On the subcellular level growth on adenine or uric acid was accompanied with the development of microbodies in the cell. These cell organelles probably were the site of urate oxidase, an enzyme that, after growth on purine substrates, together with allantoinase was present at high activities. Low activities of adenine amidohydrolase and xanthine dehydrogenase were also demonstrated.  相似文献   

14.
Urate oxidase (E.C.1.7.3.3; uricase, urate oxygen oxidoreductase) is an enzyme of the purine breakdown pathway that catalyzes the oxidation of uric acid in the presence of oxygen to allantoin and hydrogen peroxide. A 96-well plate assay measurement of urate oxidase activity based on hydrogen peroxide quantitation was developed. The 96-well plate method included two steps: an incubation step for the urate oxidase reaction followed by a step in which the urate oxidase activity is stopped in the presence of 8-azaxanthine, a competitive inhibitor. Hydrogen peroxide is quantified during the second step by a horseradish peroxidase-dependent system. Under the defined conditions, uric acid, known as a radical scavenger, did not interfere with hydrogen peroxide quantification. The general advantages of such a colorimetric assay performed in microtiter plates, compared to other methods and in particular the classical UV method performed with cuvettes, are easy handling of large amounts of samples at the same time, the possibility of automation, and the need for less material. The method has been applied to the determination of the kinetic parameters of rasburicase, a recombinant therapeutic enzyme.  相似文献   

15.
Luminol chemiluminescence induced by the xanthine or hypoxanthine-O2-xanthine oxidase system is analyzed and compared. Characteristics of the light emission curves were examined considering the conventional reaction scheme for the oxidation of both substrates in the presence of xanthine oxidase. The ratio of the areas of the rate of superoxide production during substrate oxidation to uric acid. The O2-. to uric acid ratio for each substrate can account for differences in xanthine and hypoxanthine-supported light emission, since uric acid is a strong inhibitor of O2-.-dependent luminol chemiluminescence. These results are consistent with a free radical scavenging role for uric acid. A similar but weaker scavenging effect of xanthine may also contribute to the observed differences in chemiluminescent yields between both substrates.  相似文献   

16.
After Wistar male rats had been fed on a diet containing 0.25% of ethyl p-chlorophenoxyisobutyrate (CPIB) for 28 days, changes in the enzyme activities and centrifugal behavior of rat liver peroxisomes were investigated. (1) Compared with control rats fed on the basal diet, the catalase [EC 1.11.1.6] activity of rat livers after the administration of CPIB increased about 2.5-fold, while urate oxidase [EC 1.7.3.3] activity did not change significantly. Though D-amino acid oxidase [EC 1.4.3.3] activity markedly decreased to approximately one-sixth of the control, the activity of L-alpha-hydroxy acid oxidase [EC 1.1.3.15], a flavin enzyme like D-amino acid oxidase, was not affected significnatly after the administration of CPIB. (2) When the hepatic cells of CPIB-treated rats were fractionated by differential centrifugation, most of the increase of catalase activity appeared in the supernatant fraction. A decrease in the hepatic D-amino acid oxidase activity of CPIB-treated rats was observed in all the fractions. As for the subcellular distribution of the particle-bound enzymes, the specific activities of both catalase and urate oxidase of CPIB-treated rat livers were higher in the light mitochondrial fraction than in other fractions. (3) Sedimentation patterns in a sucrose density gradient did not show any difference between normal peroxisomers, and CPIB-treated ones. (4) In the case of CPIB-treated rats, studies of their sedimentation patterns by Ficoll density gradient centrifugation showed two main particulate peaks containing both catalase and urate oxidase, although only a single peak was observed in the case of control rats.  相似文献   

17.
1. The ;xanthine oxidase' activity of rat liver supernatant, most of which behaves as an NAD(+)-dependent dehydrogenase (type D) can be rapidly converted into an oxidase (type O) by thiol reagents such as tetraethylthiuram disulphide, copper sulphate, 5,5'-dithiobis-(2-nitrobenzoic acid), N-ethylmaleimide and p-hydroxymercuribenzoate. Treatment with copper sulphate, if prolonged, leads to almost complete inactivation of the enzyme. The effect of these reagents is prevented by dithioerythritol, and in all cases but that of N-ethylmaleimide is reversed by the same thiol. 2. Dithioerythritol prevents and reverses the conversion of xanthine oxidase from type D into type O brought about by storage of rat liver supernatant at -20 degrees C, preincubation under anaerobic conditions, treatment with carbon or with diethyl ether, and reverses, but does not prevent, the conversion obtained by preincubation of the whole liver homogenate. 3. Conversion of the enzyme from type D into type O is effected by preincubation of rat liver supernatant with the sedimentable fraction from rat liver but not from chick or pigeon liver. The xanthine dehydrogenase activity of chick liver supernatant is not changed into an oxidase by preincubation with the sedimentable fraction from rat liver. 4. The enzyme activity of rat liver supernatant is converted from type D into type O during purification of the enzyme: the purified enzyme can be reconverted into type D by dithioerythritol. 5. The enzyme appears as an oxidase in the supernatant of rat heart, intestine, spleen, pancreas, lung and kidney. The enzyme of all organs but intestine can be converted into a dehydrogenase by dithioerythritol.  相似文献   

18.
Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyses the oxidation of uric acid to allantoin. The chemical mechanism of the urate oxidase reaction has not been clearly established, but the involvement of radical intermediates was hypothesised. In this study EPR spectroscopy by spin trapping of radical intermediates has been used in order to demonstrate the eventual presence of radical transient urate species. The oxidation reaction of uric acid by several uricases (Porcine Liver, Bacillus Fastidiosus, Candida Utilitis) was performed in the presence of 5-diethoxyphosphoryl-5-methyl-pyrroline-N-oxide (DEPMPO) as spin trap. DEPMPO was added to reaction mixture and a radical adduct was observed in all cases. Therefore, for the first time, the presence of a radical intermediate in the uricase reaction was experimentally proved.  相似文献   

19.
The physiological ability to estivate is relevant for the maintenance of population size in the invasive Pomacea canaliculata. However, tissue reoxygenation during arousal from estivation poses the problem of acute oxidative stress. Uric acid is a potent antioxidant in several systems and it is stored in specialized tissues of P. canaliculata. Changes in tissue concentration of thiobarbituric acid reactive substances (TBARS), uric acid and allantoin were measured during estivation and arousal in P. canaliculata. Both TBARS and uric acid increased two-fold during 45 days estivation, probably as a consequence of concomitant oxyradical production during uric acid synthesis by xanthine oxidase. However, after arousal was induced, uric acid and TBARS dropped to or near baseline levels within 20 min and remained low up to 24h after arousal induction, while the urate oxidation product allantoin continuously rose to a maximum at 24h after induction, indicating the participation of uric acid as an antioxidant during reoxygenation. Neither uric acid nor allantoin was detected in the excreta during this 24h period. Urate oxidase activity was also found in organs of active snails, but activity shut down during estivation and only a partial and sustained recovery was observed in the midgut gland.  相似文献   

20.
A simple and rapid technique for measuring IMP:pyrophosphate phosphoribosyltransferase (HPRibTase) activity of rat intestinal homogenates, in the presence of xanthine oxidase, is described. By introducing 2.5 × 10?5m allopurinol (4-hydroxypyrazolo [3,4-d]pyrimidine) into the reaction mixture, the [8-14C]hypoxanthine (Hx) is converted only to [8-14C]inosinic acid (IMP). The xanthine oxidase activity is completely inhibited under this condition. When xanthine oxidase is not blocked, diversion of substrate to urate can invalidate assays of HPRibTase.Using [8-14C]Hx as substrate, in the presence and absence of allopurinol, the activity of both HPRibTase and xanthine oxidase of the same tissue homogenate is determined. We have simplified the conventional chromatographic separation of the reactant products by spotting the reactant on DEAE cellulose paper followed by repeated washings with 4 mm ammonium formate solution. The unreacted radiosubstrate is washed off, and the [8-14C]IMP or [8-14C]uric acid formed remains adsorbed on the paper. The major advantages of this method are speed, reproducibility, sensitivity, ability to process many samples, and a low blank value.Our studies on the enzyme distribution along the intestinal villus have shown that while most of the HPRibTase activity is associated with rapidly multiplying crypt cells, the xanthine oxidase activity is more evenly distributed along the villus, and the activity is effected more by exongeneous effectors. The colon has the highest HPRibTase and lowest xanthine oxidase activity of all the intestinal mucosa cells. Small bowel mucosa is high both in xanthine oxidase and HPRibTase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号