首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nearly one million ALU: repeats in human chromosomes are a potential threat to genome integrity. ALU:s form dense clusters where they frequently appear as inverted repeats, a sequence motif known to cause DNA rearrangements in model organisms. Using a yeast recombination system, we found that inverted ALU: pairs can be strong initiators of genetic instability. The highly recombinagenic potential of inverted ALU: pairs was dependent on the distance between the repeats and the level of sequence divergence. Even inverted ALU:s that were 86% homologous could efficiently stimulate recombination when separated by <20 bp. This stimulation was independent of mismatch repair. Mutations in the DNA metabolic genes RAD27 (FEN1), POL3 (polymerase delta) and MMS19 destabilized widely separated and diverged inverted ALU:s. Having defined factors affecting inverted ALU: repeat stability in yeast, we analyzed the distribution of ALU: pairs in the human genome. Closely spaced, highly homologous inverted ALU:s are rare, suggesting that they are unstable in humans. ALU: pairs were identified that are potential sites of genetic change.  相似文献   

2.
3.
4.
A mathematical model of evolutionary dynamics of Alu repeats' number in the human genome has been worked out. The model permitted us to observe the dynamics of propagation of Alu repeats within the genome and to evaluate such important parameters of the process mentioned as the rates of transposition (insertion of new copies into the genome) and excision of repeats. The peculiarities of the control of Alu repeats' number in the genome have been discussed, based on the data obtained.  相似文献   

5.
During the past 65 million years, Alu elements have propagated to more than one million copies in primate genomes, which has resulted in the generation of a series of Alu subfamilies of different ages. Alu elements affect the genome in several ways, causing insertion mutations, recombination between elements, gene conversion and alterations in gene expression. Alu-insertion polymorphisms are a boon for the study of human population genetics and primate comparative genomics because they are neutral genetic markers of identical descent with known ancestral states.  相似文献   

6.
DNA repeats in the human genome   总被引:5,自引:1,他引:5  
  相似文献   

7.
8.
Evolution of Alu repeats surrounding the human ferredoxin gene   总被引:1,自引:0,他引:1  
Ferredoxin is an iron-sulfur protein that serves as an electron carrier for the mitochondrial oxidation/reduction system. During the characterization of the human ferredoxin gene, we have identified three Alu sequences surrounding it. When these Alu sequences were compared with others, all three of them are more related to the consensus Alu than the 7SL gene, the progenitor of the Alu family. It suggests that they are members of the modern Alu family. Their sequences differ from the Alu consensus sequence by about 5%, indicating that they were inserted into the chromosome about 35 million years ago.  相似文献   

9.
The contextual analysis of nucleotide sequences of 22 Alu repeats arrangement regions in the human genome has been carried out and some of their peculiarities have been revealed. In particular, the occurrence of marked and statistical non-random homology between the repeats and the regions of their integration has been shown. A mechanism of choosing the Alu repeats insertion regions in the genome has been suggested taking into account these peculiarities. Using a sample of the 80 human Alu repeats sequences peculiarities of these repeats location within the genome has been investigated. A tendency to the formation of Alu repeats clusters in various regions of the genome was revealed. A range of possible mechanisms on such Alu clusters emergence is considered. On the basis of the data obtained an "attraction" mechanism, according to which integration of Alu repeats into the definite region of the genome increases the insertion probability of other Alu repeats into the same region, are proposed.  相似文献   

10.
Developmental differences in methylation of human Alu repeats.   总被引:16,自引:3,他引:13       下载免费PDF全文
Alu repeats are especially rich in CpG dinucleotides, the principal target sites for DNA methylation in eukaryotes. The methylation state of Alus in different human tissues is investigated by simple, direct genomic blot analysis exploiting recent theoretical and practical advances concerning Alu sequence evolution. Whereas Alus are almost completely methylated in somatic tissues such as spleen, they are hypomethylated in the male germ line and tissues which depend on the differential expression of the paternal genome complement for development. In particular, we have identified a subset enriched in young Alus whose CpGs appear to be almost completely unmethylated in sperm DNA. The existence of this subset potentially explains the conservation of CpG dinucleotides in active Alu source genes. These profound, sequence-specific developmental changes in the methylation state of Alu repeats suggest a function for Alu sequences at the DNA level, such as a role in genomic imprinting.  相似文献   

11.
Alu elements undergo amplification through retroposition and integration into new locations throughout primate genomes. Over 500,000 Alu elements reside in the human genome, making the identification of newly inserted Alu repeats the genomic equivalent of finding needles in the haystack. Here, we present two complementary methods for rapid detection of newly integrated Alu elements. In the first approach we employ computational biology to mine the human genomic DNA sequence databases in order to identify recently integrated Alu elements. The second method is based on an anchor-PCR technique which we term Allele-Specific Alu PCR (ASAP). In this approach, Alu elements are selectively amplified from anchored DNA generating a display or 'fingerprint' of recently integrated Alu elements. Alu insertion polymorphisms are then detected by comparison of the DNA fingerprints generated from different samples. Here, we explore the utility of these methods by applying them to the identification of members of the smallest previously identified subfamily of Alu repeats in the human genome termed Ya8. This subfamily of Alu repeats is composed of about 50 elements within the human genome. Approximately 50% of the Ya8 Alu family members have inserted in the human genome so recently that they are polymorphic, making them useful markers for the study of human evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
13.
C A O'Brien  J B Harley 《Gene》1992,116(2):285-289
Three loci having homology with the small human cytoplasmic RNA, hY4, were isolated from human genomic DNA libraries and sequenced. Each sequence contains dispersed mismatches as compared with hY4 RNA, is followed by an A-rich or A + T-rich sequence, and is bordered by direct repeats. Each of these loci, therefore, appears to constitute a small RNA class-III pseudogene. Surprisingly, two of the three loci are associated with Alu repeats. In the hY4.B7 locus, the hY4 sequence has integrated into the tail of an Alu element and in the hY4.F2 locus, an Alu sequence has inserted into the hY4 tail, confirming that A-rich tracts are preferential targets for retroposition. In addition, Southern blots with probes for each of the four hY RNAs indicate that hY RNA-like sequences are abundant in the human genome.  相似文献   

14.
The analysis of the genetic variability associated to Alu sequences was hampered by the absence of genome-wide methodologies able to efficiently detect new polymorphisms/mutations among these repetitive elements. Here we describe two Alu insertion profiling (AIP) methods based on the hybridization of Alu-flanking genomic fragments on tiling microarrays. Protocols are designed to preferentially detect active Alu subfamilies. We tested AIP methods by analyzing chromosomes 1 and 6 in two genomic samples. In genomic regions covered by array-features, with a sensitivity of 2% (AIP1) -4% (AIP2) and 5% (AIP1) -8% (AIP2) for the old J and S Alu lineages respectively, we obtained a sensitivity of 67% (AIP1) -90% (AIP2) for the young Ya subfamily. Among the loci showing sample-to-sample differences, 5 (AIP1) -8 (AIP2) were associated to known Alu polymorphisms. Moreover, we were able to confirm by PCR and DNA sequencing 4 new intragenic Alu elements, polymorphic in 10 additional individuals.  相似文献   

15.
16.
A bank enriched in sequences specific for the human genome was obtained. In course of the analysis, a clone containing an Alu family repeat was identified and its primary structure determined.  相似文献   

17.
DNA sequence polymorphisms in Alu repeats   总被引:15,自引:0,他引:15  
M Orita  T Sekiya  K Hayashi 《Genomics》1990,8(2):271-278
We have developed an efficient method for detection of sequence differences in genomic DNA based on a new principle (M. Orita et al., 1989, Genomics 5: 874-879). Using this method, we show here that approximately half the Alu repeats interspersed in the human genome are significantly polymorphic. Analysis of Alu repeat polymorphism should be useful in construction of a high-resolution map and also in identifying genotypes of individuals for clinical and other purposes because the repeats are ubiquitous and the technique for their detection is simple.  相似文献   

18.
Friedreich ataxia is caused by expansion of a GAA triplet repeat (GAA-TR) in the FRDA gene. Normal alleles contain <30 triplets, and disease-causing expansions (66-1700 triplets) arise via hyperexpansion of premutations (30-65 triplets). To gain insight into GAA-TR instability we analyzed all triplet repeats in the human genome. We identified 988 (GAA)(8+) repeats, 291 with >or=20 triplets, including 29 potential premutations (30-62 triplets). Most other triplet repeats were restricted to <20 triplets. We estimated the expected frequency of (GAA)(6+) repeats to be negligible, further indicating that GAA-TRs have undergone significant expansion. Eighty-nine percent of (GAA)(8+) sequences map within G/A islands, and 58% map within the poly(A) tails of Alu elements. Only two other (GAA)(8+) sequences shared the central Alu location seen at the FRDA locus. One showed allelic variation, including expansions analogous to short Friedreich ataxia mutations. Our data demonstrate that GAA-TRs have expanded throughout primate evolution with the generation of potential premutation alleles at multiple loci.  相似文献   

19.
Evidence is accumulating that the two major families of interspersed repeated human DNA sequences, Alu and L1, are not randomly distributed. However, only limited information is available on their relative long-range distribution. We have analyzed a set of randomly selected, human Chromosome (Chr) 11-specific YAC recombinants constituting a total length of about 2 Mbp for the local and global distribution of Alu and L1 repeats: the data show a strong asymmetry in the distribution of these two repeat classes and give weight, at the long-range molecular level, to previous studies indicating their partition in the human genome; they also suggest a strong tendency for L1 repeats to cluster, with a higher proportion of full-length elements than expected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号