首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Outbreeding has been shown to decrease fitness in a variety of species, including several species of fish. An understanding of the general outcomes following outbreeding is required in order to understand the consequences of conservation-related actions and hybridization in aquaculture. A meta-analysis was conducted on outbreeding studies in fishes using 670 comparisons between parent populations and their hybrid progeny. Five hundred and seventy-six comparisons involved first generation hybrids (F1), and a much smaller number (94) involved second generation hybrids (F2). The overall response to outbreeding in the F1 and F2 generations was positive and significant (F1: d i+* = 0.425 ± 0.121; F2: d i+* = 0.548 ± 0.295, where d i+* is the effect size of studies within generations); however, responses differed when studies were separated into groups describing the experimental environment, taxon, or trait. Findings may be biased by a few studies of large effect. Genetic distance explained little of the variance in effect sizes across studies. Results of the meta-analysis suggest that there is no reliable predictor for the effects of outbreeding in fishes, although inconsistencies in experimental design were noted across studies. Future research should include comparisons in both parental environments in order to detect the underlying mechanisms of outbreeding depression, and should focus on measurement of equivalent sets of fitness-related traits. Experimental design should permit estimation of genetic distances based on quantitative traits, which may in turn be meaningful predictors of the outcomes of outbreeding depression. Concerted and consistent research in this area will provide information of relevance to conservation, aquaculture and evolutionary studies.  相似文献   

2.
This paper and the next member of the series, deal with genetical mechanisms responsible for the evolution of eusociality (a level of social organization that includes differentiated sterile castes) among the “social” insects. Eusociality has evolved in a number of different species. Two different types of genetic systems are represented among these species: diplodiploidy (both sexes diploid) and haplodiploidy (haploid males and diploid females). The present paper examines the evolution of a sterile caste system in the context of diplodiploidy, and the next paper considers the evolution of eusociality in the context of haplodiploidy.The present study demonstrates that if the sterile diploid caste members are related to the reproductive members of the group, eusociality can evolve. This is true because the caste associate gene effects are included in the function determining gene frequency change (i.e. Δpi). Also, since the caste gene effects are expressed only through the associate dimension of gene activity, they can cause morphological and behavioral adaptations to occur which are peculiar to the caste members, and need not be expressed in the reproducing members of the group. Thus caste differentiation is possible.  相似文献   

3.
This paper and the previous member of the series, deal with genetical mechanisms responsible for the evolution of eusociality (a level of social organization that includes differentiated sterile castes) among the “social” insects. Eusociality has evolved in a number of different species. Two different types of genetic systems are represented among these species: diplodiploidy (both sexes diploid) and haplodiploidy (haploid males and diploid females). The previous paper examined the evolution of a sterile caste system in the context of diplodiploidy, and the present paper considers the evolution of eusociality in the context of haplodiploidy.The present study demonstrates that selection operating with regard to random groups within the haplodiploid inheritance system cannot result in the evolution of a sterile caste system. Thus haplodiploidy, in itself, is not sufficient for the evolution of eusociality. However, if the sterile caste members are related to the reproductive members of the group, the appropriate caste associate gene effects are included in the function determining gene frequency change (i.e. Δpi), and therefore, eusociality can evolve. This is true for both haploid and diploid castes.In comparing the two modes of inheritance, it is demonstrated that haplodiploidy provides up to 37·5% increased selection efficiency relative to diplodiploidy in evolving a social caste system in the absence of inbreeding.  相似文献   

4.
The genetic architecture underlying species differentiation is essential for understanding the mechanisms of speciation and post-zygotic reproductive barriers which exist between species. We undertook line-cross analysis of multiple hybrid (F1, F2 and backcrosses) and pure-species populations of two diploid eucalypt species from different subseries, Eucalyptus globulus and Eucalyptus nitens, to unravel the genetic architecture of their differentiation. The populations were replicated on two sites and monitored for growth and survival over a 14-year period. The hybrids exhibited severe outbreeding depression which increased with age. Of the composite additive, dominance and epistatic effects estimated, the additive × additive epistatic component was the most important in determining population divergence in both growth and survival. Significant dominance × dominance epistasis was also detected for survival at several ages. While favourable dominance and, in the case of survival, dominance × dominance epistasis could produce novel gene combinations which enhance hybrid fitness, at the population level, these effects were clearly overridden by adverse additive × additive epistasis which appears to be a major driver of overall outbreeding depression in the hybrid populations. The lack of model fit at older ages suggested that even high-order epistatic interactions may potentially have a significant contribution to outbreeding depression in survival. The estimated composite genetic parameters were generally stable across sites. Our results argue that the development of favourable epistasis is a key mechanism underlying the genetic divergence of eucalypt species, and epistasis is an important mechanism underlying the evolution of post-zygotic reproductive barriers.  相似文献   

5.
The majority of tetraploid peonies are allopolyploids derived from crosses between phylogenetically distinct diploid lineages. Tetraploid Paeonia obovata was previously considered to be an autopolyploid because it is morphologically indistinguishable from the diploid of the same species. The presence of the Adh2 gene in tetraploid P. obovata but the inability to amplify the Adh2 gene from Chinese diploids of P. obovata, however, suggests that the tetraploid was not an autotetraploid derivative of the geographically adjacent diploid populations in China. The Adh gene phylogenies rather suggest that the tetraploid originated from crosses between two geographical races of diploid P. obovata distributed in China and Japan. The intermediate status of tetraploid P. obovata between auto‐ and allopolyploidy highlights the need for population genetic analyses of polyploid origins along the continuous range of genomic divergence. Here we present a model that describes the probabilities of polyploid formation and establishment as a function of genomic divergence between diploid progenitors. The probability of polyploid formation (Pf) is obtained from the multiplication of the probability of production of unreduced gametes (Pg) and the probability of ‘hybridization’ (Ph). Pf stays relatively stable when the genomic divergence is low, and then decreases progressively rapidly with the increase of genomic divergence between diploid progenitors. The probability of polyploid establishment (Pe), which depends on the rate of appearance of stable beneficial gene combinations and the rate of fertility restoration, is positively correlated with the genomic divergence of diploid parents. Multiplication of Pf and Pe gives an overall probability of polyploid origins (Po) that varies continuously along the genomic divergence between diploid progenitors. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 561–571.  相似文献   

6.
Genetic variation within two closely related Diplotaxis species was studied as indicated by isozymes and RAPDs. These species differ in their mating systems, their life forms, and in their evolutionary history, but both are successful colonisers. The diploid perennial D. tenuifolia is an outbreeder, the allotetraploid annual to biennial D. muralis is predominantly selfing. D. muralis was nearly devoid of genetic variation due to a young phylogenetic age and/or population history. Estimations of genetic variation within D. tenuifolia and F-statistics indicated random mating at the species and population level and confirms obligate outbreeding. However, influence of genetic drift relative to gene flow was high and mirrors colonisation processes as indicated by considerable heterogeneity across populations and the lack of correlation between population divergence and geographic distance.  相似文献   

7.
In some species, populations with few founding individuals can be resilient to extreme inbreeding. Inbreeding seems to be the norm in the common bed bug, Cimex lectularius, a flightless insect that, nevertheless, can reach large deme sizes and persist successfully. However, bed bugs can also be dispersed passively by humans, exposing inbred populations to gene flow from genetically distant populations. The introduction of genetic variation through this outbreeding could lead to increased fitness (heterosis) or be costly by causing a loss of local adaptation or exposing genetic incompatibility between populations (outbreeding depression). Here, we addressed how inbreeding within demes and outbreeding between distant populations impact fitness over two generations in this re‐emerging public health pest. We compared fitness traits of families that were inbred (mimicking reproduction following a founder event) or outbred (mimicking reproduction following a gene flow event). We found that outbreeding led to increased starvation resistance compared to inbred families, but this benefit was lost after two generations of outbreeding. No other fitness benefits of outbreeding were observed in either generation, including no differences in fecundity between the two treatments. Resilience to inbreeding is likely to result from the history of small founder events in the bed bug. Outbreeding benefits may only be detectable under stress and when heterozygosity is maximized without disruption of coadaptation. We discuss the consequences of these results both in terms of inbreeding and outbreeding in populations with genetic and spatial structuring, as well as for the recent resurgence of bed bug populations.  相似文献   

8.
In the hymenopterans, haplodiploidy, leading to high-genetic relatedness amongst full sisters has been regarded as critical to kin selection and inclusive fitness hypotheses that explain the evolution of eusociality and altruistic behaviours. Recent evidence for independent origins of eusociality in phylogenetically diverse taxa has led to the controversy regarding the general importance of relatedness to eusociality and its evolution. Here, we developed a highly polymorphic microsatellite marker to test whether the eusocial ambrosia beetle Austroplatypus incompertus (Schedl) is haplodiploid or diplodiploid. We found that both males and females of A. incompertus are diploid, signifying that altruistic behaviour resulting from relatedness asymmetries did not play a role in the evolution of eusocialty in this species. This provides additional evidence against the haplodiploidy hypothesis and implicates alternative hypotheses for the evolution of eusociality.  相似文献   

9.
In this paper we demonstrate that, by investigating polyploid complexes in Asplenium, it is possible to locate the areas in Europe that are southern glacial rcfugia, and arc likely to have been so since the beginning of the Pleistocene during the consecutive cold and warm periods in Europe. Identification and conservation of these specific areas that serve as safe havens for plants, and perhaps animals, is of paramount importance for the maintenance of European biodiversity because Man's activities arc resulting in an ever-increasing loss of natural habitats and putting diversity at risk. The genus Asplenium in Europe comprises some 50 taxa: half of these are diploid while the other half arc polyploids derived from the diploids. All aspleniums in Europe are (small) rock ferns with high substrate specificity. Today, most of mainland Europe, Scandinavia and the British Isles has been colonized by polyploid Asplenium species, while the diploids that gave rise to these polyploids are distributed around (and more or less confined to) the Mediterranean Basin. In the tetraploids genetic variation is partitioned mostly between sites, whereas diploids show a high degree of genetic variation both within and between sites. The tctraploid taxa seem capable of single spore colonization via intragametophytic selfing, but the diploid taxa appear to be predominantly outbreeding. For most diploids at least two gametophytes, produced by different spores, have to be present to achieve fertilization and subsequent sporophyte formation for the successful colonization of a new site. This results in a slower rate of colonization. The formation of auto- and allopolyploid taxa from diploid communities appears to have been a recurrent and common feature in Europe. Minority cytotypc exclusion is likely to prevent the establishment of tetraploids within the diploid communities, but spores from tetraploids can establish populations outside the diploid communities. The differences between colonization abilities of tctraploid and ancestral diploid taxa, resulting from their different breeding systems, has prevented the merging and mingling of their ranges and led to the establishment of contact/ hybrid zones. This has resulted in the restriction of diploid populations to ancient glacial rcfugia and the colonization of the rest of Europe by polyploids. Mapping the current distribution of these diploid communities and comparing the genetic diversity within and between outbreeding diploid Asplenium taxa allows us to define the area, age and historical biogcography of these rcfugia and to assess their importance for present day genetic and species diversity in Europe.  相似文献   

10.
The late-nineteenth/early-twentieth century debate over homologous versus antithetic alternation of generations is reviewed. Supporters of both theories, at first, used Coleochaete as a model for the origin of land-plant life cycles. The early debate focused on the morphological interpretation of the sporophyte and on whether vascular cryptogams had bryophyte-like ancestors. The terms of the debate shifted after the discovery that the alternation of morphological generations was accompanied by an alternation of chromosome number. Supporters of homologous alternation now promoted a model in which land plants had been derived from an algal ancestor with an isomorphic alternation of haploid and diploid generations whereas supporters of antithetic alternation favored a model in which land plants were derived from a haploid algal ancestor with zygotic meiosis. Modern evidence that embryophytes are derived from charophycean green algae is more compatible with an updated version of the antithetic theory.  相似文献   

11.
There is no significant difference in the DNA content of the oval, fusiform, and triradiate cell types of Phaeodactylum tricornutum, suggesting that they do not represent an alternation of haploid and diploid generations. The triradiate cells have a shorter generation time than the oval or fusiform cells.  相似文献   

12.
Understanding the magnitude and causes of genetic and phenotypic resemblance among relatives is key to understanding evolutionary processes. Contrary to basic expectation, individual coefficients of inbreeding ( f) were recently hypothesized to be intrinsically correlated across parents and offspring in structured populations, potentially creating an additional source of phenotypic resemblance in traits that show inbreeding depression. To test this hypothesis, we used individual‐based simulations to quantify the parent–offspring correlations in f arising under random mating in populations of different size, immigration rate, and mating system. Parent–offspring correlations in f were typically positive (median r≈ 0.2–0.4) in relatively small and isolated populations. Relatively inbred parents therefore produced relatively inbred offspring on average, although the magnitude of this effect varied considerably among replicate populations. Correlations were higher given more generations of random mating, greater variance in reproductive success, polygynous rather than monogamous mating, and for midparent–offspring rather than parent–offspring relationships. Furthermore, f was also positively correlated across half‐siblings, and closer relatives had more similar inbreeding coefficients across entire generations. Such intrinsic resemblance in f among relatives could provide an additional genetic benefit of mate choice and bias quantitative genetic analyses that do not account for correlated inbreeding depression.  相似文献   

13.
Henry IM  Dilkes BP  Young K  Watson B  Wu H  Comai L 《Genetics》2005,170(4):1979-1988
Polyploidy, the inheritance of more than two genome copies per cell, has played a major role in the evolution of higher plants. Little is known about the transition from diploidy to polyploidy but in some species, triploids are thought to function as intermediates in this transition. In contrast, in other species triploidy is viewed as a block. We investigated the responses of Arabidopsis thaliana to triploidy. The role of genetic variability was tested by comparing triploids generated from crosses between Col-0, a diploid, and either a natural autotetraploid (Wa-1) or an induced tetraploid of Col-0. In this study, we demonstrate that triploids of A. thaliana are fertile, producing a swarm of different aneuploids. Propagation of the progeny of a triploid for a few generations resulted in diploid and tetraploid cohorts. This demonstrated that, in A. thaliana, triploids can readily form tetraploids and function as bridges between euploid types. Genetic analysis of recombinant inbred lines produced from a triploid identified a locus on chromosome I exhibiting allelic bias in the tetraploid lines but not in the diploid lines. Thus, genetic variation was subject to selection contingent on the final ploidy and possibly acting during the protracted aneuploid phase.  相似文献   

14.
Goodyera procera is an endangered terrestrial orchid in Hong Kong. Information on its reproductive biology and pattern of genetic variation is needed to develop efficient conservation strategies. Pollination experiments showed that the species is self-compatible, but dependent on pollinators for fruit set. Bagged plants produced no fruits. Artificial pollinations resulted in 92% fruit set through selfing, 94% with geitonogamous pollination, and 95% following xenogamous pollination. Fruit set in the open-pollinated control was 75% at the same sites. Allozyme electrophoresis and random amplified polymorphic DNA (RAPD) were used to evaluate genetic variation and structure of 15 populations of Goodyera procera. Despite its outbreeding system, allozyme data revealed low variation both at the population (P = 21.78%, A = 1.22, and H = 0.073) and species (P = 33%, A = 1.33, and H = 0.15) levels, in comparison with other animal-pollinated outbreeding plant species. However, RAPD variation was relatively high (P = 55.13% and H = 0.18 at the population level, and P = 97.03% and H = 0.29 at the species level). GST estimates indicated high levels of genetic differentiation among populations (GST = 0.52 and I = 0.909 ± 0.049 based on allozyme data, and GST = 0.39 and I = 0.859 ± 0.038 based on RAPD data), much above the average for outcrossing species, suggesting that gene flow was limited in this species. Based on these data, suitable strategies were developed for the genetic conservation and management of the species.  相似文献   

15.
The present investigation deals with the cultural observations on the morphology, reproduction, life cycle, cytology and taxonomy of a freshwater Cladophora, C. callicoma (L.) Kütz, from India. There is a regular isomorphic alternation of generations between quadriflagellate zoospore-producing diploid plants and biflagellate isogamete-producing haploid plants, coupled with heterothallism in the latter. Chromosome numbers of n = 12 and 2n = 24 were determined respectively for gametophytes and sporophytes. Twelve bivalents were counted in meiosis where chiasmata varied from one to three. In light of above observations, the affinity of C. callicoma with C. glomerata, to which the former has often been assigned, has been discussed. It is proposed that the C. glomerata complex, which consists of intraspecific polyploid races, might have two distinct lines of evolution with regard to life cycle; one with forms having higher ploidy levels and lacking an alternation of generations, and the other with forms having low ploidy levels and alternation of generations.  相似文献   

16.
In the diploid speciesP. prolifera, the evolution of autogamy has resulted in the presence of distinct selfing and outcrossing races. The change in breeding system toward autogamy is associated with a reduction in the size of floral features and a lower pollen production. The outbreeding populations have only been found in Greece, while the selfing populations have colonized much of Europe. The two races appear to be reproductively isolated from one another. —Petrorhagia sect.Kohlrauschia contains four species.P. glumacea is outbreeding and shows unilateral incompatibility with the small-flowered race ofP. prolifera and interfertility with the large-flowered race; althoughP. glumacea is sympatric with the large-flowered race, they do not appear to hybridize in the wild. Amongst the allopatric species, internal breeding barriers are also found. These may take the form of hybrid sterility or seed incompatibility.P. velutina is autogamous and reproductively isolated from all the other species of the section regardless of whether they are sympatric or allopatric. It is suggested that the evolution of autogamy has been an important factor in the spread ofP. velutina, the tetraploidP. nanteuilii, and the small-flowered race ofP. prolifera in Europe.  相似文献   

17.
To look for the occurrence and the significance of brood care in social evolution, I reared six eusocial halictine bee species in laboratory cages enabling the observation of intranest behaviour: Lasioglossum (Evylaeus) laticeps, L. (E.) pauxillum, L. (E.) nigripes, L. (E.) euboeensis, Halictus (Halictus) scabiosae and L. (E.) fulvicorne. All of them were subsocial, each mother caring for her brood. Brood cells were sealed after oviposition with earthen plugs; they were then reopened, visited and closed again. These observations plus the reports in the literature on eleven eusocial species indicate that seventeen species of eusocial halictine bees provide parental care, i.e. are subsocial. Brood care, subsociality, is strongly associated with eusociality. To study reversal from eusociality to subsociality, I have reared the non-eusocial form of two species within which there are or have been eusocial forms: Halictus (H.) rubicundus and Lasioglossum (E.) fratellum. They are secondarily solitary, having lost worker brood. However, both species still show brood care. This suggests that in transitions to eusociality, brood care antedated eusociality. To further examine this issue I reared two truly solitary species that are not derived from eusocial ancestors: Lasioglossum (E.) villosulum and L. (L.) quadrinotatum. Unlike secondarily solitary species, females of both these species close their brood cells after oviposition and ignore their progeny thereafter. This association strongly suggests that the subsocial route with maternal brood care is the route to eusociality in halictine bees.  相似文献   

18.
Understanding the relative importance of heterosis and outbreeding depression over multiple generations is a key question in evolutionary biology and is essential for identifying appropriate genetic sources for population and ecosystem restoration. Here we use 2455 experimental crosses between 12 population pairs of the rare perennial plant Rutidosis leptorrhynchoides (Asteraceae) to investigate the multi-generational (F1, F2, F3) fitness outcomes of inter-population hybridization. We detected no evidence of outbreeding depression, with inter-population hybrids and backcrosses showing either similar fitness or significant heterosis for fitness components across the three generations. Variation in heterosis among population pairs was best explained by characteristics of the foreign source or home population, and was greatest when the source population was large, with high genetic diversity and low inbreeding, and the home population was small and inbred. Our results indicate that the primary consideration for maximizing progeny fitness following population augmentation or restoration is the use of seed from large, genetically diverse populations.  相似文献   

19.
The evolutionary stability of haploid–diploid life cycles is still controversial. Mathematical models indicate that niche differences between ploidy phases may be a necessary condition for the evolution and maintenance of these life cycles. Nevertheless, experimental support for this prediction remains elusive. In the present work, we explored this hypothesis in natural populations of the brown alga Ectocarpus. Consistent with the life cycle described in culture, Ectocarpus crouaniorum in NW France and E. siliculosus in SW Italy exhibited an alternation between haploid gametophytes and diploid sporophytes. Our field data invalidated, however, the long‐standing view of an isomorphic alternation of generations. Gametophytes and sporophytes displayed marked differences in size and, conforming to theoretical predictions, occupied different spatiotemporal niches. Gametophytes were found almost exclusively on the alga Scytosiphon lomentaria during spring whereas sporophytes were present year‐round on abiotic substrata. Paradoxically, E. siliculosus in NW France exhibited similar habitat usage despite the absence of alternation of ploidy phases. Diploid sporophytes grew both epilithically and epiphytically, and this mainly asexual population gained the same ecological advantage postulated for haploid–diploid populations. Consequently, an ecological interpretation of the niche differences between haploid and diploid individuals does not seem to satisfactorily explain the evolution of the Ectocarpus life cycle.  相似文献   

20.
The consequences of combining divergent genomes among populations of a diploid species often involve F1 hybrid vigor followed by hybrid breakdown in later recombinant generations. As many as 70% of plant species are thought to have polyploid origins; yet little is known about the genetic architecture of divergence in polyploids and how it may differ from diploid species. We investigated the genetic architecture of population divergence using controlled crosses among five populations of the autotetraploid herb, Campanulastrum americanum. Plants were reciprocally hybridized to produce F1, F2, and F1-backcross generations that were grown with parental types in a greenhouse and measured for performance. In contrast to diploid expectations, most F1 hybrids lacked heterosis and instead showed strong outbreeding depression for early life traits. Recombinant hybrid generations often showed a recovery of performance to levels approximating, or at times even exceeding, the parental values. This pattern was also evident for an index of cumulative fitness. Analyses of line means indicated nonadditive gene action, especially forms of digenic epistasis, often influenced hybrid performance. However, standard diploid genetic models were not adequate for describing the underlying genetic architecture in a number of cases. Differences between reciprocal hybrids indicated that cytoplasmic and/or cytonuclear interactions also contributed to divergence. An enhanced role of epistasis in population differentiation may be the norm in polyploids, which have more gene copies. This study, the first of its kind on a natural autotetraploid, suggests that gene duplication may cause polyploid populations to diverge in a fundamentally different way than diploids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号