首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Escherichia coli lipopolysaccharide (LPS), a polyclonal B cell activator, has been employed to achieve in vitro stimulation of autoantibody-secreting B cells in young adult and aged mice of long-lived strains as assayed in a hemolytic plaque technique to syngeneic mouse erythrocytes. Aged 21- to 24-month-old C57BL/6J and (C57BL/10Sn x C3H/HeDiSn)F1 mice were found to express 3 to 4 times as many LPS-induced plaque-forming cells (PFC) to autologous erythrocytes than did younger 6-month-old animals. With the use of cyclophosphamide (CY), a significant enhancement of auto-PFC production in young mice occurred, approaching levels found in non-CY-treated old mice. Thus, autoreactive clones of lymphocytes exist in the spleens of young adult mice, but under normal circumstances produce little autoantibody. The situation in aged members of these strains, therefore, does not seem to involve an actual increase in numbers of autoreactive B cells, but may possibly involve some form of deregulation, permitting increased age-related expression of autoreactive lymphocyte clones.  相似文献   

2.
To explore the physiologic or pathologic roles of autoreactive T cells, we examined immunological functions of several autoreactive mouse T cell clones in vitro and in vivo. All of the T cell clones were Lyt-2-, L3T4+ and showed self-I region-restricted proliferative responses (one clone was self-I-E restricted, the other clones were self-I-A restricted). One clone derived from C57BL/6 mouse and reactive to the self-I-Ab product (clone bb1-2) showed cross-reactivity to the I-Ak product. Among four such auto-Ia-reactive T cell clones examined, one clone produced fairly large amounts of interleukin 2 (IL 2) in response to syngeneic stimulator cells, and mediated help for the in vitro cytotoxic T cell (CTL) responses of syngeneic thymocytes, whereas this clone did not mediate in vitro antibody responses of syngeneic B cells. The other three clones were producers of small amounts of IL 2 and did not mediate the in vitro CTL responses. Among the three clones, clone bb1-2 showed strong regulatory function, and clone kk-1 (B10.BR origin and self-I-Ak reactive) showed weak regulatory function in vitro antibody responses of syngeneic B cells. The physiologic or pathologic roles of autoreactive T cells in vivo were explored by injecting subcutaneously clone kk-1 T cells or clone bb1-2 T cells into the footpads of the respective syngeneic mice. Clone kk-1 T cells injected into syngeneic mice elicited swelling of the footpad and marked accumulation of mononuclear cells in the dermis, leaving the epidermis intact, as in the delayed-type hypersensitivity reaction. As a notable finding, clone bb1-2 T cells injected into syngeneic mice elicited marked swelling of the footpad and lichen planus-like skin lesions, i.e., infiltration of lymphocytes in the epidermis and epidermal cell damage. The lymphocytes infiltrating in the epidermis were evaluated, as were the injected clone bb1-2 T cells expressing the Lyt-1.2 phenotype, by examination of the skin lesions elicited in C3H/He mice (H-2k, Lyt-1.1, 2.1) by the clone T cells. Clone bb1-2 T cells exerted in vitro cytotoxicity against H-2b and H-2k target cells, whereas clone kk-1 T cells did not show any cytotoxic activity, indicating a correlation between the cytotoxic activity of clone bb1-2 T cells and their ability to elicit lichen planus-like lesions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A new population of dull Thy-1+, Ly-1-, Lyt-2-, L3T4- PNA- cells, resistant to a double cytotoxic treatment by monoclonal antibodies to these T cell markers plus complement, has been isolated from the spleen of normal adult BALB/c and DBA/2 mice (Tkr cells). These cells exhibit no spontaneous autoreactivity or alloreactivity but can be activated with concanavalin A (Con A). Once activated, they differentiate into bright Thy-1+, Ly-1+, Lyt-2-, L3T4+ PNA- T lymphocytes. Con A-activated Tkr cells also strongly proliferate in the presence of allogeneic or syngeneic dendritic cells in secondary cultures. Moreover, contrary to other Con A-stimulated T cell populations, they induce B lymphocytes to proliferate and to differentiate into Ig-secreting cells at a very high level. Con A-activated Tkr cells are therefore very potent polyclonal B cell activators. Restimulated of Tkr cells by syngeneic dendritic cells can be inhibited by anti-L3T4 or anti-class II monoclonal antibodies. The results suggest that Tkr cells are the precursors of class II-specific autoreactive T helper cells. Tkr cells are absent in the spleen of B6 animals. This indicates that their expression might be genetically controlled. It also suggests that Tkr cells may not be the unique splenic precursors of autoreactive T cells. Con A activation of Tkr cells in Click's medium is 2-mercaptoethanol dependent and highly sensitive to pCO2, like the response of thymocytes. Tkr cells are also absent in the spleen of nude mice. We conclude that Tkr cells represent splenic precursors of autoreactive T helper cells equivalent to Thy-1+, Ly-2-, L3T4- PNA- cortical thymocytes.  相似文献   

4.
Two Lyt-1+, L3T4a+ autoreactive T cell clones specific for self-class II major histocompatibility complex (MHC) gene products were established from lymph node cells and spleen cells of C57BL/6J mice, respectively, by different methods. They were stimulated to proliferate in culture in response to I-Ab antigen-bearing syngeneic spleen cells in a class II MHC-restricted manner. This stimulation was inhibited completely by the addition of anti-L3T4a (GK1.5) or anti-I-Ab (3JP) monoclonal antibodies. The autoreactive T cell clones lysed syngeneic I-Ab+ target cells such as lipopolysaccharide (LPS) blasts. They also lysed I-A- bystander cells such as Cloudman and B16 melanoma and lymphoid tumor cells in the presence of I-Ab+ stimulator cells but not I-Ad+ cells. This bystander killing was most likely mediated by soluble factors released from the autoreactive T cells in response to I-Ab antigens, because culture supernatants from activated autoreactive T cells inhibited the proliferation of B16 melanoma cells in vitro and also had significant cytolytic activity. Both lymphotoxin and interferon-gamma were released from activated autoreactive T cells, suggesting that these cytotoxic lymphokines were responsible for autoreactive T cell-mediated cytolysis. The finding that the two clones, established independently and by different methods, show self-class II MHC antigen-restricted cytolysis, and bystander cytolysis suggests that these properties are not restricted to a unique population of autoreactive T cells. These results favor the concept that in vivo, autoreactive T cells may express not only regulatory activity in regard to antibody responses, but also anti-tumor activity via bystander cytolysis.  相似文献   

5.
The role of T-T cell interactions in the clinical course of acute experimental allergic encephalomyelitis (EAE) in mice was investigated. Myelin basic protein (MBP)-reactive and encephalitogenic T cell clones were established from long-term lines derived from susceptible strain SJL/J mice and resistant strain DDD/1 mice. The lines and clones from DDD/1 mice were obtained by immunization of congenitally athymic mice of DDD/1 origin, which had been reconstituted with syngeneic Lyt-2+-depleted splenic T cells. The clones derived from both strains bore surface phenotypes of Lyt-1+, 2- and L3T4+, and proliferated well in response to rat, rabbit, bovine, and guinea pig MBP in the presence of antigen-presenting cells with I-As. Passive EAE could be induced in syngeneic normal recipients by these clones as well as by the lines from which the clones were derived. The clinical features of the clone-induced EAE were essentially the same as those of the line-induced EAE. Furthermore, DDD/1 athymic recipients developed signs of acute EAE by the adoptive transfer of I-A-compatible syngeneic and allogeneic T cell clones, in which there was no significant difference in time of onset, maximum severity, or prognosis. These results indicate that the entire clinical course of acute EAE can be elicited by a single population of MBP-reactive T cells in the absence of the thymus and other populations of primed or unprimed T cells.  相似文献   

6.
Aged C57BL/6 (B6) mice could reject allogeneic BALB/c RL male 1 tumor as efficiently as young B6 mice. However, in vitro analysis showed impaired generation of cytotoxic T cell response in aged B6 mice against allogeneic tumor. The reaction could be augmented by the addition of recombinant interleukin-2 (rIL-2). Enzyme-linked immunospots (ELISPOT) produced by CD8+ T cells purified from spleen cells showed no reduction in aged mice. The findings suggested that the number of CD8+ T cells capable of reacting against allogeneic H-2 antigens was similar in young and aged B6 mice. Low cytotoxic T lymphocyte (CTL) responsiveness in aged B6 mice appeared to have resulted from low responsiveness of CD4+ T cells producing IL-2. Although CTL generation was apparently impaired, strong multiple antigenicity of allogeneic tumor evoked a rejection response in aged B6 mice. On the other hand, no rejection response was observed against syngeneic EL4 tumor in aged B6 mice even after depletion of CD4+ CD25+ immunoregulatory cells. Depletion of CD4+ CD25+ cells caused rejection of EL4 tumor in young B6 mice. The findings suggested that aged B6 mice were incapable of inducing effector cells against weak tumor antigens. Only marginal CTL response and small number of ELISPOTs were generated in young but not aged B6 mice against EL4. Addition of rIL-2 to the culture augmented EL4 killing and ELISPOTs in spleen cells from young and aged B6 mice.  相似文献   

7.
The ability of autoimmune T cell subsets to interfere with tolerization of B cells can be studied by using thymic-independent Ag. We have defined an abnormality within the CD4+ T cell compartment in young NZB and MRL-lpr/lpr mice by studying tolerance of spleen and B cells to the thymic independent Ag, fluorescein-Brucella abortus. Tolerization of spleen cells is defective in MRL-lpr/lpr mice, but not MRL-+/+ or C3H.lpr mice, suggesting that the defect requires both the autosomal MRL background and the lpr gene to be present. T enriched cells from NZB mice and from MRL-lpr/lpr mice (but not MRL-+/+ or C3H.lpr mice) reverse tolerance in spleen cells from [NZB X DBA/2]F1 and C3H/HeJ mice, respectively. This interference is removed by treatment with anti-CD4 antibody and C. Supernatants from cultured T cells of NZB and MRL-lpr/lpr mice also prevent tolerance in spleen cells of [NZB X DBA/2]F1 and MRL-+/+ mice, respectively, unless CD4+ cells are removed prior to T cell culture. Removal of T cells from NZB and MRL-lpr/lpr spleen cells allows normal tolerization of B cells, which is abrogated by the addition of syngeneic T cells or cultured T cell supernatants. This effect also depends on the presence of CD4+ T cells. These studies show that in MRL-lpr/lpr mice, through interaction of the lpr and MRL background genes in a T cell subset, and in NZB mice, CD4+ T cells interfere with B cell tolerance to a thymic-independent Ag.  相似文献   

8.
Chronic graft-versus-host disease (cGVHD) is considered an autoimmune-like disease mediated by donor CD4(+) T cells, but the origin of the autoreactive T cells is still controversial. In this article, we report that the transplantation of DBA/2 donor spleen cells into thymectomized MHC-matched allogeneic BALB/c recipients induced autoimmune-like cGVHD, although not in control syngeneic DBA/2 recipients. The donor-type CD4(+) T cells from the former but not the latter recipients induced autoimmune-like manifestations in secondary allogeneic BALB/c as well as syngeneic DBA/2 recipients. Transfer of donor-type CD4(+) T cells from secondary DBA/2 recipients with disease into syngeneic donor-type or allogeneic host-type tertiary recipients propagated autoimmune-like manifestations in both. Furthermore, TCR spectratyping revealed that the clonal expansion of the autoreactive CD4(+) T cells in cGVHD recipients was initiated by an alloimmune response. Finally, hybridoma CD4(+) T clones derived from DBA/2 recipients with disease proliferated similarly in response to stimulation by syngeneic donor-type or allogeneic host-type dendritic cells. These results demonstrate that the autoimmune-like manifestations in cGVHD can be mediated by a population of donor CD4(+) T cells in transplants that simultaneously recognize Ags presented by both donor and host APCs.  相似文献   

9.
Phenotypes and functions of T cells in the liver were studied after an i.p. inoculation with viable Listeria monocytogenes in mice. T cells in the liver of untreated C3H/HeN mice (C3H; H-2k, Mls-2a) contain Thy-1.2+TCR-alpha beta + cells as a majority and Thy-1.2+TCR-gamma delta + cells and Thy-1.2-TCR-gamma delta + cells as minorities. The liver of untreated C3H mice did not contain T cells expressing V beta 3 and V beta 11, which are potentially autoreactive against self-superantigens of Mls-2a and Dvbl, respectively. On days 3 to 6 after infection, Thy-1.2-CD4lowTCR-alpha beta + T cells or Thy-1.2-TCR-gamma delta + T cells increased significantly in number and proportion in the liver whereas T cells with these phenotypes were hardly detected in the spleen, lymph nodes, peripheral blood, and peritoneal cavity during the course of the infection. The Thy-1.2-CD4lowTCR-alpha beta T cells contained V beta 3 or V beta 11-bearing cells in high frequencies. The potentially autoreactive V beta 3- or V beta 11-bearing T cells disappeared from the liver on day 7 after infection. Furthermore, the V beta 3+ and V beta 11+ cells but not V beta 8+ cells disappeared after culture for 24 h at 37 degrees C. In vitro stimulation of liver T cells using anti-V beta 11 mAb showed no proliferative response. These results suggest that the potentially autoreactive clones with Thy-1.2-CD4low phenotypes, which increased in number after listerial infection, may be anergized after interaction with self-Ag and may be programmed to die. These potentially autoreactive clones induced in the liver of Listeria-infected mice may not be functionally relevant to the host defense against Listeria.  相似文献   

10.
Splenocytes from young (3 to 4 mo) and aged (24 to 26 mo) C57BL/6 mice were stimulated with anti-CD3 epsilon mAb in vitro. At the time of peak DNA synthesis (day 2), cells from aged mice incorporated congruent to 60% less [3H]TdR than cells from young mice. This age-related defect was not attributable to gross differences in anti-CD3 does optima, response kinetics, accessory cell function, numbers of T cells cultured, CD4+:CD8+ cell ratios or surface levels of CD3 epsilon molecules. In an attempt to analyze pre-S phase events in these responses, we monitored CD4+ and CD8+ cells in splenocyte cultures for the time-dependent expression of three T cell activation markers: RL388 Ag and IL-2R and transferrin R. Parallel analyses of mean T cell size and cell cycle phase distributions were performed. Non-activated T cells from both age groups similarly expressed moderate levels of RL388 Ag, low levels of transferrin R, and undetectable levels of IL-2R. Analysis of stimulated T cells revealed, in both age groups: 1) detectable increases in expression of all three markers by 6 h of culture, and continued increases associated with blastogenesis and G1 phase transit and 2) a preferential stimulation of the CD8+ subset to a state of high level marker expression. Age group comparisons of activation marker expression over time suggested that the age-related defect reflects proportionally smaller fractions of CD4+ and CD8+ cells that respond normally, rather than a general defect in all T cells or a subset-specific defect. Finally, we found that supernatants from aged donor cell cultures stimulated with anti-CD3 contained less Il-2 than those of young controls. Addition of an IL-2 containing supernatant to aged donor cell cultures increased, but did not restore, the S phase response on day 2; however, the response on day 3 was comparable to the peak (day 2) response of young controls. These data suggest that exogenous IL-2 can improve the aged response, perhaps by expanding the fraction of normally reactive T cells.  相似文献   

11.
Self-Ia-reactive cloned T-cell lines, designated PK, were established by long-term culture of T cells from normal DBA/2 mice with irradiated syngeneic splenic adherent cells (SAC), rich in macrophages and dendritic cells. The cell lines were Thy 1+, Lyt 1+, Lyt 2-, produced IL-2 following stimulation with syngeneic spleen cells, and did not exhibit alloreactivity when screened against six different H-2 haplotypes. Of the five cloned PK cell lines tested, four were I-Ed restricted while one was I-Ad restricted as determined by genetic mapping and blocking studies carried out with monoclonal anti-Ia sera. Extensive specificity studies suggested that the PK cells reacted to syngeneic Ia molecules alone and not to foreign antigens such as fetal calf serum (FCS) used in the culture medium, in association with self-Ia. SAC pulsed with FCS or other protein antigens such as turkey gamma-globulin (TGG) were tested for their ability to induce proliferation of autoreactive T cells and other antigen-specific T cells using culture conditions consisting of serumless medium and interleukin 2 (IL-2). The data showed that the autoreactive T cells proliferated better in response to antigen-unpulsed SAC, while FCS-specific and TGG-specific cell lines, developed independently, proliferated only in response to FCS- or TGG-pulsed SAC, respectively, but not to antigen-unpulsed SAC. These results clearly distinguished the autoreactive T-cell clones from the antigen-specific T-cell clones. Preliminary studies carried out to investigate the functions of autoreactive T cells suggested that these cells helped in the in vitro differentiation of alloantigen-specific cytotoxic T lymphocytes (CTL) from CTL precursors obtained from the thymus and augmented syngeneic, allogeneic, and antigen-specific immune responses in vitro. The autoreactive T cells were also capable of inducing both proliferation and differentiation of antigen-specific populations of B cells in the absence of antigen. The present investigation suggests that autoreactive, non-antigen-reactive T cells can be cloned from normal, unimmunized mice and that such cell lines may provide a powerful tool for analyzing the role of the syngeneic mixed lymphocyte reaction in induction and maintenance of both T-and B-cell immune responses.  相似文献   

12.
After immunization of B6 mice with the syngeneic retrovirus-induced T cell leukemia/lymphoma FBL-3, two major tumor-specific proliferative T cell clonotypes were derived. T cell clones derived from long-term lines propagated by in vitro culture with irradiated tumor cells and syngeneic spleen cells were exclusively of the Lyt-2+ phenotype. Such clones were cytolytic, retained their proliferative phenotype indefinitely when expanded by repeated cycles of reactivation and rest, and recognized a tumor-specific cell surface antigen in association with class I MHC molecules. This tumor cell antigen was not present on nontransformed virus-infected cells. Class II MHC-restricted MT4+ clones specific for the viral antigen gp70 were derived from lymph node T cells of FBL-3 tumor-immune mice only by in vitro culture with purified Friend virus in the presence of syngeneic splenic APC. Once derived, however, such clones could be stimulated in the presence of FBL-3 tumor cells and syngeneic spleen cells, demonstrating the reprocessing of tumor-derived gp70 antigen by APC in the spleen cell population. In contrast, no reprocessing of the tumor cell surface antigen by splenic APC for presentation to the class I MHC-restricted T cell clones could be demonstrated. Evidence is presented that FBL-3 T leukemia/lymphoma cells function as APC for Lyt-2+ class I MHC-restricted clones, and that no concomitant recognition of Ia molecules is required to activate these clones. Both Lyt-2+ and MT4+ clones were induced to proliferate in the presence of exogenous IL2 alone, but this stimulus failed to result in significant release of immune interferon. In contrast, antigen stimulation of both clones resulted in proliferation as well as significant immune interferon release. Immune interferon production is not required for the generation of MHC-restricted cell-mediated cytolytic function.  相似文献   

13.
Fas-mediated apoptosis is a key mechanism for elimination of autoreactive T cells, yet loss of function mutations in the Fas signaling pathway does not result in overt T cell-mediated autoimmunity. Furthermore, mice and humans with homozygous Fas(lpr) or Fas ligand(gld) mutations develop significant numbers of B220+ CD4- CD8- double-negative (DN) alphabeta T cells (hereafter referred to as B220+ DN T cells) of poorly understood function. In this study, we show that B220+ DN T cells, whether generated in vitro or isolated from mutant mice, can suppress the ability of activated T cells to proliferate or produce IL-2, IL-10, and IFN-gamma. B220+ DN T cells that were isolated from either lpr or gld mice were able to suppress proliferation of autologous and syngeneic CD4 T cells, showing that suppression is Fas independent. Furthermore, restoration of Fas/Fas ligand interaction did not enhance suppression. The mechanism of suppression involves inhibition of IL-2 production and its high affinity IL-2R alpha-chain (CD25). Suppression also requires cell/cell contact and TCR activation of B220+ DN T cells, but not soluble cytokines. These findings suggest that B220+ DN T cells may be involved in controlling autoreactive T cells in the absence of Fas-mediated peripheral tolerance.  相似文献   

14.
Antigen-specific syngeneic noncytolytic helper T lymphocyte clones were investigated for their ability to mediate successful adoptive chemoimmunotherapy (ACIT) of mice with established RBL5 tumors. Clone B10, specific for the viral coat m.w. 70,000 glycoprotein, could be rapidly activated in situ after local transfer with intact tumor cells in syngeneic hosts to produce a delayed-type hypersensitivity reaction. For ACIT, mice bearing 5-day-old tumors received cyclophosphamide followed by transfer of resting helper T lymphocyte clones with or without exogenous interleukin 2 (rIL-2). A single injection of clone B10 was effective in ACIT when followed by a short course of exogenous rIL-2. Alternatively, repeated injections of resting clone were also effective without exogenous rIL-2, suggesting that the major role for rIL-2 was prolongation of clone survival in vivo rather than activation of other effector cells. Clone F12, specific for a component of fetal calf serum, was not effective in ACIT either with or without rIL-2, even when administered under conditions known to result in clone activation. Thus, antigen-specific helper T lymphocyte clones are capable of activation and promotion of antitumor responses after adoptive transfer.  相似文献   

15.
Theiler's murine encephalomyelitis virus (TMEV) causes a demyelinating disease in infected mice which has similarities to multiple sclerosis. Spleen cells from TMEV-infected SJL/J mice stimulated with antigen-presenting cells infected with TMEV resulted in a population of autoreactive CD8+ cytotoxic T cells that kill uninfected syngeneic cells. We established CD8+ T cell clones that could kill both TMEV-infected and uninfected syngeneic targets, although infected target cells were killed more efficiently. The CD8+ T-cell clones produced gamma interferon when incubated with either infected or uninfected syngeneic target cells. Intracerebral injection of the clones into na?ve mice induced degeneration, not only in the brain, but also in the spinal cord. This suggests that CD8+ Tc1 cells could play a pathogenic role in central nervous system inflammation.  相似文献   

16.
Frequency analysis of CD4+CD8+ T cells cloned with IL-4   总被引:2,自引:0,他引:2  
The coexpression of both CD4 and CD8 molecules on T cells occurs in the peripheral blood at a low frequency and can be generated transiently on CD4+ peripheral blood T cells by treatment with lectin which induces CD8 biosynthesis and cell surface expression. We have cloned T cells in a nonselective fashion from normal subjects in the presence of either IL-2, rIL-4 and IL-2, or rIL-4 and have examined the phenotypic expression of CD4 and CD8. The addition of excess rIL-4 increased the expression of CD8 on the surface of CD4+ T cell clones but did not increase CD4 expression on CD8+ T cell clones. There were three patterns of CD4 and CD8 expression observed: high density CD8 with no CD4 expression; high density CD4 with low CD8 expression; or high density CD4 with higher cell surface CD8 expression which was regulated by the presence of rIL-4. CD4+ T cell clones originally cultured in IL-2 and rIL-4 and subsequently grown in IL-2 alone exhibited decreased expression of the CD8 molecule. The increased expression of CD8 did not correlate with NK activity or lectin-dependent cytotoxicity in an antigen independent system. In addition, rIL-4 alone or in combination with IL-2 appeared to accelerate the growth curve of T cell clones as compared to IL-2 alone. These results show that IL-4 can upregulate CD8 expression on CD4+ T cell clones while not effecting CD4 expression on CD8+ T cell clones. As class I MHC is the ligand for the CD8 molecule, expression of CD8 induced by IL-4 on CD4+ T cells may allow for increased nonspecific cell to cell contact during the course of an inflammatory response.  相似文献   

17.
To investigate whether CD4+ T cells are predetermined to produce a given pattern of lymphokines, we have used a culture system that allows the controlled induction of either IL-2- or IL-4-producing CD4+ T cells. Single, freshly isolated murine CD4+ T cells were activated with Con A, rIL-2, and APC; the developing clones were split and then cultured for an additional 14 days with either rIL-2 alone or with rIL-2 and anti-CD3 stimulation. Subclones expanded in the presence of rIL-2 alone produced predominantly IL-2, although subclones derived from the same precursor and expanded in the presence of rIL-2 and a mitogenic antibody to CD3 released predominantly IL-4. Subclones expanded for 2 wk in the presence of rIL-2 plus a mitogenic mAb to CD3 released up to 60 times more IL-4 but only 1/90 the amount of IL-2 released by subclones derived from the same precursor cell and expanded with rIL-2. Both phenotypes can be derived from IL-2-producing precursor cells. These results demonstrate that IL-2-producing clones can be derived from the same cells as IL-4-producing clones and are most consistent with the view that the IL-2-producing Th1 or the IL-4-producing Th2 phenotype of a T cell clone is acquired during T cell differentiation and is not secondary to the expansion of distinct subpopulations that are predetermined to produce a specific cytokine pattern.  相似文献   

18.
The studies presented here investigated the relationship between T cell recognition of MHC-encoded products and non-MHC-linked Mls determinants. The first aspect addressed whether Mls-reactive T cells recognize Mls-encoded products alone or in association with MHC-encoded determinants. Initial studies used Mlsa-specific T cell clones that were generated by repeated stimulation of C57BL/6 or B10.A(5R) spleen cells with DBA/2 lymphoid cells. These clones recognized Mlsa on cells expressing MHC products of the H-2b, H-2d, and H-2k haplotypes, but not the H-2q haplotype. Thus, these cloned T cells were found to recognize Mlsa products in association with public but demonstrably polymorphic H-2 determinants. The question of whether T cell clones that were specific for self-H-2 determinants (autoreactive) or soluble antigen plus syngeneic H-2 (antigen-specific) could also be stimulated by Mlsa determinants was also addressed. A substantial proportion of the antigen-specific or autoreactive T cell clones tested were stimulated by Mlsa determinants. Furthermore, stimulation of these clones by Mlsa was H-2 restricted. The pattern of H-2-restricted recognition of Mlsa by these clones was not distinguishable from that observed in the Mlsa-specific T cell clones, nor was it influenced by the primary specificity or H-2 restriction pattern of a given clone. Although these findings provide a means of explaining the observation that Mls-reactive T cells exist at extremely high precursor frequencies, they also raise questions regarding the nature of the receptor structures which are used by a single T cell in the recognition of two or more apparently distinct stimuli.  相似文献   

19.
NKT cells are known to regulate effector T cell immunity during tolerance, autoimmunity, and antitumor immunity. Whether age-related changes in NKT cell number or function occur remains unclear. Here, we investigated whether young vs aged (3 vs 22 mo old) mice had different numbers of CD1d-restricted NKT cells and whether activation of NKT cells by CD1d in vivo contributed to age-related suppression of T cell immunity. Flow cytometric analyses of spleen and LN cells revealed a 2- to 3-fold increase in the number of CD1d tetramer-positive NKT cells in aged mice. To determine whether NKT cells from aged mice differentially regulated T cell immunity, we first examined whether depletion of NK/NKT cells affected the proliferative capacity of splenic T cells. Compared with those from young mice, intact T cell preparations from aged mice had impaired proliferative responses whereas NK/NKT-depleted preparations did not. To examine the specific contribution of NKT cells to age-related T cell dysfunction, Ag-specific delayed-type hypersensitivity and T cell proliferation were examined in young vs aged mice given anti-CD1d mAb systemically. Compared with young mice, aged mice given control IgG exhibited impaired Ag-specific delayed-type hypersensitivity and T cell proliferation, which could be significantly prevented by systemic anti-CD1d mAb treatment. The age-related impairments in T cell immunity correlated with an increase in the production of the immunosuppressive cytokine IL-10 by splenocytes that was likewise prevented by anti-CD1d mAb treatment. Together, our results suggest that CD1d activation of NKT cells contributes to suppression of effector T cell immunity in aged mice.  相似文献   

20.
Mice were infected with Listeria monocytogenes and Lyt-2+ T cell clones capable of lysing Ag-primed bone marrow macrophages were established. In accordance with earlier findings obtained at the population level, some T cell clones were identified which lysed bone marrow macrophages of different MHC type provided the relevant Ag was present. This unusual target cell recognition was further analyzed using a T3+, L3T4-, Lyt-2+, F23+, KJ16+ T cell clone, designated L-28. Target cell lysis by this clone was Ag specific, apparently non-MHC restricted. In contrast, YAC cells and P815 cells were not lysed by clone L-28. However, lysis of irrelevant targets could be induced by anti-T3, F23, or KJ16 mAb. Furthermore, Ag-specific lysis was blocked by anti-Lyt-2 mAb and by F(ab)2 fragments of F23 mAb. In addition to its cytolytic activity, clone L-28 produced IFN-gamma after co-stimulation with accessory cells, Ag, and rIL-2 and conferred significant protection on recipient mice when given together with rIL-2. These data suggest that non-MHC-restricted Lyt-2+ killer cells generated during listeriosis are cytolytic T lymphocytes that interact with their target Ag via the T cell receptor/T3 complex and the Lyt-2 molecule and, furthermore, that these cells play a role in anti-listerial resistance. The possible relevance of IFN-gamma secretion and target cell lysis for antibacterial protection is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号