首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, accumulating evidence has suggested that B cell depletion therapy with rituximab is effective not only in autoantibody‐associated, but also in T cell‐mediated, autoimmune diseases. It is likely that B cells play an important role in regulating the extent of immune response in both physiological and pathological conditions. When a severe infection occurs, pathogens spread throughout the bloodstream. B cells in the blood capture the pathogens, via their specific antigen receptors (surface immunoglobulins), then present the specific antigen to T cells in the spleen, thus increasing the degree of T‐cell immune responses to systemic infection. Similarly, in the exacerbation stage of autoimmunity, a large amount of autoantigens may be released into the blood and be captured by autoantigen specific B cells, and this may be followed by presentation of the antigen to CD4 positive autoreactive T cells resulting in extensive activation and proliferation of autoreactive T cells. Thus, it has been suggested that B‐cell depletion therapy for autoimmune diseases is most useful for the “vicious cycle” phase of autoreactive immune response. The recognition of this paradigm for the role of B cells in regulating the magnitude of immune response will help to facilitate both basic and clinical research on the regulation of immune responses.  相似文献   

2.
Depletion of B cells in murine lupus: efficacy and resistance   总被引:7,自引:0,他引:7  
In mice, genetic deletion of B cells strongly suppresses systemic autoimmunity, providing a rationale for depleting B cells to treat autoimmunity. In fact, B cell depletion with rituximab is approved for rheumatoid arthritis patients, and clinical trials are underway for systemic lupus erythematosus. Yet, basic questions concerning mechanism, pathologic effect, and extent of B cell depletion cannot be easily studied in humans. To better understand how B cell depletion affects autoimmunity, we have generated a transgenic mouse expressing human CD20 on B cells in an autoimmune-prone MRL/MpJ-Fas(lpr) (MRL/lpr) background. Using high doses of a murine anti-human CD20 mAb, we were able to achieve significant depletion of B cells, which in turn markedly ameliorated clinical and histologic disease as well as antinuclear Ab and serum autoantibody levels. However, we also found that B cells were quite refractory to depletion in autoimmune-prone strains compared with non-autoimmune-prone strains. This was true with multiple anti-CD20 Abs, including a new anti-mouse CD20 Ab, and in several different autoimmune-prone strains. Thus, whereas successful B cell depletion is a promising therapy for lupus, at least some patients might be resistant to the therapy as a byproduct of the autoimmune condition itself.  相似文献   

3.
B cells play a critical role in the pathogenesis of autoimmune diabetes. To investigate the mechanisms by which B cell depletion therapy attenuates islet β cell loss and particularly to examine the effect of B cells on both diabetogenic and regulatory Ag-specific T cells, we generated a transgenic BDC2.5NOD mouse expressing human CD20 on B cells. This allowed us to deplete B cells for defined time periods and investigate the effect of B cell depletion on Ag-specific BDC2.5 T cells. We depleted B cells with anti-human CD20 Ab using a multiple injection protocol. We studied two time points, before and after B cell regeneration, to examine the effect on BDC2.5 T cell phenotype and functions that included antigenic response, cytokine profile, diabetogenicity, and suppressive function of regulatory T (T(reg)) cells. We found unexpectedly that B cell depletion induced transient aggressive behavior in BDC2.5 diabetogenic T cells and reduction in T(reg) cell number and function during the depletion period. However, after B cell reconstitution, we found that more regenerated B cells, particularly in the CD1d(-) fraction, expressed immune regulatory function. Our results suggest that the regenerated B cells are likely to be responsible for the therapeutic effect after B cell depletion. Our preclinical study also provides direct evidence that B cells regulate both pathogenic and T(reg) cell function, and this knowledge could explain the increased T cell responses to islet Ag after rituximab therapy in diabetic patients in a recent report and will be useful in design of future clinical protocols.  相似文献   

4.
The NOD mouse is an invaluable model for the study of autoimmune diabetes. Furthermore, although less appreciated, NOD mice are susceptible to other autoimmune diseases that can be differentially manifested by altering the balance of T cell costimulatory pathways. In this study, we show that constitutively expressing B7-1 on B cells (NOD-B7-1B-transgenic mice) resulted in reduced insulitis and completely protected NOD mice from developing diabetes. Furthermore, B7-1 expression led to a dramatic reduction of the B cell compartment due to a selective deletion of follicular B cells in the spleen, whereas marginal zone B cells were largely unaffected. B cell depletion was dependent on B cell specificity, mediated by CD8(+) T cells, and occurred exclusively in the autoimmune-prone NOD background. Our results suggest that B cell deletion was a consequence of the specific activation of autoreactive T cells directed at peripheral self Ags presented by maturing B cells that expressed B7-1 costimulatory molecules. This study underscores the importance of B7 costimulatory molecules in controlling the amplitude and target of autoimmunity in genetically prone individuals and has important implications in the use of costimulatory pathway antagonists in the treatment of human autoimmune diseases.  相似文献   

5.
Primary Sj?gren's syndrome (pSS) is an autoimmune disorder characterized by specific pathologic features and the production of typical autoantibodies. In addition, characteristic changes in the distribution of peripheral B cell subsets and differences in use of immunoglobulin variable-region genes are also features of pSS. Comparison of B cells from the blood and parotid gland of patients with pSS with those of normal donors suggests that there is a depletion of memory B cells from the peripheral blood and an accumulation or retention of these antigen-experienced B cells in the parotids. Because disordered selection leads to considerable differences in the B cell repertoire in these patients, the delineation of its nature should provide important further clues to the pathogenesis of this autoimmune inflammatory disorder.  相似文献   

6.
The depletion of B cells has proven to be beneficial in the treatment of autoimmune demyelinating disorders. The high efficacy of these therapies has highlighted the importance of B cells in autoimmunity and prompted investigations into specific B cell subsets that may be aberrant. Recently, a rise in the trialling of alternative B cell-targeting therapies that inhibit targets such as Bruton's tyrosine kinase, interleukin-6 receptor and fragment crystallisable neonatal receptor has also been observed. These agents interfere with specific dysregulated functions of B cells in contrast to the broad removal of many B cell subsets with depletion agents. The therapeutic benefit of these emerging agents will help delineate the contributions of B cells in demyelinating disorders and holds great potential for future treatment.  相似文献   

7.
Primary Sjögren's syndrome (pSS) is an autoimmune disorder characterized by specific pathologic features and the production of typical autoantibodies. In addition, characteristic changes in the distribution of peripheral B cell subsets and differences in use of immunoglobulin variable-region genes are also features of pSS. Comparison of B cells from the blood and parotid gland of patients with pSS with those of normal donors suggests that there is a depletion of memory B cells from the peripheral blood and an accumulation or retention of these antigen-experienced B cells in the parotids. Because disordered selection leads to considerable differences in the B cell repertoire in these patients, the delineation of its nature should provide important further clues to the pathogenesis of this autoimmune inflammatory disorder.  相似文献   

8.
Although anti-CD20 immunotherapy effectively treats human lymphoma and autoimmune disease, the in vivo effect of immunotherapy on tissue B cells and their subsets is generally unknown. To address this, anti-mouse CD20 mAbs were used in a mouse model in which the extent and kinetics of tissue B cell depletion could be assessed in vivo. CD20 mAb treatment depleted most mature B cells within 2 days, with 95-98% of B cells in the bone marrow, blood, spleen, lymph nodes, and gut-associated lymphoid tissues depleted by day 7, including marginal zone and follicular B cells. The few spleen B cells remaining after CD20 mAb treatment included pre-B, immature, transitional, and some B1 B cells that expressed CD20 at low levels. By contrast, peritoneal cavity B cells expressed normal CD20 densities and were coated with CD20 mAb, but only 30-43% of B1 cells and 43-78% of B2 cells were depleted by day 7. Spleen B cells adoptively transferred into the peritoneal cavity were similarly resistant to mAb-induced depletion, while transferred B cells that had migrated to the spleen were depleted. However, peritoneal B1 and B2 cells were effectively depleted in mAb-treated wild-type and C3-deficient mice by thioglycolate-induced monocyte migration into this otherwise privileged niche. Inflammation-elicited effector cells did not promote peritoneal cavity B cell depletion in FcR-deficient mice treated with CD20 mAb. Thus, the majority of CD20(+) cells and B cell subsets within lymphoid tissues and the peritoneum could be depleted efficiently in vivo through Fc-dependent, but C-independent pathways during anti-CD20 immunotherapy.  相似文献   

9.
Although recent animal studies have fuelled growing interest in Ab-independent functions of B cells, relatively little is known about how human B cells and their subsets may contribute to the regulation of immune responses in either health or disease. In this study, we first confirm that effector cytokine production by normal human B cells is context dependent and demonstrate that this involves the reciprocal regulation of proinflammatory and anti-inflammatory cytokines. We further report that this cytokine network is dysregulated in patients with the autoimmune disease multiple sclerosis, whose B cells exhibit a decreased average production of the down-regulatory cytokine IL-10. Treatment with the approved chemotherapeutic agent mitoxantrone reciprocally modulated B cell proinflammatory and anti-inflammatory cytokines, establishing that the B cell cytokine network can be targeted in vivo. Prospective studies of human B cells reconstituting following in vivo depletion suggested that different B cell subsets produced distinct effector cytokines. We confirmed in normal human B cell subsets that IL-10 is produced almost exclusively by naive B cells while the proinflammatory cytokines lymphotoxin and TNF-alpha are largely produced by memory B cells. These results point to an in vivo switch in the cytokine "program" of human B cells transitioning from the naive pool to the memory pool. We propose a model that ascribes distinct and proactive roles to memory and naive human B cell subsets in the regulation of memory immune responses and in autoimmunity. Our findings are of particular relevance at a time when B cell directed therapies are being applied to clinical trials of several autoimmune diseases.  相似文献   

10.
CD20 mAb-mediated B cell depletion is an effective treatment for B cell malignancies and some autoimmune diseases. However, the full effects of B cell depletion on natural, primary, and secondary Ab responses and the maintenance of Ag-specific serum Ig levels are largely unknown. The relationship between memory B cells, long-lived plasma cells, and long-lived humoral immunity also remains controversial. To address the roles of B cell subsets in the longevity of humoral responses, mature B cells were depleted in mice using CD20 mAb. Peritoneal B cell depletion reduced natural and Ag-induced IgM responses. Otherwise, CD20+ B cell depletion prevented humoral immune responses and class switching and depleted existing and adoptively transferred B cell memory. Nonetheless, B cell depletion did not affect serum Ig levels, Ag-specific Ab titers, or bone marrow Ab-secreting plasma cell numbers. Coblockade of LFA-1 and VLA-4 adhesion molecules temporarily depleted long-lived plasma cells from the bone marrow. CD20+ B cell depletion plus LFA-1/VLA-4 mAb treatment significantly prolonged Ag-specific plasma cell depletion from the bone marrow, with a significant decrease in Ag-specific serum IgG. Collectively, these results support previous claims that bone marrow plasma cells are intrinsically long-lived. Furthermore, these studies now demonstrate that mature and memory B cells are not required for maintaining bone marrow plasma cell numbers, but are required for repopulation of plasma cell-deficient bone marrow. Thereby, depleting mature and memory B cells does not have a dramatic negative effect on preexisting Ab levels.  相似文献   

11.
B cells play an important role in the pathogenesis of both systemic and organ-specific autoimmune diseases. Autoreactive B cells not only produce autoantibodies, but also are capable to efficiently present specific autoantigens to T cells. Furthermore, B cells can secrete proinflammatory cytokines and amplify the vicious process of self-destruction. B cell-directed therapy is a potentially important approach for treatment of various autoimmune diseases. The depletion of B cells by anti-CD20/19 monoclonal antibody Retuximab® used in autoimmune diseases therapy leads to systemic side effects and should be significantly improved. In this study we designed a repertoire of genetically engineered B cell killers that specifically affected one kind of cells carrying a respective B cell receptor. We constructed immunotoxins (ITs), fused with c-myc epitope as a model targeting sequence, based on barnase, Pseudomonas toxin, Shiga-like toxin E.coli and Fc domain of human antibody IgGγ1. C-MYC hybridoma cell line producing anti-c-myc IgG was chosen as a model for targeted cell depletion. C-myc sequence fused with toxins provided addressed delivery of the toxic agent to the target cells. We demonstrated functional activity of designed ITs in vitro and showed recognition of the fusion molecules by antibodies produced by targeted hybridoma. To study specificity of the proposed B cells killing molecules, we tested a set of created ITs ex vivo, using C-MYC and irrelevant hybridoma cell lines. Pseudomonas-containing IT showed one of the highest cytotoxic effects on the model cells, however, possessed promiscuous specificity. Shiga-like toxin construct demonstrated mild both cytotoxicity and specificity. Barnase and Fc-containing ITs revealed excellent balance between their legibility and toxic properties. Moreover, barnase and Fc molecules fused with c-myc epitope were able to selectively deplete c-myc-specific B cells and decrease production of anti-c-myc antibodies in culture of native splenocytes, suggesting their highest therapeutic potential as targeted B cell killing agents.  相似文献   

12.
B cells play important roles in autoimmune diseases ranging from multiple sclerosis to rheumatoid arthritis. B cells have also long been considered central players in systemic lupus erythematosus. However, anti-CD20-mediated B cell depletion was not effective in two clinical lupus studies, whereas anti-B lymphocyte stimulator, which inhibits B cell survival, was effective. Others and we previously found that anti-CD20-based depletion was surprisingly ineffective in tissues of lupus-prone mice, but that persistent high doses eventually led to depletion and ameliorated lupus. Lupus patients might also have incomplete depletion, as suggested in several studies, and which could have led to therapeutic failure. In this study, we investigated the mechanism of resistance to Ab-mediated cellular depletion in murine lupus. B cells from lupus-prone mice were easily depleted when transferred into normal environments or in lupus-prone mice that lacked serum Ig. Serum from lupus-prone mice transferred depletion resistance, with the active component being IgG. Because depletion is FcγR-dependent, we assayed macrophages and neutrophils exposed to lupus mouse serum, showing that they are impaired in IgG-mediated phagocytosis. We conclude that depletion resistance is an acquired, reversible phagocytic defect depending on exposure to lupus serum IgG. These results have implications for optimizing and monitoring cellular depletion therapy.  相似文献   

13.
Chronic administration of anti-CD4 mAb prevents autoimmune disease in NZB/NZW F1 (B/W) mice. This may be due either to CD4 cell depletion or to inhibition of CD4 cell function. To evaluate the relative importance of these mechanisms, we devised a system in which the consequences of cell depletion could be analyzed independent of the inhibitory effects of chronic mAb therapy. This was accomplished by performing adult thymectomy before mAb administration. Specifically, female B/W mice underwent thymectomy or sham thymectomy at age 6 wk, followed at age 3 mo by a short course of either anti-CD4 (2 mg/wk for 3 wk) or saline. Treatment with anti-CD4 depleted 90% of circulating CD4 cells, but a small subpopulation (10%) of CD4 cells was refractory to depletion. In non-thymectomized mice, the CD4 population gradually reconstituted after cessation of therapy. In contrast, in thymectomized mice, recovery of CD4 cells was prevented by the absence of the thymus. Despite the striking reduction in CD4 cells in thymectomized mice, severe autoimmune disease developed, with autoantibody levels, proteinuria, and mortality comparable with non-thymectomized, nondepleted controls. The unexpected development of lupus nephritis in thymectomized, CD4-depleted B/W mice suggested that the thymus might be required to achieve the benefits of therapy with anti-CD4. To exclude this possibility, we demonstrated that chronic therapy with anti-CD4 prevents autoimmunity in thymectomized B/W mice. These findings imply that: 1) substantial depletion of CD4 T cells is not sufficient to suppress autoimmunity; 2) suppression of autoimmunity requires sustained functional inhibition of CD4 T cells; and 3) a small subpopulation of CD4 cells that is refractory to depletion by anti-CD4 is sufficient to promote the full expression of murine lupus in B/W mice.  相似文献   

14.
B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4(+)Foxp3(+) T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (μMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into μMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.  相似文献   

15.
Rheumatoid arthritis is a systemic autoimmune disease. B cells are likely to play a critical role in arthritis pathogenesis, although it is unclear whether they are necessary for disease induction, autoantibody production, or disease progression. To assess the role of B cells in inflammatory arthritis, B cells were depleted using mouse anti-mouse CD20 mAbs in a mouse model of collagen-induced arthritis. CD20 mAbs effectively depleted mature B cells from adult DBA-1 mice. When B cells were depleted using CD20 mAbs before collagen immunization, there was a delay in disease onset and autoantibody production, with significantly diminished severity of arthritis both clinically and histologically. B cell depletion further delayed disease onset if initiated before, as well as after, collagen immunization. However, in both cases, the eventual reappearance of peripheral B cells triggered autoantibody production and the subsequent development of arthritis in collagen-sensitized mice. By contrast, B cell depletion after collagen immunizations did not have a significant effect on arthritis progression or severity. Thus, disease symptoms were only induced when peripheral B cells and their autoantibody products were present in collagen-immunized mice, documenting a critical role for B cells during the elicitation phase of collagen-induced arthritis. These studies suggest that B cell depletion strategies will be most effective when initiated early in the development of inflammatory arthritis, with sustained B cell depletion required to inhibit the production of isotype-switched pathogenic Abs and the evolution of joint inflammation and destruction.  相似文献   

16.
B cells are important for the development of most autoimmune diseases. B cell depletion immunotherapy has emerged as an effective treatment for several human autoimmune diseases, although it is unclear whether B cells are necessary for disease induction, autoantibody production, or disease progression. To address the role of B cells in a murine model of spontaneous autoimmune thyroiditis (SAT), B cells were depleted from adult NOD.H-2h4 mice using anti-mouse CD20 mAb. Anti-CD20 depleted most B cells in peripheral blood and cervical lymph nodes and 50-80% of splenic B cells. Flow cytometry analysis showed that marginal zone B cells in the spleen were relatively resistant to depletion by anti-CD20, whereas most follicular and transitional (T2) B cells were depleted after anti-CD20 treatment. When anti-CD20 was administered before development of SAT, development of SAT and anti-mouse thyroglobulin autoantibody responses were reduced. Anti-CD20 also reduced SAT severity and inhibited further increases in anti-mouse thyroglobulin autoantibodies when administered to mice that already had autoantibodies and thyroid inflammation. The results suggest that B cells are necessary for initiation as well as progression or maintenance of SAT in NOD.H-2h4 mice.  相似文献   

17.
B cell immunotherapy has emerged as a mainstay in the treatment of lymphomas and autoimmune diseases. Although the microenvironment has recently been demonstrated to play critical roles in B cell homeostasis, its contribution to immunotherapy is unknown. To analyze the in vivo factors that regulate mechanisms involved in B cell immunotherapy, we used a murine model for human CD20 (hCD20) expression in which treatment of hCD20(+) mice with anti-hCD20 mAbs mimics B cell depletion observed in humans. We demonstrate in this study that factors derived from the microenvironment, including signals from the B cell-activating factor belonging to the TNF family/BLyS survival factor, integrin-regulated homeostasis, and circulatory dynamics of B cells define distinct in vivo mechanism(s) and sensitivities of cells in anti-hCD20 mAb-directed therapies. These findings provide new insights into the mechanisms of immunotherapy and define new opportunities in the treatment of cancers and autoimmune diseases.  相似文献   

18.
We used a newly validated approach to identify the initiation of an autoantibody response to identify the sites and cell differentiation pathways at early and late stages of the rheumatoid factor response. The autoimmune response is mainly comprised of rapidly turning over plasmablasts that, according to BrdU labeling, TUNEL, and hypermutation data, derive from an activated B cell precursor. Surprisingly, few long-lived plasma cells were generated. The response most likely initiates at the splenic T-B zone border and continues in the marginal sinus bridging channels. Both activated B cells and plasmablasts harbor V gene mutations; large numbers of mutations in mice with long-standing response indicate that despite the rapid turnover of responding cells, clones can persist for many weeks. These studies provide insights into the unique nature of an ongoing autoimmune response and may be a model for understanding the response to therapies such as B cell depletion.  相似文献   

19.
Recent clinical trials have established B cell depletion by the anti-CD20 chimeric antibody Rituximab as a beneficial therapy for patients with relapsing-remitting multiple sclerosis (MS). The impact of Rituximab on T cell responses remains largely unexplored. In the experimental autoimmune encephalomyelitis (EAE) model of MS in mice that express human CD20, Rituximab administration rapidly depleted peripheral B cells and strongly reduced EAE severity. B cell depletion was also associated with diminished Delayed Type Hypersensitivity (DTH) and a reduction in T cell proliferation and IL-17 production during recall immune response experiments. While Rituximab is not considered a broad immunosuppressant, our results indicate a role for B cells as a therapeutic cellular target in regulating encephalitogenic T cell responses in specific tissues.  相似文献   

20.
B cells have been implicated in the pathogenesis of rheumatoid arthritis (RA) since the discovery of RA as an autoimmune disease. There is renewed interest in B cells in RA based on the clinical efficacy of B cell depletion therapy in RA patients. Although, reduced titers of rheumatoid factor and anti-cyclic citrullinated peptide Abs are recorded, the mechanisms that convey clinical improvement are incompletely understood. In the proteoglycan-induced arthritis (PGIA) mouse model of RA, we reported that Ag-specific B cells have two important functions in the development of arthritis. PG-specific B cells are required as autoantibody-producing cells as well as Ag-specific APCs. Herein we report on the effects of anti-CD20 mAb B cell depletion therapy in PGIA. Mice were sensitized to PG and treated with anti-CD20 Ab at a time when PG-specific autoantibodies and T cell activation were evident but before acute arthritis. In mice treated with anti-CD20 mAb, development of arthritis was significantly reduced in comparison to control mAb-treated mice. B cell depletion reduced the PG-specific autoantibody response. Furthermore, there was a significant reduction in the PG-specific CD4(+) T cell recall response as well as significantly fewer PG-specific CD4(+) T cells producing IFN-gamma and IL-17, but not IL-4. The reduction in PG-specific T cells was confirmed by the inability of CD4(+) T cells from B cell-depleted mice to adoptively transfer disease into SCID mice. Overall, B cell depletion during PGIA significantly reduced disease and inhibited both autoreactive B cell and T cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号