首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fu Z  Jin X  Ding D  Li Y  Fu Z  Tang J 《Proteomics》2011,11(8):1462-1472
Heterosis is observed for most phenotypic traits and developmental stages in many plants. In this study, the embryos, from germinating seeds after 24 h of soaking, for five elite maize hybrids and their parents were selected to unravel the genetic basis of heterosis using 2‐D proteomic method. In total, 257 (80.06%), 363 (58.74%), 351 (79.95%), 242 (54.50%), and 244 (46.30%) nonadditively expressed proteins were identified in hybrids Zhengdan 958, Nongda 108, Yuyu 22, Xundan 20, and Xundan 18, respectively. The nonadditive proteins were divided into above high‐parent (++; 811, 55.66%), high‐parent (+; 121, 8.30%), partial dominance (+?; 249, 17.09%), low‐parent (?; 30, 2.06%), below low‐parent (? ?; 62, 4.26%), and D (different; 184, 12.63%) expression patterns. The observed patterns indicate the important roles of dominance, partial dominance, and overdominance in regulating seed germination in maize. Additionally, 54 different proteins were identified by mass spectrometry and classified into nine functional groups: metabolism (9), cell detoxification (8), unknown functional proteins (8), chaperones (7), signal transduction (6), development process (5), other (5), transporter (3), and stress response (3). Of these, the most interesting are those involved with germination‐related hormone signal transduction and the abscisic acid and gibberellin regulation networks.  相似文献   

2.
Proteomic analysis of seed dormancy in Arabidopsis   总被引:3,自引:0,他引:3       下载免费PDF全文
The mechanisms controlling seed dormancy in Arabidopsis (Arabidopsis thaliana) have been characterized by proteomics using the dormant (D) accession Cvi originating from the Cape Verde Islands. Comparative studies carried out with freshly harvested dormant and after-ripened non-dormant (ND) seeds revealed a specific differential accumulation of 32 proteins. The data suggested that proteins associated with metabolic functions potentially involved in germination can accumulate during after-ripening in the dry state leading to dormancy release. Exogenous application of abscisic acid (ABA) to ND seeds strongly impeded their germination, which physiologically mimicked the behavior of D imbibed seeds. This application resulted in an alteration of the accumulation pattern of 71 proteins. There was a strong down-accumulation of a major part (90%) of these proteins, which were involved mainly in energetic and protein metabolisms. This feature suggested that exogenous ABA triggers proteolytic mechanisms in imbibed seeds. An analysis of de novo protein synthesis by two-dimensional gel electrophoresis in the presence of [(35)S]-methionine disclosed that exogenous ABA does not impede protein biosynthesis during imbibition. Furthermore, imbibed D seeds proved competent for de novo protein synthesis, demonstrating that impediment of protein translation was not the cause of the observed block of seed germination. However, the two-dimensional protein profiles were markedly different from those obtained with the ND seeds imbibed in ABA. Altogether, the data showed that the mechanisms blocking germination of the ND seeds by ABA application are different from those preventing germination of the D seeds imbibed in basal medium.  相似文献   

3.
Proteomic analysis of arabidopsis seed germination and priming   总被引:33,自引:0,他引:33       下载免费PDF全文
To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and down-regulation) of 74 proteins were observed during germination sensu stricto (i.e. prior to radicle emergence) and the radicle protrusion step. This approach was also used to analyze protein changes occurring during industrial seed pretreatments such as priming that accelerate seed germination and improve seedling uniformity. Several proteins were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Some of them had previously been shown to play a role during germination and/or priming in several plant species, a finding that underlines the usefulness of using Arabidopsis as a model system for molecular analysis of seed quality. Furthermore, the present study, carried out at the protein level, validates previous results obtained at the level of gene expression (e.g. from quantitation of differentially expressed mRNAs or analyses of promoter/reporter constructs). Finally, this approach revealed new proteins associated with the different phases of seed germination and priming. Some of them are involved either in the imbibition process of the seeds (such as an actin isoform or a WD-40 repeat protein) or in the seed dehydration process (e.g. cytosolic glyceraldehyde-3-phosphate dehydrogenase). These facts highlight the power of proteomics to unravel specific features of complex developmental processes such as germination and to detect protein markers that can be used to characterize seed vigor of commercial seed lots and to develop and monitor priming treatments.  相似文献   

4.
The role of seed coats in seed viability   总被引:3,自引:0,他引:3  
The seed coat is the seed’s primary defense against adverse environmental conditions. A hard seed coat protects the seed not only from mechanical stress but also from microorganism invasion and from temperature and humidity fluctuations during storage. Phenolic compounds in the seed coat contribute to seed hardness and inhibition of microorganism growth. During germination, the seed coat protects the seed from hydration stress and electrolyte leakage.  相似文献   

5.
Trees dominate the structural and functional dynamics of many temperate and tropical forest ecosystems and are of considerable scientific and social interest. The effective ecological restoration of abandoned agricultural fields, especially of highly degraded ecosystems, remains a challenge. Germination is imperative to restore natural ecosystems and to save the environment. Low germination rate is key player to disturb the ecosystem. Cyclobalnopsis gilva is an economically important woody plant, however its germination rate is less than 50% in its natural habitats compared to that of other plants. A comparative proteomics approach was carried out to investigate this feature on germinated and non-germinated seeds of C. gilva. Proteins from seeds of C. gilva were extracted using phenol extraction, separated by two-dimensional electrophoresis, and identified through matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry. In addition, the results of proteome were verified through the RT-qPCR determination. More than 700 proteins were reproducibly detected. Among 26 proteins with 2-fold changes in abundance, the 24 differential proteins were identified successfully. Many differential proteins were involved in starch metabolism. β-amylase abundance and mRNA level were both up-regulated in germinated seeds of C. gilva. An important point to provides new insights into the understandings of C. gilva seed germination problems are found through 2-DE and RT-qPCR analyses to save the forest ecology and solve the problem of woody plants with low germination rate all over the world.  相似文献   

6.
Near-isogenic sunflower lines containing 25% (inbred RHA280) and 48% (RHA801) oil by seed dry mass were comparatively analyzed in biological triplicate at 18 days after flowering using two-dimensional (both pI 3-10 and 4-7) Difference Gel Electrophoresis. Additionally, two inbred lines varying in oleic acid content, HA89 (18% oleic) and HA341 (89% oleic), were also analyzed in the same manner. Statistical analyses of these sunflower lines was performed beginning with fitting a mixed effects linear model to the log-transformed optical volume of each spot to account for gel variation, followed by testing the significance between varieties for mean transformed optical spot volumes. The p-values from the spot analysis procedures were then used to find the cutoff point for differential expression using a 10% false-discovery rate (FDR). Comparison of the oil content and oleic acid composition lines revealed 77 and 42 protein spots below the 10% FDR cutoff, respectively, and were therefore declared differentially expressed. Liquid chromatography-tandem mass spectrometry analysis of each of these protein spots resulted in assignments for 44 and 17 spots, respectively. Fructokinase, plastid phosphoglycerate kinase, and enolase proteins were determined to be up-regulated in the high oil line, while phosphofructokinase, cytosolic phosphoglucomutase, and cytsolic phosphoglycerate kinase were up-regulated in the low oil variety. Additionally, four activities involved in amino acid synthesis were up-regulated in the low oil variety in addition to 12S storage proteins and a protein similar to legumin storage protein. Interestingly, two 2-DE spots identified as 14-3-3 proteins were found to be up-regulated in high oleic acid variety. Alteration of glycolytic and amino acid biosynthetic enzymes, as well as storage protein levels, suggests seed oil content is tightly linked to carbohydrate metabolism and protein synthesis in a complex manner.  相似文献   

7.
MicroRNA transcriptomic analysis of heterosis during maize seed germination   总被引:1,自引:0,他引:1  
Ding D  Wang Y  Han M  Fu Z  Li W  Liu Z  Hu Y  Tang J 《PloS one》2012,7(6):e39578
Heterosis has been utilized widely in the breeding of maize and other crops, and plays an important role in increasing yield, improving quality and enhancing stresses resistance, but the molecular mechanism responsible for heterosis is far from clear. To illustrate whether miRNA-dependent gene regulation is responsible for heterosis during maize germination, a deep-sequencing technique was applied to germinating embryos of a maize hybrid, Yuyu22, which is cultivated widely in China and its parental inbred lines, Yu87-1 and Zong3. The target genes of several miRNAs showing significant expression in the hybrid and parental lines were predicted and tested using real-time PCR. A total of 107 conserved maize miRNAs were co-detected in the hybrid and parental lines. Most of these miRNAs were expressed non-additively in the hybrid compared to its parental lines. These results indicated that miRNAs might participate in heterosis during maize germination and exert an influence via the decay of their target genes. Novel miRNAs were predicted follow a rigorous criterion and only the miRNAs detected in all three samples were treated as a novel maize miRNA. In total, 34 miRNAs belonged to 20 miRNA families were predicted in germinating maize seeds. Global repression of miRNAs in the hybrid, which might result in enhanced gene expression, might be one reason why the hybrid showed higher embryo germination vigor compared to its parental lines.  相似文献   

8.
High-oil maize as a product of long-term selection provides a unique resource for functional genomics. In this study, the abundant soluble proteins of early developing germs from high-oil and normal lines of maize were compared using two-dimensional gel electrophoresis (2-DGE) in combination with mass spectrometry (MS). More than 1100 protein spots were detected on electrophoresis maps of both high-oil and normal lines by using silver staining method. A total of 83 protein spots showed significant differential expression (>two-fold change; t-test: P < 0.05) between high-oil and normal inbred lines. Twenty-seven protein spots including 25 non-redundant proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Functional categorization of these proteins was carbohydrate metabolism, cytoskeleton, protein metabolism, stress response, and lipid metabolism. Three such proteins involved in lipid metabolism, namely putative enoyl-ACP reductase (ENR), putative stearoyl-ACP desaturase (SAD) and putative acetyl-CoA C-acyltransferase (ACA), had more abundant expressions in high-oil lines than in normal. At the mRNA expression level, SAD, ENR and ACA were expressed at significantly higher levels in high-oil lines than in normal. The results demonstrated that high expressions of SAD, ENR and ACA might be associated to increasing oil concentration in high-oil maize. This study represents the first proteomic analysis of high-oil maize and contributes to a better understanding of the molecular basis of oil accumulation in high-oil maize.  相似文献   

9.
Postembryonically formed shoot-borne roots make up the major backbone of the adult maize root stock. In this study the abundant soluble proteins of the first node (coleoptilar node) of wild-type and mutant rtcs seedlings, which do not initiate crown roots, were compared at two early stages of crown root formation. In Coomassie Bluestained 2-D gels, representing soluble proteins of coleoptilar nodes 5 and 10 days after germination, 146 and 203 proteins were detected, respectively. Five differentially accumulated proteins (> two-fold change; t-test: 95% significance) were identified in 5-day-old and 14 differentially accumulated proteins in 10-day-old coleoptilar nodes of wild-type versus rtcs. All 19 differentially accumulated proteins were identified via ESI MS/MS mass spectrometry. Five differentially accumulated proteins, including a regulatory G-protein and a putative auxin-binding protein, were further analyzed at the RNA expression level. These experiments confirmed differential gene expression and revealed subtle developmental regulation of these genes during early coleoptilar node development. This study represents the first proteomic analysis of shoot-borne root initiation in cereals and will contribute to a better understanding of the molecular basis of this developmental process unique to cereals.  相似文献   

10.
11.
Manganese deficiency in maize affects pollen viability   总被引:2,自引:0,他引:2  
Maize (Zea mays L. cv. G2) was grown with 0.55 mg L–1 (sufficient), or 0.0055 mg L–1 (deficient) manganese in sand. Manganese-deficient plants developed visible deficiency symptoms and showed poor tasseling and delayed anther development. Compared to Mn-sufficient plants, Mn-deficient plants produced fewer and smaller pollen grains with reduced cytoplasmic contents. Manganese deficiency reduced in vitro germination of pollen grains significantly. Ovule fertility was not significantly affected by Mn. But in Mn-deficient plants seed-setting and development was reduced significantly.  相似文献   

12.
13.
Peanut allergy is one of the most severe food allergies. One effort to alleviate this problem is to identify peanut germplasm with lower levels of allergens which could be used in conventional breeding to produce a less allergenic peanut cultivar. In this study, we identified one peanut line, GT-C9, lacking several seed proteins, which were identified as Ara h 3 isoforms by peptide sequencing and named iso-Ara h 3. Total seed proteins were analyzed by one-dimensional (SDS-PAGE) and two-dimensional gel electrophoreses (2-D PAGE). The total protein extracts were also tested for levels of protein-bound end products or adducts such as advanced glycation end products (AGE) and N-(carboxymethyl) lysine (CML), and IgE binding. Peanut genotypes of GT-C9 and GT-C20 exhibited significantly lower levels of AGE adducts and of IgE binding. This potential peanut allergen iso-Ara h 3 was confirmed by peptide sequences and Western blot analysis using specific anti-Ara h 1, Ara h 2, and Ara h 3 antibodies. A full-length sequence of iso-ara h 3 (GenBank number DQ855115) was obtained. The deduced amino acid sequence iso-Ara h 3 (ABI17154) has the first three of four IgE-binding epitopes of Ara h 3. Anti-Ara h 3 antibodies reacted with two groups of protein peptides, one with strong reactions and another with weak reactions. These peptide spots with weak reaction on 2-D PAGE to anti-Ara h 3 antibodies are subunits or isoallergens of this potential peanut allergen iso-Ara h 3. A recent study suggested that Ara h 3 basic subunits may be more significant allergenicity than the acidic subunits.  相似文献   

14.
15.
Proteomic analysis   总被引:10,自引:0,他引:10  
The field of proteomics is becoming increasingly important as genome sequences are being completed and annotated. Recent advances in proteomics include experimental and mathematical proofs of the need to complement microarray analysis with protein analysis, improved sensitivity for mass spectrometric analysis of separated proteins, better informatic tools for gel analysis and protein spot annotation, first steps towards automated experimental procedures, and new technology for quantitation of protein changes.  相似文献   

16.
The molecular genetics of seed maturation in maize   总被引:1,自引:0,他引:1  
The maturation phase of seed formation involves coordinated expression of multiple developmental pathways. These processes include abscisic acid regulated responses associated with the arrest of embryo development and induction of anthocyanin synthesis in embryo and aleurone tissues. Studies of the maturation defective vivaparous mutants of maize suggest that one gene, viviparous-1 ( vpl ), regulates both of these pathways in the developing seed. Mutations at vpl reduce the sensitivity of the developing embryo to abscisic acid. In addition, Vpl is required for expression of Cl , a regulatory gene for the anthocyanin pathway. This interaction is consistent with the idea that Vpl and Cl function as part of a regulatory hierarchy controlling seed development. Molecular studies of vpl mutations which separate control of embryo arrest and anthocyanin synthesis suggest that these functions map to discrete domains in the Vpl protein. Therefore, coordinate control of diverse maturation processes may be achieved through expression of a functionally complex regulatory molecule.  相似文献   

17.
Time resolved spectral components of delayed luminescence (DL) from single dry soybean seeds were measured using a device with single photon sensitivity. The seeds were aged by a thermal treatment to change their viability. A correlation was observed between the seeds viability and some DL parameters, i.e. the total number of photons emitted and the relative decay probability of excited states. This relevant result confirms the close connection between the state of biological systems and their DL, and it can allow the development of a quick selection technique for single dry seeds, a goal impossible up today.  相似文献   

18.
Determination of orchid seed viability using fluorescein diacetate   总被引:3,自引:1,他引:2  
Abstract Fluorescein diacetate (FDA) staining (0.25% FDA for 10 min) was found to be a suitable technique for the rapid determination of orchid seed viability. Penetration of the dye through the testa varies between species, thus the test is ideally performed on isolated embryos. Direct FDA application to isolated embryos of seeds taken from dry storage, but after the surface had been sterilized, elicits a poor staining reaction. Incubation of the surface sterilized seeds in distilled water for 16 h, either at 6°C or at room temperature, prior to applying the test was found to overcome this problem. In the range of species studied, FDA staining accurately indicates seed viability when compared with germination of seeds on sterile nutrient media. Storage of dry Dactylorhiza fuchsii (Druce) Soó seed at an elevated temperature of 62°C indicated that, under such conditions of accelerated ageing, the FDA test accurately describes the rate of seed viability loss.  相似文献   

19.
Longyan Tan  Sixue Chen  Tai Wang  Shaojun Dai 《Proteomics》2013,13(12-13):1850-1870
Seed germination is a critical process in the life cycle of higher plants. During germination, the imbibed mature seed is highly sensitive to different environmental factors. However, knowledge about the molecular and physiological mechanisms underlying the environmental effects on germination has been lacking. Recent proteomic work has provided invaluable insight into the molecular processes in germinating seeds of Arabidopsis, rice (Oryza sativa), soybean (Glycine max), barley (Hordeum vulgare), maize (Zea mays), tea (Camellia sinensis), European beech (Fagus sylvatica), and Norway maple (Acer platanoides) under different treatments including metal ions (e.g. copper and cadmium), drought, low temperature, hormones, and chemicals (gibberellic acid, abscisic acid, salicylic acid, and α‐amanitin), as well as Fusarium graminearum infection. A total of 561 environmental factor‐responsive proteins have been identified with various expression patterns in germinating seeds. The data highlight diverse regulatory and metabolic mechanisms upon seed germination, including induction of environmental factor‐responsive signaling pathways, seed storage reserve mobilization and utilization, enhancement of DNA repair and modification, regulation of gene expression and protein synthesis, modulation of cell structure, and cell defense. In this review, we summarize the interesting findings and discuss the relevance and significance for our understanding of environmental regulation of seed germination.  相似文献   

20.
C. M. Bray  J. Dasgupta 《Planta》1976,132(2):103-108
Summary RNA synthesis and protein synthesis in embryonic axis tissue of viable pea (Pisum arvense L. var. N.Z. maple) seed commences during the first hour of germination. Protein synthesis in axis tissue of non-viable pea seed is barely detectable during the first 24 h after the start of imbibition. Nonviable axis tissue incorporates significant levels of [3H]uridine into RNA during this period but the level of incorporation does not increase significantly over the first 24 h of imbibition. In axis tissue of non-viable seed during the first hour of imbibition most of the [3H]uridine was incorporated into low molecular weight material migrating in advance of the 4S and 5S RNA species in polyacrylamide gels but some radioactivity was incorporated into a discrete species of RNA having a molecular weight of 2.7×106. After 24 h, non-viable axis tissue incorporates [3H]uridine into ribosomal RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and a heterogeneous RNA species of molecular weight ranging from 2.2×106 to 2.7×106. No 4S or 5S RNA synthesis is detectable after 24 h of imbibition in non-viable axis tissue. Axis tissue of viable pea seed synthesises rRNA, 4S and 5S RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and the rRNA precursor species at both periods of germination studied. Loss of viability in pea seed appears to be accompanied by the appearance of lesions in the processing of rRNA precursor species and a significant loss of RNA synthesising activity.Abbreviations rRNA ribosomal RNA - TCA trichloroacetic acid - SLS sodium lauryl sulphate - PPO 2,5 Diphenyloxazole - POPOP 1,4-Bis-2-(4-methyl-5-penyloxazolyl)-benzene  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号