首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrite reductase (NiR) is the second enzyme in the nitrate assimilatory pathway reducing nitrite to ammonium. The expression of the NiR gene is induced upon the addition of nitrate. In an earlier study, a 130 bp upstream region of the spinach NiR gene promoter, located between –330 to –200, was shown to be necessary for nitrate induction of -glucuronidase (GUS) expression in tissue-specific manner in transgenic tobacco plant [28]. To further delineate the cis-acting elements involved in nitrate regulation of NiR gene expression, transgenic tobacco plants were generated with 5 deletions in the–330 to –200 region of the spinach NiR gene promoter fused to the GUS gene. Plants with the NiR promoter deleted to –230 showed a considerable increase in GUS activity in the presence of nitrate, indicating that the 30 bp region between –230 to –200 is crucial for nitrate-regulated expression of NiR. In vivo DMS footprinting of the –300 to –130 region of the NiR promoter in leaf tissues from two independent transgenic lines revealed several nitrate-inducible footprints. Footprinting within the –230 to –181 region revealed factor binding to two adjacent GATA elements separated by 24 bp. This arrangement of GATA elements is analogous to cis-regulatory sequences found in the promoters of nitrate-inducible genes of Neurospora crassa, regulated by the NIT2 Zn-finger protein. The –240 to –110 fragment of the NiR promoter, which contains two NIT2 consensus core elements, bound in vitro to a fusion protein comprising the zinc finger domain of the N. crassa NIT2 protein. The data presented here show that nitrate-inducible expression of the NiR gene is mediated by nitrate-specific binding of trans-acting factors to sequences preserved between fungi and higher plants.  相似文献   

2.
Hachtel  Wolfgang  Strater  Tim 《Plant and Soil》2000,221(1):33-38
A 1535 bp promoter of the nitrate reductase gene (nia) from birch (Betula pendula) and a series of 5′ deletions were fused to the β-glucuronidase (GUS) gene and introduced into Nicotiana plumbaginifolia. In transgenic plants the NR promoter sequences directed strong GUS expression in the root epidermal hair cells, and in phloem cells of leaf and stem vascular tissue. The NR promoter confers also a significant stimulation of the GUS gene expression by nitrate. These findings might indicate that nitrate flow is one of the signals involved into tissue and cell specific expression of the NR promoter GUS fusions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
4.
5.
6.
7.
Nitrogen assimilation was studied in the deciduous, perennial climber Clematis vitalba. When solely supplied with NO3 in a hydroponic system, growth and N-assimilation characteristics were similar to those reported for a range of other species. When solely supplied with NH4+, however, nitrate reductase (NR) activity dramatically increased in shoot tissue, and particularly leaf tissue, to up to three times the maximum level achieved in NO3 supplied plants. NO3 was not detected in plant material that had been solely supplied with NH4+, there was no NO3 contamination of the hydroponic system, and the NH4+-induced activity did not occur in tobacco or barley grown under similar conditions. Western Blot analysis revealed that the induction of NR activity, either by NO3 or NH4+, was matched by NR and nitrite reductase protein synthesis, but this was not the case for the ammonium assimilation enzyme glutamine synthetase. Exposure of leaf disks to N revealed that NO3 assimilation was induced in leaves directly by NO3 and NH4+ but not glutamine. Our results suggest that the NH4+-induced potential for NO3 assimilation occurs when externally sourced NH4+ is assimilated in the absence of any NO3 assimilation. These data show that the potential for nitrate assimilation in C. vitalba is induced by a nitrogenous compound in the absence of its substrate and suggest that NO3 assimilation in C. vitalba may have a significant role beyond the supply of reduced N for growth.  相似文献   

8.
The effect of exogenous NH4+ on the induction of nitrate reductase activity (NRA; EC 1.6.6.1) and nitrite reductase activity (NiRA; EC 1.7.7.1) in roots of 8-day-old intact barley (Hordeum vulgare L.) seedlings was studied. Enzyme activities were induced with 0.1, 1 or 10 mM NO3+ in the presence of 0, 1 or 10 mM NH4+, Exogenous NH4+ partially inhibited the induction of NRA when roots were exposed to 0.1 mM, but not to 1 or 10 mM NO3+, In contrast, the induction of NiRA was inhibited by NH4+ at all NO3+ levels. Maximum inhibition of the enzyme activities occurred at 1.0 mM NH4+ Pre-treatment with NH4+ had no effect on the subsequent induction of NRA in the absence of additional NH4+ whereas the induction of NiRA in NH4+-pretreated roots was inhibited in the absence of NH4+ At 10 mM NO3+ L-methionine sulfoximine stimulated the induction of NRA whether or not exogenous NH4+ was present. In contrast, the induction of NiRA was inhibited by L-methionine sulfoximine irrespective of NH4+ supply. During the postinduction phase, exogenous NH4+ decreased NRA in roots supplied with 0.1 mM but not with 1mM NH3+ whereas, NiRA was unaffected by NH4+ at either substrate concentration. The results indicate that exogenous NH4+ regulates the induction of NRA in roots by limiting the availability of NO3+. Conversely, it has a direct effect, independent of the availability of NO3+, on the induction of NiRA. The lack of an NH4+ effect on NiRA during the postinduction phase is apparently due to a slower turnover rate of that enzyme.  相似文献   

9.
The expression of nitrite reductase (NiR; EC 1.7.7.1), the second enzyme in the nitrate assimilatory pathway, is regulated by nitrate as well as by end-products of nitrate assimilation, namely, glutamine (Gln) and asparagine (Asn). Nitrate induces expression of the NiR gene. Previously, using deletion analysis of the spinach (Spinacia oleracea L.) NiR gene promoter in transgenic tobacco (Nicotiana tabacum L.) and in-vivo dimethyl sulfate footprinting, we had identified the region between −230 bp and −180 bp as being critical for nitrate inducibility of this gene. In the present study, we show that the region from +1 to +67, which forms part of its untranslated leader, is important for minimal induction in the presence of nitrate. Electrophoretic mobility shift assays reveal concentration-dependent and competitive binding of a factor in tobacco nuclear extracts to this region. In the presence of Gln or Asn, the expression of spinach NiR is repressed. This repression is observed with the full-length NiR promoter (−3100 bp) as well as with the shortest promoter (−230 bp) that gives nitrate induction, which includes the +67 bp leader sequence. The repressed expression of the gene is not the result of reduced nitrate accumulation in the presence of the nitrogen metabolites. Received: 2 December 1997 / Accepted: 20 January 1998  相似文献   

10.
Tritordeum is a fertile amphiploid derived from durum wheat (Triticum turgidum L. conv. durum) × a wild barley (Hordeum chilense Roem. et Schultz.). The organic nitrogen content of tritordeum grain (34 mg g-1 DW) was significantly higher than that of its wheat parent (25 mg g-1 DW). Leaf and root nitrogen content became higher in tritordeum than in wheat after four weeks of growth, independently of the nitrogen source (either NO3 - or NH4 +). Under NO3 - nutrition, tritordeum generally exhibited higher levels of nitrate reductase (NR) activity than wheat. Nitrite reductase (NiR) levels were however lower in tritordeum than in its wheat parent. In NH4 +-grown plants, both NR and NiR activities progressively decreased in the two species, becoming imperceptible after 3 to 5 weeks of growth. Results indicate that, in addition to a higher rate of NO3 - reduction, other physiological factors must be responsible for the greater accumulation of organic nitrogen in tritordeum grain.  相似文献   

11.
Summary The main nitrogen source for most higher plants is soil nitrate. Prior to its incorporation into amino acids, plants reduce nitrate to ammonia in two enzymatic steps. Nitrate is reduced by nitrate reductase to nitrite, which is further reduced to ammonia by nitrite reductase. In this paper, the complete primary sequence of the precursor protein for spinach nitrite reductase has been deduced from cloned cDNAs. The cDNA clones were isolated from a nitrate-induced cDNA library in two ways: through the use of oligonucleotide probes based on partial amino acid sequences of nitrite reductase and through the use of antibodies raised against purified nitrite reductase. The precursor protein for nitrite reductase is 594 amino acids long and has a 32 amino acid extension at the N-terminal end of the mature protein. These 32 amino acids most likely serve as a transit peptide involved in directing this nuclearencoded protein into the chloroplast. The cDNA hybridizes to a 2.3 kb RNA whose steady-state level is markedly increased upon induction with nitrate.  相似文献   

12.
In wild-type Nicotiana plumbaginifolia and other higher plants, nitrate reductase (NR) is rapidly inactivated/activated in response to dark/light transitions. Inactivation of NR is believed to be caused by phosphorylation at a special conserved regulatory Ser residue, Ser 521, and interactions with divalent cations and inhibitory 14-3-3 proteins. A transgenic N. plumbaginifolia line (S(521)) was constructed where the Ser 521 had been changed by site-directed mutagenesis into Asp. This mutation resulted in complete abolishment of inactivation in response to light/dark transitions or other treatments known to inactivate NR. During prolonged darkness, NR in wild-type plants is in the inactivated form, whereas NR in the S(521) line is always in the active form. Differences in degradation rate between NR from S(521) and lines with non-mutated NR were not found. Kinetic constants like Km values for NADH and NO3(-) were not changed, but a slightly different pH profile was observed for mutated NR as opposed to non-mutated NR. Under optimal growth conditions, the phenotype of the S(521) plants was not different from the wild type (WT). However, when plants were irrigated with high nitrate concentration, 150 mM, the transgenic plants accumulated nitrite in darkness, and young leaves showed chlorosis.  相似文献   

13.
14.
15.
The nitrite reductase (NiR) gene (nirA) has been isolated and sequenced from the filamentous, thermophilic non-N2-fixing cyanobacterium Phormidium laminosum. Putative promoter-like and Shine-Dalgarno sequences appear at the 5 end of the 1533 bp long nir-coding region. The deduced amino acid sequence of NiR from P. laminosum corresponds to a 56 kDa polypeptide, a size identical to the molecular mass previously determined for the pure enzyme, and shows a high identity with amino acid sequences from ferredoxin-dependent NiR. This cyanobacterial NiR gene has been efficiently expressed in Escherichia coli DH5 from the E. coli lac promoter and probably from the P. laminosum NiR promoter.Abbreviations IPTG isopropyl--D-thiogalactopyranoside - NiR nitrite reductase - NR nitrate reductase - NT nitrate transport - SiR sulfite reductase  相似文献   

16.
The effects of various denaturing agents (temperature, pH, urea, guanidine hydrochloride and sodium dodecyl sulphate) on the 3 enzymic activities of th  相似文献   

17.
Appearance of nitrate reductase (NR, EC 1.6.6.1–3), nitrite reductase (NiR, EC 1.7.7.1) and glutamine synthetase (GS, EC 6.3.1.2) under the control of nitrate, ammonium and light was studied in roots, hypocotyls and needles (cotyledonary whorl) of the Scots pine ( Pinus sylvestris L.) seedling. It was found that appearance of NiR was mainly controlled by nitrate whereas appearance of GS was strongly controlled by light. In principle, the NR activity level showed the same dependency on nitrate and light as that of NiR. In the root, both nitrate and ammonium had a stimulatory effect on GS activity whereas in the whorl the induction was minor. The level of NiR (NR) activity is high in the root and hypocotyl and low in the cotyledonary whorl, whereas the GS activity level per organ increases strongly from the root to the whorl. Thus, in any particular organ the operation of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle is not closely connected to the operation of the nitrate reduction pathway. The strong control of GS/GOGAT by light and the minor sensitivity to induction by nitrate or ammonium indicate a major role of the GS/GOGAT cycle in reassimilation of endogeniously generated ammonium.  相似文献   

18.
植物氮代谢硝酸还原酶水平调控机制的研究进展   总被引:37,自引:0,他引:37  
氮代谢是植株体内最基本的物质代谢之一,硝酸还原酶是植物氮代谢的关键酶。主要对植物氮代谢在硝酸还原酶水平上调控的研究新进展,尤其是其合成/降解及活性调控机制进行了较为系统的综述。硝酸还原酶合成的调控主要发生在转录水平和翻译水平上,硝酸还原酶降解的调控主要发生在翻译后水平上,同时NO3^-及光在硝酸还原酶转录水平调控上的作用重大,硝酸还原酶编码基因转录的mRNA的稳定性强弱影响植物的氮代谢,而影响mRNA稳定性的因素很多,机理复杂;磷酸化/去磷酸化在硝酸还原酶活性调控中占举足轻重的地位,研究也比较深入。钝化蛋白也能够影响硝酸还原酶活性,许多小分子物质对硝酸还原酶活性有影响。  相似文献   

19.
We studied temporal and spatial expression patterns of the potato proteinase inhibitor II (PI-II) promoter, using transgenic tobacco (Nkotiana tabacum L cv. Xanthi) plants that carried a fusion between the PI-II promoter and the chloramphenicol acetyltransferase (cat) gene. Pl-ll promoter activity was low when plants were young, but increased as plants grew. In 8-week-old plants, old leaves showed higher activity than young leaves. At flowering stage (ca. 15 weeks), the overall promoter activity was reduced to a lower level except in the petals. Compared with stems or petioles at the flowering stage, the roots and floral organs showed minimal activity for the Pl-ll promoter. We used several environmental stimuli to examine the induction of the Pl-ll promoter in different organs. Promoter induction was effected by wounding or methyl jasmonate in stems, petioles, sepals, and leaves. The induction was highest in leaves, as was sucrose-enhanced wound induction. These results suggest that the Pl-ll gene is temporally and spatially regulated. We also established a transient assay system in tobacco BY2 suspension cells to elucidate the upstream regulatory region of the Pl-ll promoter. A field strength of 0.75 kV/cm and 400 μF capacitance were optimal electroporation conditions for our transient assay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号