首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
The chromatin structure of the Xenopus oocyte-specific 5S rRNA genes was examined at high resolution in immature oocyte and somatic cell chromosomes by DNase I footprinting. On oocyte chromatin, where the genes are active, the cleavage preferences over the entire gene region showed a periodic pattern of sensitivity and were dramatically different from the patterns obtained with deproteinized DNA or somatic cell chromatin. Further, the normal binding site for TFIIIA over the internal promoter region was preferentially sensitive to cleavage, indicating that TFIIIA was not bound in the manner predicted by in vitro experiments. In somatic cell chromatin, the oocyte-type 5S genes displayed a cleavage pattern largely similar to deproteinized DNA suggesting the absence of positioned nucleosomes on these inactive genes, although the presence of uncharacterized repressor complexes could not be ruled out. These data are discussed in terms of potential forms of the chromatin structure and alternative mechanisms of oocyte-type gene activation.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
Mouse primordial germ cells (PGCs) erase global DNA methylation (5mC) as part of the comprehensive epigenetic reprogramming that occurs during PGC development. 5mC plays an important role in maintaining stable gene silencing and repression of transposable elements (TE) but it is not clear how the extensive loss of DNA methylation impacts on gene expression and TE repression in developing PGCs. Using a novel epigenetic disruption and recovery screen and genetic analyses, we identified a core set of germline-specific genes that are dependent exclusively on promoter DNA methylation for initiation and maintenance of developmental silencing. These gene promoters appear to possess a specialised chromatin environment that does not acquire any of the repressive H3K27me3, H3K9me2, H3K9me3 or H4K20me3 histone modifications when silenced by DNA methylation. Intriguingly, this methylation-dependent subset is highly enriched in genes with roles in suppressing TE activity in germ cells. We show that the mechanism for developmental regulation of the germline genome-defence genes involves DNMT3B-dependent de novo DNA methylation. These genes are then activated by lineage-specific promoter demethylation during distinct global epigenetic reprogramming events in migratory (~E8.5) and post-migratory (E10.5-11.5) PGCs. We propose that genes involved in genome defence are developmentally regulated primarily by promoter DNA methylation as a sensory mechanism that is coupled to the potential for TE activation during global 5mC erasure, thereby acting as a failsafe to ensure TE suppression and maintain genomic integrity in the germline.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号