首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Deleted in liver cancer 1 (DLC1) is a Rho GTPase-activating protein (RhoGAP) frequently deleted and underexpressed in hepatocellular carcinoma (HCC) as well as in other cancers. Recent independent studies have shown interaction of DLC1 with members of the tensin focal adhesion protein family in a Src Homology 2 (SH2) domain-dependent mechanism. DLC1 and tensins interact and co-localize to punctate structures at focal adhesions. However, the mechanisms underlying the interaction between DLC1 and various tensins remain controversial.

Methodology/Principal Findings

We used a co-immunoprecipitation assay to identify a previously undocumented binding site at 375–385 of DLC1 that predominantly interacted with the phosphotyrosine binding (PTB) domain of tensin2. DLC1-tensin2 interaction is completely abolished in a DLC1 mutant lacking this novel PTB binding site (DLC1ΔPTB). However, as demonstrated by immunofluorescence and co-immunoprecipitation, neither the focal adhesion localization nor the interaction with tensin1 and C-terminal tensin-like (cten) were affected. Interestingly, the functional significance of this novel site was exhibited by the partial reduction of the RhoGAP activity, which, in turn, attenuated the growth-suppressive activity of DLC1 upon its removal from DLC1.

Conclusions/Significance

This study has provided new evidence that DLC1 also interacts with tensin2 in a PTB domain-dependent manner. In addition to properly localizing focal adhesions and preserving RhoGAP activity, DLC1 interaction with tensin2 through this novel focal adhesion binding site contributes to the growth-suppressive activity of DLC1.  相似文献   

2.
The protein deleted in liver cancer 1 (DLC1) interacts with the tensin family of focal adhesion proteins to play a role as a tumor suppressor in a wide spectrum of human cancers. This interaction has been proven to be crucial to the oncogenic inhibitory capacity and focal adhesion localization of DLC1. The phosphotyrosine binding (PTB) domain of tensin2 predominantly interacts with a novel site on DLC1, not the canonical NPXY motif. In this study, we characterized this interaction biochemically and determined the complex structure of tensin2 PTB domain with DLC1 peptide by NMR spectroscopy. Our HADDOCK-derived complex structure model elucidates the molecular mechanism by which tensin2 PTB domain recognizes DLC1 peptide and reveals a PTB-peptide binding mode that is unique in that peptide occupies the binding site opposite to the canonical NPXY motif interaction site with the peptide utilizing a non-canonical binding motif to bind in an extended conformation and that the N-terminal helix, which is unique to some Shc- and Dab-like PTB domains, is required for binding. Mutations of crucial residues defined for the PTB-DLC1 interaction affected the co-localization of DLC1 and tensin2 in cells and abolished DLC1-mediated growth suppression of hepatocellular carcinoma cells. This tensin2 PTB-DLC1 peptide complex with a novel binding mode extends the versatile binding repertoire of the PTB domains in mediating diverse cellular signaling pathways as well as provides a molecular and structural basis for better understanding the tumor-suppressive activity of DLC1 and tensin2.  相似文献   

3.
START-GAP1, also termed as DLC1, is a negative-regulator for RhoA and Cdc42. START-GAP1 is localized in focal adhesions via the FAT (focal adhesion targeting) domain located in its N-terminal half and interacts with tensin family proteins, that constitutes focal adhesion components. This study has provided evidence that the interaction between START-GAP1 and tensin2 occurs in a PTB domain-dependent manner. It was revealed that FAT3, the third subdomain of the FAT domain divided into five that consists of 39 amino acids, binds directly to the PTB domain of tensin2. This interaction does not require protein phosphorylation, since the interaction was detected with proteins expressed in bacterial expression system. In mammalian genome, there are three genes encoding START domain containing RhoGAPs. START-GAP2/DLC2 and START-GAP3/DLC3, as well as STRT-GAP1/DLC1, bind to the PTB domain of tensin2, presumably due to the presence of highly conserved residues in the center of FAT3. Deletion of this sub-region abrogates the interaction with the tensin PTB domain. Furthermore, D368, H369, G372, F374, P375 and L378 in the highly conserved region of START-GAP1 have been revealed to be essential for the interaction. The tensin2-PTB domain seems to determine the subcellular localization of FAT3. Nevertheless, our study with deletion mutants revealed that FAT3 is essential but not sufficient for the focal adhesion localization of START-GAP1. These results suggest that the interaction between the tensin PTB domain and FAT3 contributes to START-GAP1 localization but only partially. Other factors could affect the START-GAP1 localization.  相似文献   

4.
Tensin is a cytoskeletal protein that links integrins to the actin cytoskeleton at sites of cell-matrix adhesion. Here we describe the crystal structure of the phosphotyrosine-binding (PTB) domain of tensin1, and show that it binds integrins in an NPxY-dependent fashion. Alanine mutagenesis of both the PTB domain and integrin tails supports a model of integrin binding similar to that of the PTB-like domain of talin. However, we also show that phosphorylation of the NPxY tyrosine, which disrupts talin binding, has a negligible effect on tensin binding. This suggests that tyrosine phosphorylation of integrin, which occurs during the maturation of focal adhesions, could act as a switch to promote the migration of tensin-integrin complexes into fibronectin-mediated fibrillar adhesions.  相似文献   

5.
Following platelet aggregation, integrin alpha(IIb)beta(3) becomes associated with the platelet cytoskeleton. The conserved NPLY sequence represents a potential beta-turn motif in the beta(3) cytoplasmic tail and has been suggested to mediate the interaction of beta(3) integrins with talin. In the present study, we performed a double mutation (N744Q/P745A) in the integrin beta(3) subunit to test the functional significance of this beta-turn motif. Chinese hamster ovary cells were co-transfected with cDNA constructs encoding mutant beta(3) and wild type alpha(IIb). Cells expressing either wild type (A5) or mutant (D4) alpha(IIb)beta(3) adhered to fibrinogen; however, as opposed to control A5 cells, adherent D4 cells failed to spread, form focal adhesions, or initiate protein tyrosine phosphorylation. To investigate the role of the NPLY motif in talin binding, we examined the ability of the mutant alpha(IIb)beta(3) to interact with talin in a solid phase binding assay. Both wild type and mutant alpha(IIb)beta(3), purified by RGD affinity chromatography, bound to a similar extent to immobilized talin. Additionally, purified talin failed to interact with peptides containing the AKWDTANNPLYK sequence indicating that the talin binding domain in the integrin beta(3) subunit does not reside in the NPLY motif. In contrast, specific binding of talin to peptides containing the membrane-proximal HDRKEFAKFEEERARAK sequence of the beta(3) cytoplasmic tail was observed, and this interaction was blocked by a recombinant protein fragment corresponding to the 47-kDa N-terminal head domain of talin (rTalin-N). In addition, RGD affinity purified platelet alpha(IIb)beta(3) bound dose-dependently to immobilized rTalin-N, indicating that an integrin-binding site is present in the talin N-terminal head domain. Collectively, these studies demonstrate that the NPLY beta-turn motif regulates post-ligand binding functions of alpha(IIb)beta(3) in a manner independent of talin interaction. Moreover, talin was shown to bind through its N-terminal head domain to the membrane-proximal sequence of the beta(3) cytoplasmic tail.  相似文献   

6.
Tensin is an important cytoplasmic phosphoprotein localized to integrin-mediated focal adhesion. It links actin cytoskeleton to extracellular matrix through its N-terminal actin-binding domain and C-terminal phosphotyrosine-binding domain. Studies of knockout mice revealed the critical roles of tensin in skeletal muscle regeneration, renal function and regulation of cell migration. The SH2 domain of tensin interacts with various tyrosine-phosphorylated proteins thus functions as a platform for dis/assembly of signaling molecules. It has also been implicated in recruiting a tumor supperssor protein DLC1 (deleted in live cancer 1) to the focal adhesion, which is required for oncogenic inhibition effect of DLC1 in a phosphotyrosine-independent manner. Here, we report complete chemical shift assignments of the SH2 domain of human tensin2 determined by triple resonance experiments. The resonance assignments serve as a basis for our further functional studies and structure determination by NMR spectroscopy. (BMRB deposits with accession number 16472).  相似文献   

7.
START-GAP2, also termed as DLC2, is a START domain-containing RhoGAP and a negative regulator of RhoA and Cdc42. Although it was reported as a tumor suppresser gene product, the molecular basis for function of START-GAP2 remains to be clarified. Here, we demonstrate that START-GAP2 is localized in focal adhesions through a “FAT (focal adhesion targeting)” region in the N-terminal half. START-GAP2 competes with START-GAP1/DLC1, another START domain-containing RhoGAP, in focal adhesion targeting. Moreover, the C-terminus of tensin2, one of focal adhesion components and reported to bind START-GAP1, also directly interacts with START-GAP2. These results suggest that START-GAP2 and START-GAP1 share the same molecular mechanism in targeting to focal adhesions.  相似文献   

8.
Focal adhesions attach cultured cells to the extracellular matrix, and we found endogenous protein phosphatase-1alpha isoform (PP1alpha) localized in adhesions across the entire area of adherent fibroblasts. However, in fibroblasts migrating into a scrape wound or spreading after replating PP1alpha did not appear in adhesions near the leading edge but was recruited into other adhesions coincident in time and space with incorporation of tensin. Endogenous tensin and PP1alpha co-precipitated from cell lysates with isoform-specific PP1 antibodies. Chemical cross-linking of focal adhesion preparations with Lomant's reagent demonstrated molecular proximity of endogenous PP1alpha and tensin, whereas neither focal adhesion kinase nor vinculin was cross-linked and co-precipitated with PP1alpha, suggesting distinct spatial subdomains within adhesions. Transient expression of truncated tensin showed the N-terminal 360 residues, which comprise a protein-tyrosine phosphatase domain, alone were sufficient for isoform-selective co-precipitation of co-expressed PP1alpha. Human prostate cancer PC3 cells are deficient in tensin relative to fibroblasts and have fewer, mostly peripheral adhesions. Transient expression of green fluorescent protein tensin in these cancer cells induced formation of adhesions and recruited endogenous PP1alpha into those adhesions. Thus, the protein-tyrosine phosphatase domain of tensin exhibits isoform-specific association with PP1alpha in a restricted spatial region of adhesions that are formed during cell migration.  相似文献   

9.
Structural dynamics of alpha-actinin-vinculin interactions   总被引:1,自引:0,他引:1       下载免费PDF全文
Alpha-actinin and vinculin orchestrate reorganization of the actin cytoskeleton following the formation of adhesion junctions. alpha-Actinin interacts with vinculin through the binding of an alpha-helix (alphaVBS) present within the R4 spectrin repeat of its central rod domain to vinculin's N-terminal seven-helical bundle domain (Vh1). The Vh1:alphaVBS structure suggests that alphaVBS first unravels from its buried location in the triple-helical R4 repeat to allow it to bind to vinculin. alphaVBS binding then induces novel conformational changes in the N-terminal helical bundle of Vh1, which disrupt its intramolecular association with vinculin's tail domain and which differ from the alterations in Vh1 provoked by the binding of talin. Surprisingly, alphaVBS binds to Vh1 in an inverted orientation compared to the binding of talin's VBSs to vinculin. Importantly, the binding of alphaVBS and talin's VBSs to vinculin's Vh1 domain appear to also trigger distinct conformational changes in full-length vinculin, opening up distant regions that are buried in the inactive molecule. The data suggest a model where vinculin's Vh1 domain acts as a molecular switch that undergoes distinct structural changes provoked by talin and alpha-actinin binding in focal adhesions versus adherens junctions, respectively.  相似文献   

10.
Cytoskeletal proteins of the tensin family couple integrins to the actin cytoskeleton. They are found in both focal adhesions and the fibrillar adhesions formed between cells and the fibronectin matrix. There are four tensin genes which encode three large (~200 kDa) tensin isoforms (tensin 1, 2, 3) and one short isoform (cten). However, the subcellular localization and function of the individual isoforms is poorly understood. Using human foreskin fibroblasts (HFFs), and imaging on both fixed and live cells, we show that GFP‐tensin 2 is enriched in dynamic focal adhesions at the leading edge of the cell, whereas GFP‐tensin 3 translocates rearward, and is enriched in fibrillar adhesions. To investigate the possible role of tensins in cell‐matrix remodeling, we used siRNAs to knockdown each tensin isoform. We discovered that tensin 2 knockdown significantly reduced the ability of HFFs to contract 3D collagen gels, whilst no effect on fibronectin fibrillogenesis was observed. This inhibition of collagen gel contraction was associated with a substantial reduction in Rho activity, and it was reversed by depletion of DLC1, a RhoGAP that binds to tensin in focal adhesions. These findings suggest that focal adhesion‐localized tensin 2 negatively regulates DLC1 to permit Rho‐mediated actomyosin contraction and remodeling of collagen fibers. J. Cell. Biochem. 109: 808–817, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
《The Journal of cell biology》1996,134(5):1323-1332
Integrins alpha v beta 3 and alpha v beta 5 both mediate cell adhesion to vitronectin yet trigger different postligand binding events. Integrin alpha v beta 3 is able to induce cell spreading, migration, angiogenesis, and tumor metastasis without additional stimulators, whereas alpha v beta 5 requires exogenous activation of protein kinase C (PKC) to mediate these processes. To investigate this difference, the ability of beta 3 or beta 5 to induce colocalization of intracellular proteins was assessed by immunofluorescence in hamster CS-1 melanoma cells. We found that alpha v beta 5 induced colocalization of talin, alpha-actinin, tensin, and actin very weakly relative to alpha v beta 3. alpha v beta 5 was able to efficiently induce colocalization of focal adhesion kinase (FAK); however, it was unable to increase phosphorylation of FAK on tyrosine. Activation of PKC by adding phorbol ester to alpha v beta 5-expressing cells induced spreading, increased colocalization of alpha-actinin, tensin, vinculin, p130cas and actin, and triggered tyrosine phosphorylation of FAK. Unexpectedly, talin colocalization remained low even after activation of PKC. Treatment of cells with the PKC inhibitor calphostin C inhibited spreading and the colocalization of talin, alpha-actinin, tensin, and actin for both alpha v beta 3 and alpha v beta 5. We conclude that PKC regulates localization of cytoskeletal proteins and phosphorylation of FAK induced by alpha v beta 5. Our results also show that FAK can be localized independent of its phosphorylation and that cells can spread and induce localization of other focal adhesion proteins in the absence of detectable talin.  相似文献   

12.
The activation of heterodimeric integrin adhesion receptors from low to high affinity states occurs in response to intracellular signals that act on the short cytoplasmic tails of integrin β subunits. Binding of the talin FERM (four-point-one, ezrin, radixin, moesin) domain to the integrin β tail provides one key activation signal, but recent data indicate that the kindlin family of FERM domain proteins also play a central role. Kindlins directly bind integrin β subunit cytoplasmic domains at a site distinct from the talin-binding site, and target to focal adhesions in adherent cells. However, the mechanisms by which kindlins impact integrin activation remain largely unknown. A notable feature of kindlins is their similarity to the integrin-binding and activating talin FERM domain. Drawing on this similarity, here we report the identification of an unstructured insert in the kindlin F1 FERM domain, and provide evidence that a highly conserved polylysine motif in this loop supports binding to negatively charged phospholipid head groups. We further show that the F1 loop and its membrane-binding motif are required for kindlin-1 targeting to focal adhesions, and for the cooperation between kindlin-1 and -2 and the talin head in αIIbβ3 integrin activation, but not for kindlin binding to integrin β tails. These studies highlight the structural and functional similarities between kindlins and the talin head and indicate that as for talin, FERM domain interactions with acidic membrane phospholipids as well β-integrin tails contribute to the ability of kindlins to activate integrins.  相似文献   

13.
Tetraspanin CD9 is associated with integrin adhesion receptors and it was reported that CD9 regulates integrin-dependent cell migration and invasion. Pro- and anti-migratory effects of CD9 have been linked to adhesion-dependent signalling pathways, including phosphorylation of FAK (focal adhesion kinase) and activation of phosphoinositide 3-kinase, p38 MAPK (mitogen-activated protein kinase) and JNK (c-Jun N-terminal kinase). In the present paper, we describe a novel mechanism whereby CD9 specifically controls localization of talin1, one of the critical regulators of integrin activation, to focal adhesions: CD9-deficiency leads to impaired localization of talin1 to focal adhesions and correlates with increased motility of breast cancer cells.  相似文献   

14.
Talin, consisting of a 47-kDa N-terminal head domain (residues 1-433) and a 190-kDa C-terminal rod domain (residues 434-2541), links integrins to the actin cytoskeleton. We previously reported that the binding stoichiometry of integrin alpha(IIb)beta(3):talin is approximately 2:1. More recently, an integrin binding site has been localized to the talin head domain. In the present study, we identified another integrin binding site at the C-terminal region of the talin rod domain. In a solid phase binding assay, RGD affinity-purified alpha(IIb)beta(3) bound in a dose-dependent manner to microtiter wells coated with the isolated 190-kDa proteolytic fragment of the talin rod domain. Additionally, alpha(IIb)beta(3) also bound to the talin rod domain captured by 8d4, an anti-talin monoclonal antibody. Polyclonal antibodies raised against a recombinant protein fragment corresponding to the entire talin rod domain (anti-talin-R) inhibited alpha(IIb)beta(3) binding to intact talin by approximately 50% but completely blocked alpha(IIb)beta(3) binding to the talin rod domain. To localize the integrin binding site, we examined alpha(IIb)beta(3) binding to recombinant polypeptide fragments corresponding to partial sequences of the talin rod domain. Whereas alpha(IIb)beta(3) bound effectively to talin-(1075-2541) and talin-(1984-2541), it failed to bind to talin-(434-1076) and talin-(434-1975). Furthermore, the binding of alpha(IIb)beta(3) to talin-(1984-2541) was inhibited by anti-talin-R. These results indicate that an integrin binding site is located within residues 1984-2541 of the talin rod domain. Thus, talin contains two integrin binding sites, one in the homologous FERM (band four-point-one, ezrin, radixin, moesin) domain and another near its C terminus. Because talin exists as an anti-parallel homodimer in focal adhesions, the two integrin binding sites in the adjacent talin molecules would be in close proximity with each other.  相似文献   

15.
Talin is an essential component of focal adhesions that couples beta-integrin cytodomains to F-actin and provides a scaffold for signaling proteins. Recently, the integrin beta3 cytodomain and phosphatidylinositol phosphate (PIP) kinase type 1gamma (a phosphatidylinositol 4,5-bisphosphate-synthesizing enzyme) were shown to bind to the talin FERM domain (subdomain F3). We have characterized the PIP kinase-binding site by NMR using a 15N-labeled talin F2F3 polypeptide. A PIP kinase peptide containing the minimal talin-binding site formed a 1:1 complex with F2F3, causing a substantial number of chemical shift changes. In particular, two of the three Arg residues (Arg339 and Arg358), four of eight Ile residues, and one of seven Val residues in F3 were affected. Although a R339A mutation did not affect the exchange kinetics, R358A or R358K mutations markedly weakened binding. The Kd for the interaction determined by Trp fluorescence was 6 microm, and the R358A mutation increased the Kd to 35 microm. Comparison of these results with those of the crystal structure of a beta3-integrin cytodomain talin F2F3 chimera shows that both PIP kinase and integrins bind to the same surface of the talin F3 subdomain. Indeed, binding of talin present in rat brain extracts to a glutathione S-transferase integrin beta1-cytodomain polypeptide was inhibited by the PIP kinase peptide. The results suggest that ternary complex formation with a single talin FERM domain is unlikely, although both integrins and PIP kinase may bind simultaneously to the talin anti-parallel dimer.  相似文献   

16.
Talin is a large cytoskeletal protein that couples integrins to F-actin. Three actin-binding sites (ABS1-3) have been reported: one in the N-terminal head, and two in the C-terminal rod domain. Although the C-terminal ABS3 has been partially characterized, the presence and properties of ABS1 within the talin head are less well defined. We show here that the talin head binds F-actin in vitro and in vivo at a specific site within the actin filament. Thus, purified talin head liberated from gizzard talin by calpain cleavage cosediments with F-actin in a low salt buffer at pH 6.4 (conditions that are optimal for binding intact talin), and using recombinant polypeptides, we have mapped ABS1 to the FERM domain within the talin head. Both the F2 and F3 FERM subdomains contribute to binding, and EGFP-tagged FERM subdomains colocalize with actin stress fibers when expressed in COS cells. High-resolution electron microscopy of actin filaments decorated with F2F3 localizes binding to a site that is distinct from that recognized by members of the calponin-homology superfamily. Finally, we show that the FERM domain can couple F-actin to PIPkin, and by inference to integrins, since they bind to the same pocket in the F3 subdomain. This suggests that the talin FERM domain functions as a linker between PIPkin or integrins and F-actin at sites of cell-matrix adhesions.  相似文献   

17.
Tensin is a protein confined at those discrete and specialized regions of the plasma membrane, known as focal adhesions. It contains, at the C-terminus, a phosphotyrosine binding (PTB) domain that can interact with the cytoplasmic tail of beta-integrins and is necessary for localization of the protein to cell-matrix adhesions. Here, we present the NMR solution structure of the PTB domain of tensin1. Moreover, through NMR binding studies, we demonstrate that the PTB domain of tensin1 is able to interact with phosphatidylinositol 4, 5-diphosphate (PtIns(4,5)P2) and phosphatidylinositol 4-phosphate (PtIns(4)P), presenting higher affinity for the diphosphorylated inositide. Chemical shift mapping studies reveal a putative PtIns(4,5)P2 binding region that is distinct from the predicted integrin beta-tail recognition site. Heteronuclear NOE experiments, recorded in absence and presence of PtIns(4,5)P2, indicate that the interaction with lipids decreases the flexibility of loop regions, predicted to be important for integrin binding, and thus, proposes a possible correlation between the two distinct binding events. Therefore, our studies suggest that capture of lipids by the PTB domain of tensin1 may play a role for the protein function at focal adhesions.  相似文献   

18.
Interactor/inhibitor 1 of Cdc2 kinase (ICK1) from Arabidopsis thaliana is the first plant cyclin-dependent kinase (CDK) inhibitor, and overexpression of ICK1 inhibits CDK activity, cell division and plant growth in transgenic plants. In this study, ICK1 and deletion mutants were expressed either alone or as green fluorescent protein (GFP) fusion proteins in transgenic Arabidopsis plants. Deletion of the C-terminal 15 or 29 amino acids greatly reduced or completely abolished the effects of ICK1 on the transgenic plants, and recombinant proteins lacking the C-terminal residues lost the ability to bind to CDK complex and the kinase inhibition activity, demonstrating the role of the conserved C-terminal domain in in vivo kinase inhibition. In contrast, the mutant ICK1DeltaN108 with the N-terminal 108 residues deleted had much stronger effects on plants than the full-length ICK1. Analyses demonstrated that this effect was not because of an enhanced ability of ICK1DeltaN108 protein to inhibit CDK activity, but a result of a much higher level of ICK1DeltaN108 protein in the plants, indicating that the N-terminal domain contains a sequence or element increasing protein instability in vivo. Furthermore, GFP-ICK1 protein was restricted to the nuclei in roots of transgenic plants, even with the C-terminal or the N-terminal domain deleted, suggesting that a sequence in the central domain of ICK1 is responsible for nuclear localization. These results provide mechanistic understanding about the function and regulation of this cell cycle regulator in plants.  相似文献   

19.
Integrins are cell adhesion receptors that sense the extracellular matrix (ECM) environment. One of their functions is to regulate cell fate decisions, although the question of how integrins initiate intracellular signaling is not fully resolved. In this paper, we examine the role of talin, an adapter protein at cell-matrix attachment sites, in outside-in signaling. We used lentiviral small hairpin ribonucleic acid to deplete talin in mammary epithelial cells. These cells still attached to the ECM in an integrin-dependent manner and spread. They had a normal actin cytoskeleton, but vinculin, paxillin, focal adhesion kinase (FAK), and integrin-linked kinase were not recruited to adhesion sites. Talin-deficient cells showed proliferation defects, and reexpressing a tail portion of the talin rod, but not its head domain, restored integrin-mediated FAK phosphorylation, suppressed p21 expression, and rescued cell cycle. Thus, talin recruits and activates focal adhesion proteins required for proliferation via the C terminus of its rod domain. Our study reveals a new function for talin, which is to link integrin adhesions with cell cycle progression.  相似文献   

20.
Talin interactions with vinculin are essential for focal adhesions. Curiously, talin contains three noncontiguous vinculin binding sites (VBS) that can bind individually to the vinculin head (Vh) domain. Here we report the crystal structure of the human Vh.VBS1 complex, a validated model of the Vh.VBS2 structure, and biochemical studies that demonstrate that all of talin VBSs activate vinculin by provoking helical bundle conversion of the Vh domain, which displaces the vinculin tail (Vt) domain. Thus, helical bundle conversion is a structurally conserved response in talin-vinculin interactions. Furthermore, talin VBSs bind to Vh in a mutually exclusive manner but do differ in their affinity for Vh and in their ability to displace Vt, suggesting that the strengths of these interactions could lead to differences in signaling outcome. These findings support a model in which talin binds to and activates multiple vinculin molecules to provoke rapid reorganization of the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号