首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signaling pathways belong to a complex system of communication that governs cellular processes. They represent signal transduction from an extracellular stimulus via a receptor to intracellular mediators, as well as intracellular interactions. Perturbations in signaling cascade often lead to detrimental changes in cell function and cause many diseases, including cancer. Identification of deregulated pathways may advance the understanding of complex diseases and lead to improvement of therapeutic strategies. We propose Analysis of Consistent Signal Transduction (ACST), a novel method for analysis of signaling pathways. Our method incorporates information regarding pathway topology, as well as data on the position of every gene in each pathway. To preserve gene-gene interactions we use a subject-sampling permutation model to assess the significance of pathway perturbations. We applied our approach to nine independent datasets of global gene expression profiling. The results of ACST, as well as three other methods used to analyze signaling pathways, are presented in the context of biological significance and repeatability among similar, yet independent, datasets. We demonstrate the usefulness of using information of pathway structure as well as genes' functions in the analysis of signaling pathways. We also show that ACST leads to biologically meaningful results and high repeatability.  相似文献   

2.
3.
4.
To initiate a system-level analysis of C. elegans DAF-7/TGF-beta signaling, we combined interactome mapping with single and double genetic perturbations. Yeast two-hybrid (Y2H) screens starting with known DAF-7/TGF-beta pathway components defined a network of 71 interactions among 59 proteins. Coaffinity purification (co-AP) assays in mammalian cells confirmed the overall quality of this network. Systematic perturbations of the network using RNAi, both in wild-type and daf-7/TGF-beta pathway mutant animals, identified nine DAF-7/TGF-beta signaling modifiers, seven of which are conserved in humans. We show that one of these has functional homology to human SNO/SKI oncoproteins and that mutations at the corresponding genetic locus daf-5 confer defects in DAF-7/TGF-beta signaling. Our results reveal substantial molecular complexity in DAF-7/TGF-beta signal transduction. Integrating interactome maps with systematic genetic perturbations may be useful for developing a systems biology approach to this and other signaling modules.  相似文献   

5.
Ecological stability is touted as a complex and multifaceted concept, including components such as variability, resistance, resilience, persistence and robustness. Even though a complete appreciation of the effects of perturbations on ecosystems requires the simultaneous measurement of these multiple components of stability, most ecological research has focused on one or a few of those components analysed in isolation. Here, we present a new view of ecological stability that recognises explicitly the non‐independence of components of stability. This provides an approach for simplifying the concept of stability. We illustrate the concept and approach using results from a field experiment, and show that the effective dimensionality of ecological stability is considerably lower than if the various components of stability were unrelated. However, strong perturbations can modify, and even decouple, relationships among individual components of stability. Thus, perturbations not only increase the dimensionality of stability but they can also alter the relationships among components of stability in different ways. Studies that focus on single forms of stability in isolation therefore risk underestimating significantly the potential of perturbations to destabilise ecosystems. In contrast, application of the multidimensional stability framework that we propose gives a far richer understanding of how communities respond to perturbations.  相似文献   

6.
Functional annotation of regulatory pathways   总被引:2,自引:0,他引:2  
  相似文献   

7.
Genome-wide pathway association studies provide novel insight into the biological mechanism underlying complex diseases. Current pathway association studies primarily focus on single important disease phenotype, which is sometimes insufficient to characterize the clinical manifestations of complex diseases. We present a multi-phenotypes pathway association study(MPPAS) approach using principle component analysis(PCA). In our approach, PCA is first applied to multiple correlated quantitative phenotypes for extracting a set of orthogonal phenotypic components. The extracted phenotypic components are then used for pathway association analysis instead of original quantitative phenotypes. Four statistics were proposed for PCA-based MPPAS in this study. Simulations using the real data from the HapMap project were conducted to evaluate the power and type I error rates of PCA-based MPPAS under various scenarios considering sample sizes, additive and interactive genetic effects. A real genome-wide association study data set of bone mineral density (BMD) at hip and spine were also analyzed by PCA-based MPPAS. Simulation studies illustrated the performance of PCA-based MPPAS for identifying the causal pathways underlying complex diseases. Genome-wide MPPAS of BMD detected associations between BMD and KENNY_CTNNB1_TARGETS_UP as well as LONGEVITYPATHWAY pathways in this study. We aim to provide a applicable MPPAS approach, which may help to gain deep understanding the potential biological mechanism of association results for complex diseases.  相似文献   

8.
顾群  李一凡  陈涛 《生物工程学报》2013,29(8):1064-1074
合成生物学所面临的一项重要挑战是构建具有全新功能的生物系统.由于生物系统固有的复杂性,仅通过理性设计,通常难以使合成基因线路发挥出最优的功能.组合工程的兴起和发展为获得组合优化性状提供了有利条件,并大大促进了具有全新功能的生物系统的构建.文中主要从单个元件的微调、代谢通路的优化以及基因组范围内靶点的识别和组合修饰三个方面入手,总结和评述了近些年表现突出的合成生物系统的组合优化方法.  相似文献   

9.
Cell growth critically depends on signalling pathways whose regulation is the focus of intense research. Without utilizing a priori knowledge of the relative importance of pathway components, we have applied in silico computational methods to the EGF-induced MAPK cascade. Specifically, we systematically perturbed the entire parameter space, including initial conditions, using a Monte Carlo approach, and investigate which protein components or kinetic reaction steps contribute to the differentiation of ERK responses. The model, based on previous work by Brightman and Fell (2000), is composed of 28 reactions, 27 protein molecules, and 48 parameters from both mass action and Michaelis-Menten kinetics. Our multi-parametric systems analysis confirms that Raf inactivation is one of the key steps regulating ERK responses to be either transient or sustained. Furthermore, the results of amplitude-differential ERK phosphorylations within the transient case are mainly attributed to the balance between activation and inactivation of Ras while duration-differential ERK responses for the sustained case are, in addition to Ras, markedly affected by dephospho-/phosphorylation of both MEK and ERK. Our sub-module perturbations showed that MEK and ERK''s contribution to this differential ERK activation originates from fluctuations in intermediate pathway module components such as Ras and Raf, implicating a cooperative regulatory mode among the key components. The initial protein concentrations of corresponding reactions such as Ras, GAP, and Raf also influence the distinct signalling outputs of ERK activation. We then compare these results with those obtained from a single-parametric perturbation approach using an overall state sensitivity (OSS) analysis. The OSS findings indicate a more pronounced role of ERK''s inhibitory feedback effect on catalysing the dissociation of the SOS complex. Both approaches reveal the presence of multiple specific reactions involved in the distinct dynamics of ERK responses and the cell fate decisions they trigger. This work adds a mechanistic insight of the contribution of key pathway components, thus may support the identification of biomarkers for pharmaceutical drug discovery processes.  相似文献   

10.
11.
Impaired nitric oxide (NO˙)-cyclic guanosine 3'', 5''-monophosphate (cGMP) signaling has been observed in many cardiovascular disorders, including heart failure and pulmonary arterial hypertension. There are several enzymatic determinants of cGMP levels in this pathway, including soluble guanylyl cyclase (sGC) itself, the NO˙-activated form of sGC, and phosphodiesterase(s) (PDE). Therapies for some of these disorders with PDE inhibitors have been successful at increasing cGMP levels in both cardiac and vascular tissues. However, at the systems level, it is not clear whether perturbation of PDE alone, under oxidative stress, is the best approach for increasing cGMP levels as compared with perturbation of other potential pathway targets, either alone or in combination. Here, we develop a model-based approach to perturbing this pathway, focusing on single reactions, pairs of reactions, or trios of reactions as targets, then monitoring the theoretical effects of these interventions on cGMP levels. Single perturbations of all reaction steps within this pathway demonstrated that three reaction steps, including the oxidation of sGC, NO˙ dissociation from sGC, and cGMP degradation by PDE, exerted a dominant influence on cGMP accumulation relative to other reaction steps. Furthermore, among all possible single, paired, and triple perturbations of this pathway, the combined perturbations of these three reaction steps had the greatest impact on cGMP accumulation. These computational findings were confirmed in cell-based experiments. We conclude that a combined perturbation of the oxidatively-impaired NO˙-cGMP signaling pathway is a better approach to the restoration of cGMP levels as compared with corresponding individual perturbations. This approach may also yield improved therapeutic responses in other complex pharmacologically amenable pathways.  相似文献   

12.
In complex diseases, various combinations of genomic perturbations often lead to the same phenotype. On a molecular level, combinations of genomic perturbations are assumed to dys-regulate the same cellular pathways. Such a pathway-centric perspective is fundamental to understanding the mechanisms of complex diseases and the identification of potential drug targets. In order to provide an integrated perspective on complex disease mechanisms, we developed a novel computational method to simultaneously identify causal genes and dys-regulated pathways. First, we identified a representative set of genes that are differentially expressed in cancer compared to non-tumor control cases. Assuming that disease-associated gene expression changes are caused by genomic alterations, we determined potential paths from such genomic causes to target genes through a network of molecular interactions. Applying our method to sets of genomic alterations and gene expression profiles of 158 Glioblastoma multiforme (GBM) patients we uncovered candidate causal genes and causal paths that are potentially responsible for the altered expression of disease genes. We discovered a set of putative causal genes that potentially play a role in the disease. Combining an expression Quantitative Trait Loci (eQTL) analysis with pathway information, our approach allowed us not only to identify potential causal genes but also to find intermediate nodes and pathways mediating the information flow between causal and target genes. Our results indicate that different genomic perturbations indeed dys-regulate the same functional pathways, supporting a pathway-centric perspective of cancer. While copy number alterations and gene expression data of glioblastoma patients provided opportunities to test our approach, our method can be applied to any disease system where genetic variations play a fundamental causal role.  相似文献   

13.
Tracking metabolic profiles has the potential to reveal crucial enzymatic steps that could be targeted in the drug discovery process. It is of special importance for various types of cancer known to be associated with substantial rewiring of metabolic networks. Here we introduce an integrated approach for the analysis of metabolome that allows us to simultaneously assess pathway activities (fluxes) and concentrations of a large number of the key components involved in central metabolism of human cells. This is accomplished by in vivo labeling with [U-13C]glucose followed by two-dimensional nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) analysis. A comprehensive isotopomer model was developed, which enabled us to compare fluxes through the key central metabolic pathways including glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, anaplerotic reactions, and biosynthetic pathways of fatty acids and amino acids. The validity and strength of this approach is illustrated by its application to a number of perturbations to breast cancer cells, including exposure to hypoxia, drug treatment, and tumor progression. We observed significant differences in the activities of specific metabolic pathways resulting from these perturbations and providing new mechanistic insights. Based on these findings we conclude that the developed metabolomic approach constitutes a promising analytical tool for revealing specific metabolic phenotypes in a variety of cell types and pathological conditions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Chen Yang and Adam D. Richardson contributed equally to this work.  相似文献   

14.
Wang Z  Birch CM  Deisboeck TS 《Bio Systems》2008,92(3):249-258
Sensitivity analysis is an effective tool for systematically identifying specific perturbations in parameters that have significant effects on the behavior of a given biosystem, at the scale investigated. In this work, using a two-dimensional, multiscale non-small cell lung cancer (NSCLC) model, we examine the effects of perturbations in system parameters which span both molecular and cellular levels, i.e. across scales of interest. This is achieved by first linking molecular and cellular activities and then assessing the influence of parameters at the molecular level on the tumor's spatio-temporal expansion rate, which serves as the output behavior at the cellular level. Overall, the algorithm operated reliably over relatively large variations of most parameters, hence confirming the robustness of the model. However, three pathway components (proteins PKC, MEK, and ERK) and eleven reaction steps were determined to be of critical importance by employing a sensitivity coefficient as an evaluation index. Each of these sensitive parameters exhibited a similar changing pattern in that a relatively larger increase or decrease in its value resulted in a lesser influence on the system's cellular performance. This study provides a novel cross-scaled approach to analyzing sensitivities of computational model parameters and proposes its application to interdisciplinary biomarker studies.  相似文献   

15.
Ascertaining the impact of uncharacterized perturbations on the cell is a fundamental problem in biology. Here, we describe how a single assay can be used to monitor hundreds of different cellular functions simultaneously. We constructed a reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical treatments in S. cerevisiae, and we show that the cellular pathways affected can be determined by pattern matching, even among very subtle profiles. The utility of this approach is validated by examining profiles caused by deletions of uncharacterized genes: we identify and experimentally confirm that eight uncharacterized open reading frames encode proteins required for sterol metabolism, cell wall function, mitochondrial respiration, or protein synthesis. We also show that the compendium can be used to characterize pharmacological perturbations by identifying a novel target of the commonly used drug dyclonine.  相似文献   

16.
17.
Gene expression profiling offers a great opportunity for studying multi-factor diseases and for understanding the key role of genes in mechanisms which drive a normal cell to a cancer state. Single gene analysis is insufficient to describe the complex perturbations responsible for cancer onset, progression and invasion. A deeper understanding of the mechanisms of tumorigenesis can be reached focusing on deregulation of gene sets or pathways rather than on individual genes. We apply two known and statistically well founded methods for finding pathways and biological processes deregulated in pathological conditions by analyzing gene expression profiles. In particular, we measure the amount of deregulation and assess the statistical significance of predefined pathways belonging to a curated collection (Molecular Signature Database) in a colon cancer data set. We find that pathways strongly involved in different tumors are strictly connected with colon cancer. Moreover, our experimental results show that the study of complex diseases through pathway analysis is able to highlight genes weakly connected to the phenotype which may be difficult to detect by using classical univariate statistics. Our study shows the importance of using gene sets rather than single genes for understanding the main biological processes and pathways involved in colorectal cancer. Our analysis evidences that many of the genes involved in these pathways are strongly associated to colorectal tumorigenesis. In this new perspective, the focus shifts from finding differentially expressed genes to identifying biological processes, cellular functions and pathways perturbed in the phenotypic conditions by analyzing genes co-expressed in a given pathway as a whole, taking into account the possible interactions among them and, more importantly, the correlation of their expression with the phenotypical conditions.  相似文献   

18.
Modeling of signal transduction pathways plays a major role in understanding cells'' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.  相似文献   

19.
Building protein interaction maps for Down's syndrome.   总被引:4,自引:0,他引:4  
Now that the complete sequences for human chromosome 21 and the orthologous mouse genomic regions are known, reasonably complete, conserved, protein-coding gene catalogues are also available. The central issue now facing Down's syndrome researchers is the correlation of increased expression of specific, normal, chromosome 21 genes with the development of specific deficits in learning and memory. Because of the number of candidate genes involved, the number of alternative splice variants of individual genes and the number of pathways in which these genes function, a pathway analysis approach will be critical to success. Here, three examples, both gene specific and pathway related, that would benefit from pathway analysis are discussed: (1) the potential roles of eight chromosome 21 proteins in RNA processing pathways; (2) the chromosome 21 protein intersectin 1 and its domain composition, alternative splicing, protein interactions and functions; and (3) the interactions of ten chromosome 21 proteins with components of the mitogen-activated protein kinase and the calcineurin signalling pathways. A productive approach to developing gene-phenotype correlations in Down's syndrome will make use of known and predicted functions and interactions of chromosome 21 genes to predict pathways that may be perturbed by their increased levels of expression. Investigations may then be targeted in animal models to specific interactions, intermediate steps or end-points of such pathways and the downstream - perhaps amplified - consequences of gene dosage directly assessed. Once pathway perturbations have been identified, the potential for rational design of therapeutics becomes practical.  相似文献   

20.
Global gene expression profiling has emerged as a major tool in understanding complex response patterns of biological systems to perturbations. However, a lack of unbiased analytical approaches has restricted the utility of complex microarray data to gain novel system level insights. Here we report a strategy, express path analysis (EPA), that helps to establish various pathways differentially recruited to achieve specific cellular responses under contrasting environmental conditions in an unbiased manner. The analysis superimposes differentially regulated genes between contrasting environments onto the network of functional protein associations followed by a series of iterative enrichments and network analysis. To test the utility of the approach, we infected THP1 macrophage cells with a virulent Mycobacterium tuberculosis strain (H37Rv) or the attenuated non-virulent strain H37Ra as contrasting perturbations and generated the temporal global expression profiles. EPA of the results provided details of response-specific and time-dependent host molecular network perturbations. Further analysis identified tyrosine kinase Src as the major regulatory hub discriminating the responses between wild-type and attenuated Mtb infection. We were then able to verify this novel role of Src experimentally and show that Src executes its role through regulating two vital antimicrobial processes of the host cells (i.e. autophagy and acidification of phagolysosome). These results bear significant potential for developing novel anti-tuberculosis therapy. We propose that EPA could prove extremely useful in understanding complex cellular responses for a variety of perturbations, including pathogenic infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号