首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.

Background

The process of translation occurs at a nexus point downstream of a number of signal pathways and developmental processes. Modeling activation of the PTEN/AKT/mTOR pathway in the Eμ-Myc mouse is a valuable tool to study tumor genotype/chemosensitivity relationships in vivo. In this model, blocking translation initiation with silvestrol, an inhibitor of the ribosome recruitment step has been showed to modulate the sensitivity of the tumors to the effect of standard chemotherapy. However, inhibitors of translation elongation have been tested as potential anti-cancer therapeutic agents in vitro, but have not been extensively tested in genetically well-defined mouse tumor models or for potential synergy with standard of care agents.

Methodology/Principal Findings

Here, we chose four structurally different chemical inhibitors of translation elongation: homoharringtonine, bruceantin, didemnin B and cycloheximide, and tested their ability to alter the chemoresistance of Eμ-myc lymphomas harbouring lesions in Pten, Tsc2, Bcl-2, or eIF4E. We show that in some genetic settings, translation elongation inhibitors are able to synergize with doxorubicin by reinstating an apoptotic program in tumor cells. We attribute this effect to a reduction in levels of pro-oncogenic or pro-survival proteins having short half-lives, like Mcl-1, cyclin D1 or c-Myc. Using lymphomas cells grown ex vivo we reproduced the synergy observed in mice between chemotherapy and elongation inhibition and show that this is reversed by blocking protein degradation with a proteasome inhibitor.

Conclusion/Significance

Our results indicate that depleting short-lived pro-survival factors by inhibiting their synthesis could achieve a therapeutic response in tumors harboring PTEN/AKT/mTOR pathway mutations.  相似文献   

4.
5.
6.
7.
Information on the involvement of elongation-controlling hormones, particularly gibberellin (GA), in UV-B modulation of stem elongation and leaf growth, is limited. We aimed to study the effect of UV-B on levels of GA and indole-3-acetic acid (IAA) as well as involvement of GA in UV-B inhibition of stem elongation and leaf expansion in pea. Reduced shoot elongation (13%) and leaf area (37%) in pea in response to a 6-h daily UV-B (0.45 W m?2) exposure in the middle of the light period for 10 days were associated with decreased levels of the bioactive GA1 in apical stem tissue (59%) and young leaves (69%). UV-B also reduced the content of IAA in young leaves (35%). The importance of modulation of GA metabolism for inhibition of stem elongation in pea by UV-B was confirmed by the lack of effect of UV-B in the le GA biosynthesis mutant. No UV-B effect on stem elongation in the la cry-s (della) pea mutant demonstrates that intact GA signalling is required. In conclusion, UV-B inhibition of shoot elongation and leaf expansion in pea depends on UV-B modulation of GA metabolism in shoot apices and young leaves and GA signalling through DELLA proteins. UV-B also affects the IAA content in pea leaves.  相似文献   

8.
9.
Callitriche platycarpa is a freshwater plant characterized by floating rosettes of leaves connected to the water-bed by threadlike (diameter < 1 mm) stems. The internodes within the rosettes are immature and short (< 2 mm). If they mature at the water surface, they become 10 to 30 mm long, but if the rosette is submerged the internodes elongate faster and to a greater extent (25–60 mm). This method of growth rate control is of interest.  相似文献   

10.
Autophagy is a central lysosomal degradation pathway required for maintaining cellular homeostasis and its dysfunction is associated with numerous human diseases. To identify players in autophagy, we tested w1200 chemically induced mutations on the X chromosome in Drosophila fat body clones and discovered that shibire(shi) plays an essential role in starvation-induced autophagy. shi encodes a dynamin protein required for fission of clathrin-coated vesicles from the plasma membrane during endocytosis. We showed that Shi is dispensable for autophagy initiation and autophagosomeelysosome fusion, but required for lysosomal/autolysosomal acidification. We also showed that other endocytic core machinery components like clathrin and AP2 play similar but not identical roles in regulating autophagy and lysosomal function as dynamin. Previous studies suggested that dynamin directly regulates autophagosome formation and autophagic lysosome reformation(ALR) through its excision activity. Here, we provide evidence that dynamin also regulates autophagy indirectly by regulating lysosomal function.  相似文献   

11.
p75 is expressed among Purkinje cells in the adult cerebellum, but its function has remained obscure. Here we report that p75 is involved in maintaining the frequency and regularity of spontaneous firing of Purkinje cells. The overall spontaneous firing activity of Purkinje cells was increased in p75−/− mice during the phasic firing period due to a longer firing period and accompanying reduction in silence period than in the wild type. We attribute these effects to a reduction in small conductance Ca2+-activated potassium (SK) channel activity in Purkinje cells from p75−/− mice compared with the wild type littermates. The mechanism by which p75 regulates SK channel activity appears to involve its ability to activate Rac1. In organotypic cultures of cerebellar slices, brain-derived neurotrophic factor increased RacGTP levels by activating p75 but not TrkB. These results correlate with a reduction in RacGTP levels in synaptosome fractions from the p75−/− cerebellum, but not in that from the cortex of the same animals, compared with wild type littermates. More importantly, we demonstrate that Rac1 modulates SK channel activity and firing patterns of Purkinje cells. Along with the finding that spine density was reduced in p75−/− cerebellum, these data suggest that p75 plays a role in maintaining normalcy of Purkinje cell firing in the cerebellum in part by activating Rac1 in synaptic compartments and modulating SK channels.  相似文献   

12.
Ethylene and GA3 stimulated internodal elongation in the excisedstem sections of floating rice. The combined application ofethylene and GA3 exerted a cooperative effect on internodalelongation, although the effect was variety dependent. Stimulativeeffect of ethylene on internodal growth in intact floating riceplants was virtually absent when the plants were pre-treatedwith Ancymidol, -cyclopropyl--(4-methoxyphenyl)-5-pyrimidinemethanol, an inhibitor of gibberellin biosynthesis. Submergenceof intact plants, which also induced internodal elongation,had no stimulative effect when the plants were pre-treated withAncymidol. Submergence of intact plants increased the endogenousgibberellin level. The internode of young, intact 9 day oldseedlings responded neither to submergence nor ethylene, butwhen seedlings were pre-treated with GA3 they responded to eitherone. Nodal root development was also enhanced by either ethyleneor GA3. Combined application of ethylene and GA3 exerted a co-operativeeffect on nodal root development. Ancymidol-treated plants didnot produce nodal roots even though they were subjected to submergence,whereas nontreated control plants produced nodal roots normally. (Received September 12, 1984; Accepted February 15, 1985)  相似文献   

13.
14.
15.
Rho family guanosine triphosphatases (GTPases), such as RhoA, Cdc42, and Rac1, play a fundamental role in various cellular processes. The activation of Rho proteins is catalyzed by guanine nucleotide-exchange factors (GEFs), which promote the exchange of GDP for GTP. The precise mechanisms regulating the activation of Rho proteins are not fully understood. Herein, we demonstrate that RhoA activity is regulated by cylindromatosis (CYLD), a deubiquitinase harboring multiple functions. In addition, we find that RhoA-mediated cytoskeletal rearrangement, chromosome separation, and cell polarization are altered in CYLD-depleted cells. Mechanistically, CYLD does not interact with RhoA; instead, it interacts with and deubiquitinates leukemia-associated RhoGEF (LARG). Our data further show that CYLD-mediated deubiquitination of LARG enhances its ability to stimulate the GDP/GTP exchange on RhoA. These data thus identify LARG as a new substrate of CYLD and provide novel insights into the regulation of RhoA activation. Our results also suggest that the LARG-RhoA signaling pathway may play a role in diverse CYLD-mediated cellular events.  相似文献   

16.
17.
Journal of Plant Growth Regulation - High sensitivity of rice coleoptile elongation length to exogenous gibberellin is a beneficial trait to utilize superior rice cultivars that could not be used...  相似文献   

18.
19.
20.
Rumex acetosa L. (common sorrel) is a dioecious perennial in the family Polygonaceae. Gibberellins (GAs) of the early 13-hydroxylation pathway and the putative early 3, 13-hydroxylation pathway were previously identified in young R. acetosa inflorescences by GC-MS. In this investigation to examine the GA content of individual inflorescences ELISAs were used for quantitative analysis. Significant differences were revealed between the sexes in the GA content of young inflorescences, and GC-SRM was used to validate the observed trends. Males had higher levels of the 3, 13-hydroxylated C20-GA GA18 and the 2, 13-hydroxylated C19-GA GA29, whereas females had higher levels of the 13-hydroxylated C20-GAs GA53 and GA19. It is suggested that the conversion from C20-GAs to C19-GAs is under tighter control in the inflorescences of females compared to male plants and therefore there is accumulation of the C20-GAs in the females. Results from flowering bioassays using authentic GAs indicate that differences in GA content between the sexes are unlikely to be a consequence of sex determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号