首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutrophil recruitment to tissue damage is essential for host defense but can also impede tissue repair. The cues that differentially regulate neutrophil responses to tissue damage and infection remain unclear. Here, we report that the paracrine factor myeloid-derived growth factor (MYDGF) is induced by tissue damage and regulates neutrophil motility to damaged, but not infected, tissues in zebrafish larvae. Depletion of MYDGF impairs wound healing, and this phenotype is rescued by depleting neutrophils. Live imaging and photoconversion reveal impaired neutrophil reverse migration and inflammation resolution in mydgf mutants. We found that persistent neutrophil inflammation in tissues of mydgf mutants was dependent on the HIF-1α pathway. Taken together, our data suggest that MYDGF is a damage signal that regulates neutrophil interstitial motility and inflammation through a HIF-1α pathway in response to tissue damage.  相似文献   

2.
Neutrophils migrate to sites of tissue damage, where they protect the host against pathogens. Often, the cost of these neutrophil defenses is collateral damage to healthy tissues. Thus, the immune system has evolved multiple mechanisms to regulate neutrophil migration. One of these mechanisms is reverse migration — the process whereby neutrophils leave the source of inflammation. In vivo, neutrophils arrive and depart the wound simultaneously — indicating that neutrophils dynamically integrate conflicting signals to engage in forward and reverse migration. This finding is seemingly at odds with the established chemoattractant hierarchy in vitro, which places wound-derived signals at the top. Here we will discuss recent work that has uncovered key players involved in retaining and dispersing neutrophils from wounds. These findings offer the opportunity to integrate established and emerging mechanisms into a holistic model for neutrophil migration in vivo.  相似文献   

3.
Human neutrophils participate in the host innate immune response, partly mediated by the multicomponent superoxide-generating enzyme NADPH oxidase. A correlation between phosphorylation of cytosolic NADPH oxidase components and enzyme activation has been identified but is not well understood. We previously showed that p22(phox), the small subunit of the membrane-bound oxidase component flavocytochrome b(558), is an in vitro substrate for both a phosphatidic acid-activated kinase and conventional protein kinase C isoforms (Regier, D. S., Waite, K. A., Wallin, R., and McPhail, L. C. (1999) J. Biol. Chem. 274, 36601-36608). Here we show that several neutrophil agonists (phorbol myristate acetate, opsonized zymosan, and N-formyl-methionyl-leucyl-phenylalanine) induce p22(phox) phosphorylation in intact neutrophils. To determine if phospholipase D (PLD) is needed for p22(phox) phosphorylation, cells were pretreated with ethanol, which reduces phosphatidic acid production by PLD in stimulated cells. Phorbol myristate acetate-induced phosphorylation of p22(phox) and NADPH oxidase activity were not reduced by ethanol. In contrast, ethanol reduced both activities when cells were stimulated by N-formyl-methionyl-leucyl-phenylalanine or opsonized zymosan. Varying the time of stimulation with opsonized zymosan showed that the phosphorylation of p22(phox) coincides with NADPH oxidase activation. GF109203X, an inhibitor of protein kinase C and the phosphatidic acid-activated protein kinase, decreased both p22(phox) phosphorylation and NADPH oxidase activity in parallel in opsonized zymosan-stimulated cells. Stimulus-induced phosphorylation of p22(phox) was on Thr residue(s), in agreement with in vitro results. Overall, these data show that NADPH oxidase activity and p22(phox) phosphorylation are correlated and suggest two mechanisms (PLD-dependent and -independent) by which p22(phox) phosphorylation occurs.  相似文献   

4.
There is growing interest in inflammation due to its involvement in many diverse medical conditions, including Alzheimer’s disease, cancer, arthritis and asthma. The traditional view that resolution of inflammation is a passive process is now being superceded by an alternative hypothesis whereby its resolution is an active, anti-inflammatory process that can be manipulated therapeutically. This shift in mindset has stimulated a resurgence of interest in the biological mechanisms by which inflammation resolves. The anti-inflammatory processes central to the resolution of inflammation revolve around macrophages and are closely related to pro-inflammatory processes mediated by neutrophils and their ability to damage healthy tissue. We develop a spatially averaged model of inflammation centring on its resolution, accounting for populations of neutrophils and macrophages and incorporating both pro- and anti-inflammatory processes. Our ordinary differential equation model exhibits two outcomes that we relate to healthy and unhealthy states. We use bifurcation analysis to investigate how variation in the system parameters affects its outcome. We find that therapeutic manipulation of the rate of macrophage phagocytosis can aid in resolving inflammation but success is critically dependent on the rate of neutrophil apoptosis. Indeed our model predicts that an effective treatment protocol would take a dual approach, targeting macrophage phagocytosis alongside neutrophil apoptosis.  相似文献   

5.
A whole-cell-based reconstitution system was developed to study the signaling mechanisms underlying chemoattractant-induced activation of NADPH oxidase. This system takes advantage of the lack of formyl peptide receptor-mediated response in COS-phox cells expressing gp91(phox), p22(phox), p67(phox), and p47(phox), which respond to phorbol ester and arachidonic acid with O()(2) production. By exogenous expression of signaling molecules enriched in neutrophils, we have identified several critical components for fMLP-induced NADPH oxidase activation. Expression of PKCdelta, but not PKCalpha, -betaII, and -zeta, is necessary for the COS-phox cells to respond to fMLP. A role of PKCdelta in neutrophil NADPH oxidase was confirmed based on the ability of fMLP to induce PKCdelta translocation and the sensitivity of fMLP-induced O()(2) production to rottlerin, a PKCdelta-selective inhibitor. Optimal reconstitution also requires phospholipase C-beta2 and PI3K-gamma. We found that formyl peptide receptor could use the endogenous Rac1 as well as exogenous Rac1 and Rac2 for NADPH oxidase activation. Exogenous expression of p40(phox) potentiated fMLP-induced O()(2) production and raised the level of O()(2) in unstimulated cells. Collectively, these results provide first direct evidence for reconstituting fMLP-induced O()(2) production in a nonhemopoietic cell line, and demonstrate the requirement of multiple signaling components for optimal activation of NADPH oxidase by a chemoattractant.  相似文献   

6.
Exofacial phosphatidylserine (PS) is an important ligand mediating apoptotic cell clearance by phagocytes. Oxidation of PS fatty acyl groups (oxPS) during apoptosis reportedly mediates recognition through scavenger receptors. Given the oxidative capacity of the neutrophil NADPH oxidase, we sought to identify oxPS signaling species in stimulated neutrophils. Using mass spectrometry analysis, only trace amounts of previously characterized oxPS species were found. Conversely, 18:1 and 18:0 lysophosphatidylserine (lyso-PS), known bioactive signaling phospholipids, were identified as abundant modified PS species following activation of the neutrophil oxidase. NADPH oxidase inhibitors blocked the production of lyso-PS in vitro, and accordingly, its generation in vivo by activated, murine neutrophils during zymosan-induced peritonitis was absent in mice lacking a functional NADPH oxidase (gp91phox-/-). Treatment of macrophages with lyso-PS enhanced the uptake of apoptotic cells in vitro, an effect that was dependent on signaling via the macrophage G2A receptor. Similarly, endogenously produced lyso-PS also enhanced the G2A-mediated uptake of activated PS-exposing (but non-apoptotic) neutrophils, raising the possibility of non-apoptotic mechanisms for removal of inflammatory cells during resolution. Finally, antibody blockade of G2A signaling in vivo prolonged zymosan-induced neutrophilia in wild-type mice, whereas having no effect in gp91phox-/- mice where lyso-PS are not generated. Taken together, we show that lyso-PS are modified PS species generated following activation of the NADPH oxidase and lyso-PS signaling through the macrophage G2A functions to enhance existing receptor/ligand systems for optimal resolution of neutrophilic inflammation.  相似文献   

7.
Neutrophil superoxide production can be potentiated by prior exposure to "priming" agents such as granulocyte/macrophage colony stimulating factor (GM-CSF). Because the mechanism underlying GM-CSF-dependent priming is not understood, we investigated the effects of GM-CSF on the phosphorylation of the cytosolic NADPH oxidase components p47(phox) and p67(phox). Preincubation of neutrophils with GM-CSF alone increased the phosphorylation of p47(phox) but not that of p67(phox). Addition of formyl-methionyl-leucyl-phenylalanine (fMLP) to GM-CSF-pretreated neutrophils resulted in more intense phosphorylation of p47(phox) than with GM-CSF alone and fMLP alone. GM-CSF-induced p47(phox) phosphorylation was time- and concentration-dependent and ran parallel to the priming effect of GM-CSF on superoxide production. Two-dimensional tryptic peptide mapping of p47(phox) showed that GM-CSF induced phosphorylation of one major peptide. fMLP alone induced phosphorylation of several peptides, an effect enhanced by GM-CSF pretreatment. In contrast to fMLP and phorbol 12-myristate 13-acetate, GM-CSF-induced phosphorylation of p47(phox) was not inhibited by the protein kinase C inhibitor GF109203X. The protein-tyrosine kinase inhibitor genistein and the phosphatidylinositol 3-kinase inhibitor wortmannin inhibited the phosphorylation of p47(phox) induced by GM-CSF and by fMLP but not that induced by phorbol 12-myristate 13-acetate. GM-CSF alone did not induce p47(phox) or p67(phox) translocation to the membrane, but neutrophils treated consecutively with GM-CSF and fMLP showed an increase (compared with fMLP alone) in membrane translocation of p47(phox) and p67(phox). Taken together, these results show that the priming action of GM-CSF on the neutrophil respiratory burst involves partial phosphorylation of p47(phox) on specific serines and suggest the involvement of a priming pathway regulated by protein-tyrosine kinase and phosphatidylinositol 3-kinase.  相似文献   

8.
Efficient execution of apoptotic cell death followed by efficient clearance mediated by professional macrophages is a key mechanism in maintaining tissue homeostasis. Removal of apoptotic cells usually involves three central elements: 1) attraction of phagocytes via soluble "find me" signals, 2) recognition and phagocytosis via cell surface-presenting "eat me" signals, and 3) suppression or initiation of inflammatory responses depending on additional innate immune stimuli. Suppression of inflammation involves both direct inhibition of proinflammatory cytokine production and release of anti-inflammatory factors, which all contribute to the resolution of inflammation. In the current study, using wild-type and adenosine A(2A) receptor (A2AR) null mice, we investigated whether A2ARs, known to mediate anti-inflammatory signals in macrophages, participate in the apoptotic cell-mediated immunosuppression. We found that macrophages engulfing apoptotic cells release adenosine in sufficient amount to trigger A2ARs, and simultaneously increase the expression of A2ARs, as a result of possible activation of liver X receptor and peroxisome proliferators activated receptor δ. In macrophages engulfing apoptotic cells, stimulation of A2ARs suppresses the NO-dependent formation of neutrophil migration factors, such as macrophage inflammatory protein-2, using the adenylate cyclase/protein kinase A pathway. As a result, loss of A2ARs results in elevated chemoattractant secretion. This was evident as pronounced neutrophil migration upon exposure of macrophages to apoptotic cells in an in vivo peritonitis model. Altogether, our data indicate that adenosine is one of the soluble mediators released by macrophages that mediate engulfment-dependent apoptotic cell suppression of inflammation.  相似文献   

9.
Early inflammatory events include cytokine release, activation, and rapid accumulation of neutrophils, with subsequent recruitment of mononuclear cells. The p38 mitogen-activated protein kinase (MAPK) intracellular signaling pathway plays a central role in regulating a wide range of inflammatory responses in many different cells. A murine model of mild LPS-induced lung inflammation was developed to investigate the role of the p38 MAPK pathway in the initiation of pulmonary inflammation. A novel p38 MAPK inhibitor, M39, was used to determine the functional consequences of p38 MAPK activation. In vitro exposure to M39 inhibited p38 MAPK activity in LPS-stimulated murine and human neutrophils and macrophages, blocked TNF-alpha and macrophage inflammatory protein-2 (MIP-2) release, and eliminated migration of murine neutrophils toward the chemokines MIP-2 and KC. In contrast, alveolar macrophages required a 1000-fold greater concentration of M39 to block release of TNF-alpha and MIP-2. Systemic inhibition of p38 MAPK resulted in significant decreases in the release of TNF-alpha and neutrophil accumulation in the airspaces following intratracheal administration of LPS. Recovery of MIP-2 and KC from the airspaces was not affected by inhibition of p38 MAPK, and accumulation of mononuclear cells was not significantly reduced. When KC was instilled as a proinflammatory stimulus, neutrophil accumulation was significantly decreased by p38 MAPK inhibition independent of TNF-alpha or LPS. Together, these results demonstrate a much greater dependence on the p38 MAPK cascade in the neutrophil when compared with other leukocytes, and suggest a means of selectively studying and potentially modulating early inflammation in the lung.  相似文献   

10.
Serum levels of the acute-phase reactant, C-reactive protein (CRP), increase dramatically during acute inflammatory episodes. CRP inhibits migration of neutrophils toward the chemoattractant, f-Met-Leu-Phe (fMLP) and therefore acts as an anti-inflammatory agent. Since tyrosine kinases are involved in neutrophil migration and CRP has been shown to decrease phosphorylation of some neutrophil proteins, we hypothesized that CRP inhibits neutrophil chemotaxis via inhibition of MAP kinase activity. The importance of p38 MAP kinase in neutrophil movement was determined by use of the specific p38 MAP kinase inhibitor, SB203580. CRP and SB203580 both blocked random and fMLP-directed neutrophil movement in a concentration-dependent manner. Additionally, extracellular signal-regulated MAP kinase (ERK) was not involved in fMLP-induced neutrophil movement as determined by use of the MEK-specific inhibitor, PD98059. Blockade of ERK with PD98059 did not inhibit chemotaxis nor did it alter the ability of CRP or SB203580 to inhibit fMLP-induced chemotaxis. More importantly, CRP inhibited fMLP-induced p38 MAP kinase activity in a concentration-dependent manner as measured by an in vitro kinase assay. Impressively, CRP-mediated inhibition of p38 MAP kinase activity correlated with CRP-mediated inhibition of fMLP-induced chemotaxis (r = -0.7144). These data show that signal transduction through p38 MAP kinase is necessary for neutrophil chemotaxis and that CRP intercedes through this pathway in inhibiting neutrophil movement.  相似文献   

11.
The outcome following injury can be healing, scarring or regeneration, all of which initiate within a resolving inflammatory response. Regeneration, comprising the complete anatomical and functional restoration of lost tissue with minimal residual consequence of injury, is the outcome that most holistically restores prior function. Leukocytes are recognized as playing an important role in determining the balance between fully regenerative or only partially reparative outcomes. Although macrophages have attracted considerable attention for their capacity to direct pro-regenerative outcomes, neutrophils are also key players in initiating inflammation and in influencing its ensuing outcome. In the context of prior studies investigating the role of neutrophils and macrophages in wound healing and in tissue/organ regeneration (mostly wound repair/healing models in mice), we comprehensively review the experimental possibilities that zebrafish models offer for delineating the individual and interactive contributions of neutrophils and macrophages to the regenerative process in embryos and adults. Zebrafish are a highly regenerative vertebrate and have a myeloid system very analogous to that of less-regenerative mammalian models. There are well-characterized reporter lines for imaging and distinguishing neutrophil and macrophage behaviors in vivo, and tools enabling selective, independent manipulation of these two leukocyte lineages for functional studies. Zebrafish are an attractive model for delineating neutrophil and macrophage contributions not only to regeneration, but also to many other pathological processes.This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.  相似文献   

12.
Neutrophils play a central role in host defense and are recruited in vast numbers to sites of infection where they phagocytose and kill invading bacterial pathogens. Neutrophils have a short half-life that is extended at the inflamed site by pro-inflammatory cytokines and contact with bacterial cell walls. Normal resolution of inflammation involves the removal of neutrophils and other inflammatory cells by the induction of apoptosis. Spontaneous neutrophil apoptosis does not require Fas ligation, but is mediated by caspases 3, 8 and possibly caspase 9 and also involves activation of protein kinase C-. With chronic inflammatory disease, neutrophil apoptosis is delayed by pro-inflammatory cytokines, leading to persistence of neutrophils at the inflamed site and non-specific tissue damage. Here we discuss the evidence for inhibition of neutrophil apoptosis via signaling though PI-3-kinase and downstream pathways, including PDK-1 and PKB. Therapeutic strategies to resolve chronic inflammation could therefore usefully target neutrophil apoptosis and the PI-3-kinase or PKC- signaling pathways.  相似文献   

13.
Neutrophil trafficking in lung involves transendothelial migration, migration in tissue interstitium, and transepithelial migration. In a rat model of IgG immune complex-induced lung injury, it was demonstrated that neutrophil emigration involves regulatory mechanisms including complement activation, cytokine regulation, chemokine production, activation of adhesion molecules, and their respective counter receptors. The process is presumably initiated and modulated by the production of early response cytokines and chemokines from lung cells, especially from alveolar macrophages. TNF-alpha and IL-1 up-regulate intracellular adhesion molecule-1 (ICAM-1) and E-selectin, setting the stage for neutrophil migration through endothelium. The CXC chemokines, such as macrophage inflammatory protein (MIP)-2 and cytokine-inducible neutrophil chemoattractant (CINC), constitute chemokine gradient to orchestrate neutrophil migration in lung. Complement activation induced by IgG immune complex deposition is another important event leading to neutrophil accumulation in lung. Complement activation product C5a not only plays an important role in chemoattracting neutrophils into lung, but regulates adhesion molecules, chemokines, and cytokines expression. In addition, oxidative stress may regulate neutrophil accumulation in lung by modulation of adhesion molecule activation and chemokine production. In this review, we focus on the current knowledge of the mechanisms leading to accumulation of neutrophils during acute lung injury.  相似文献   

14.
Respiratory burst activity and phosphorylation of an NADPH oxidase component, p47(phox), during neutrophil stimulation are mediated by phosphatidylinositol 3-kinase (PI-3K) activation. Products of PI-3K activate several kinases, including the serine/threonine kinase Akt. The present study examined the ability of Akt to regulate neutrophil respiratory burst activity and to interact with and phosphorylate p47(phox). Inhibition of Akt activity in human neutrophils by an inhibitory peptide significantly attenuated fMLP-stimulated, but not PMA-stimulated, superoxide release. Akt inhibitory peptide also inhibited hydrogen peroxide generation stimulated by bacterial phagocytosis. A direct interaction between p47(phox) and Akt was shown by the ability of GST-p47(phox) to precipitate recombinant Akt and to precipitate Akt from neutrophil lysates. Active recombinant Akt phosphorylated recombinant p47(phox) in vitro, as shown by (32)P incorporation, by a mobility shift change detected by two-dimensional gel electrophoresis, and by immunoblotting with phospho-Akt substrate Ab. Mutation analysis indicated that 2 aa residues, Ser(304) and Ser(328), were phosphorylated by Akt. Inhibition of Akt activity also inhibited fMLP-stimulated neutrophil chemotaxis. We propose that Akt mediates PI-3K-dependent p47(phox) phosphorylation, which contributes to respiratory burst activity in human neutrophils.  相似文献   

15.
Midkine (MK) is a multifunctional heparin-binding protein and promotes migration of neutrophils, macrophages, and neurons. In the normal mouse kidney, MK is expressed in the proximal tubules. After renal ischemic reperfusion injury, its expression in proximal tubules was increased. Immediate increase of MK expression was found when renal proximal tubular epithelial cells in culture were exposed to 5 mM H(2)O(2). Histologically defined tubulointerstitial damage was less severe in MK-deficient (Mdk(-/-)) than in wild-type (Mdk(+/+)) mice at 2 and 7 days after ischemic reperfusion injury. Within 2 days after ischemic injury, inflammatory leukocytes, of which neutrophils were the major population, were recruited to the tubulointerstitium. The numbers of infiltrating neutrophils and also macrophages were lower in Mdk(-/-) than in Mdk(+/+) mice. Induction of macrophage inflammatory protein-2 and macrophage chemotactic protein-1, chemokines for neutrophils and macrophages, respectively, were also suppressed in Mdk(-/-) mice. Furthermore, renal tubular epithelial cells in culture expressed macrophage inflammatory protein-2 in response to exogenous MK administration. These results suggested that MK enhances migration of inflammatory cells upon ischemic injury of the kidney directly and also through induction of chemokines, and contributes to the augmentation of ischemic tissue damage.  相似文献   

16.
Adenosine 5'-triphosphate (ATP) has been implicated in the recruitment of professional phagocytes (neutrophils and macrophages) to sites of infection and tissue injury in two distinct ways. First, ATP itself is thought to be a chemotactic "find me" signal released by dying cells, and second, autocrine ATP signaling is implicated as an amplifier mechanism for chemotactic navigation to end-target chemoattractants, such as complement C5a. Here we show using real-time chemotaxis assays that mouse peritoneal macrophages do not directionally migrate to stable analogs of ATP (adenosine-5'-(γ-thio)-triphosphate (ATPγS)) or its hydrolysis product ADP (adenosine-5'-(β-thio)-diphosphate (ADPβS)). HPLC revealed that these synthetic P2Y(2) (ATPγS) and P2Y(12) (ADPβS) receptor ligands were in fact slowly degraded. We also found that ATPγS, but not ADPβS, promoted chemokinesis (increased random migration). Furthermore, we found that photorelease of ATP or ADP induced lamellipodial membrane extensions. At the cell signaling level, C5a, but not ATPγS, activated Akt, whereas both ligands induced p38 MAPK activation. p38 MAPK and Akt activation are strongly implicated in neutrophil chemotaxis. However, we found that inhibitors of phosphatidylinositol 3-kinase (PI3K; upstream of Akt) and p38 MAPK (or conditional deletion of p38α MAPK) did not impair macrophage chemotactic efficiency or migration velocity. Our results suggest that PI3K and p38 MAPK are redundant for macrophage chemotaxis and that purinergic P2Y(2) and P2Y(12) receptor ligands are not chemotactic. We propose that ATP signaling is strictly autocrine or paracrine and that ATP and ADP may act as short-range "touch me" (rather than long-range find me) signals to promote phagocytic clearance via cell spreading.  相似文献   

17.
Wound angiogenesis is an integral part of tissue repair and is impaired in many pathologies of healing. Here, we investigate the cellular interactions between innate immune cells and endothelial cells at wounds that drive neoangiogenic sprouting in real time and in vivo. Our studies in mouse and zebrafish wounds indicate that macrophages are drawn to wound blood vessels soon after injury and are intimately associated throughout the repair process and that macrophage ablation results in impaired neoangiogenesis. Macrophages also positively influence wound angiogenesis by driving resolution of anti‐angiogenic wound neutrophils. Experimental manipulation of the wound environment to specifically alter macrophage activation state dramatically influences subsequent blood vessel sprouting, with premature dampening of tumour necrosis factor‐α expression leading to impaired neoangiogenesis. Complementary human tissue culture studies indicate that inflammatory macrophages associate with endothelial cells and are sufficient to drive vessel sprouting via vascular endothelial growth factor signalling. Subsequently, macrophages also play a role in blood vessel regression during the resolution phase of wound repair, and their absence, or shifted activation state, impairs appropriate vessel clearance.  相似文献   

18.
The signals that guide neutrophils to sites of tissue injury or infection remain elusive. H(2)O(2) has been implicated in neutrophil sensing of tissue injury and transformed cells; however, its role in neutrophil recruitment to infection has not been explored. Here, using a pharmacological inhibitor of NADPH oxidases, diphenyleneiodonium (DPI), and genetic depletion of an epithelial-specific NADPH oxidase, we show that H(2)O(2) is not required for neutrophil detection of localized infection with the Gram-negative bacterium Pseudomonas aeruginosa. In contrast, PI3K signalling is required for neutrophil responses to both wounding and infection. In vivo imaging using a H(2)O(2) probe detects dynamic H(2)O(2) generation at wounds but not at infected tissue. Moreover, DPI no longer inhibits neutrophil wound attraction when P. aeruginosa is present in the media. Finally, DPI also fails to inhibit neutrophil recruitment to localized infection with the Gram-positive bacterium, Streptococcus iniae. Our findings demonstrate that different signals are involved in sensitizing neutrophils to pathogen versus non-pathogen induced tissue damage, providing a potential target to preferentially suppress non-specific immune damage without affecting the response to infection.  相似文献   

19.
Elastase released from neutrophils as part of the innate immune system has been implicated in chronic diseases such as emphysema and cardiovascular disease. We have previously shown that neutrophil elastase targets vascular endothelial growth factor-A (VEGF) for partial degradation to generate a fragment of VEGF (VEGFf) that has distinct activities. Namely, VEGFf binds to VEGF receptor 1 but not to VEGF receptor 2 and shows altered signaling compared to intact VEGF. In the present study we investigated the chemotactic function of VEGF and VEGFf released from cells by neutrophil elastase. We found that endothelial cells migrated in response to intact VEGF but not VEGFf whereas RAW 264.7 macrophages/monocytes and embryonic endothelial progenitor cells were stimulated to migrate by either VEGF or VEGFf. To investigate the role of elastase-mediated release of VEGF from cells/extracellular matrices, a co-culture system was established. High or low VEGF producing cells were co-cultured with macrophages, endothelial or endothelial progenitor cells and treated with neutrophil elastase. Elastase treatment stimulated macrophage and endothelial progenitor cell migration with the response being greater with the high VEGF expressing cells. However, elastase treatment led to decreased endothelial cell migration due to VEGF cleavage to VEGF fragment. These findings suggest that the tissue response to NE-mediated injury might involve the generation of diffusible VEGF fragments that stimulate inflammatory cell recruitment.  相似文献   

20.
Despite overlapping structural aspects with other phospholipids, lysophosphatidylserine (lysoPS), the monoacyl derivative of phosphatidylserine (diacylPS), appears to exert unique signaling characteristics important in both the early stages of initiating acute inflammation and in the orchestration of its resolution. LysoPS has long been known as a signaling phospholipid in mast cell biology, markedly enhancing stimulated histamine release and eicosanoid production. More recently, there has been a resurgence of interest in lysoPS as new roles in the promotion of phagocytosis of apoptotic cells, so-called efferocytosis, and resolution of inflammation have been identified. With regard to the latter, lysoPS generated in/on activated or aged apoptotic neutrophils enhances their clearance by macrophages via signaling through the macrophage G-protein coupled receptor G2A. In macrophages, this early acting pathway results in PKA-dependent augmentation of Rac1 activity via increased production of PGE? and cAMP. As such, macrophages stimulated with lysoPS demonstrate significantly increased efferocytic capacity necessary to clear large numbers of recruited neutrophils typical of acute inflammation. Given that clearance of these cells is critical for restoration of tissue function, lysoPS, as a pro-resolving lipid mediator, is hypothesized to play a key role in promoting timely resolution of inflammation. This article will review our current knowledge of lysoPS biology including receptor signaling and mechanisms of generation as well as summarize the more recent evidence of its expanding roles in inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号