首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
To clarify RAD51 interactions controlling homologous recombination, we report here the crystal structure of the full-length RAD51 homolog from Pyrococcus furiosus. The structure reveals how RAD51 proteins assemble into inactive heptameric rings and active DNA-bound filaments matching three-dimensional electron microscopy reconstructions. A polymerization motif (RAD51-PM) tethers individual subunits together to form assemblies. Subunit interactions support an allosteric 'switch' promoting ATPase activity and DNA binding roles for the N-terminal domain helix-hairpin-helix (HhH) motif. Structural and mutational results characterize RAD51 interactions with the breast cancer susceptibility protein BRCA2 in higher eukaryotes. A designed P.furiosus RAD51 mutant binds BRC repeats and forms BRCA2-dependent nuclear foci in human cells in response to gamma-irradiation-induced DNA damage, similar to human RAD51. These results show that BRCA2 repeats mimic the RAD51-PM and imply analogous RAD51 interactions with RAD52 and RAD54. Both BRCA2 and RAD54 may act as antagonists and chaperones for RAD51 filament assembly by coupling RAD51 interface exchanges with DNA binding. Together, these structural and mutational results support an interface exchange hypothesis for coordinated protein interactions in homologous recombination.  相似文献   

2.
The efficient repair of double-strand breaks in DNA is critical for the maintenance of genome stability. In response to ionizing radiation and other DNA-damaging agents, the RAD51 protein, which is essential for homologous recombination, relocalizes within the nucleus to form distinct foci that can be visualized by microscopy and are thought to represent sites where repair reactions take place. The formation of RAD51 foci in response to DNA damage is dependent upon BRCA2 and a series of proteins known as the RAD51 paralogues (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3), indicating that the components present within foci assemble in a carefully orchestrated and ordered manner. By contrast, RAD51 foci that form spontaneously as cells undergo DNA replication at S phase occur without the need for BRCA2 or the RAD51 paralogues. It is known that BRCA2 interacts directly with RAD51 through a series of degenerative motifs known as the BRC repeats. These interactions modulate the ability of RAD51 to bind DNA. Taken together, these observations indicate that BRCA2 plays a critical role in controlling the actions of RAD51 at both the microscopic (focus formation) and molecular (DNA binding) level.  相似文献   

3.
The breast and ovarian cancer suppressor protein BRCA2 controls the RAD51 recombinase in reactions that lead to homologous DNA recombination (HDR). BRCA2 binds RAD51 via eight conserved BRC repeat motifs of approximately 35 amino acids, each with a varying capacity to bind RAD51. BRC repeats both promote and inhibit RAD51 assembly on different DNA substrates to regulate HDR, but the structural basis for these functions is unclear. Here, we demarcate two tetrameric clusters of hydrophobic residues in the BRC repeats, interacting with distinct pockets in RAD51, and show that the co-location of both modules within a single BRC repeat is necessary for BRC–RAD51 binding and function. The two modules comprise the sequence FxxA, known to inhibit RAD51 assembly by blocking the oligomerization interface, and a previously unrecognized tetramer with the consensus sequence LFDE, which binds to a RAD51 pocket distinct from this interface. The LFDE motif is essential in BRC repeats for modes of RAD51 binding both permissive and inhibitory to RAD51 oligomerization. Targeted insertion of point mutations in RAD51 that disrupt the LFDE-binding pocket impair its assembly at DNA damage sites in living cells. Our findings suggest a model for the modular architecture of BRC repeats that provides fresh insight into the mechanisms regulating homologous DNA recombination.  相似文献   

4.
The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.  相似文献   

5.
BRCA2 has an essential function in DNA repair by homologous recombination, interacting with RAD51 via short motifs in the middle and at the C terminus of BRCA2. Here, we report that a conserved 36-residue sequence of human BRCA2 encoded by exon 27 (BRCA2Exon27) interacts with RAD51 through the specific recognition of oligomerized RAD51 ATPase domains. BRCA2Exon27 binding stabilizes the RAD51 nucleoprotein filament against disassembly by BRC repeat 4. The protection is specific for RAD51 filaments formed on single-stranded DNA and is lost when BRCA2Exon27 is phosphorylated on Ser3291. We propose that productive recombination results from the functional balance between the different RAD51-binding modes [corrected] of the BRC repeat and exon 27 regions of BRCA2. Our results further suggest a mechanism in which CDK phosphorylation of BRCA2Exon27 at the G2-M transition alters the balance in favor of RAD51 filament disassembly, thus terminating recombination.  相似文献   

6.
DNA damage, malfunctions in DNA repair, and genomic instability are processes that intersect at the crossroads of carcinogenesis. Underscoring the importance of DNA repair in breast and ovarian tumorigenesis is the familial inherited cancer predisposition gene BRCA2. The role of BRCA2 in DNA double-strand break repair was first revealed based on its interaction with RAD51, a central player in homologous recombination. The RAD51 protein forms a nucleoprotein filament on single-stranded DNA, invades a DNA duplex, and initiates a search for homology. Once a homologous DNA sequence is found, the DNA is used as a template for the high-fidelity repair of the DNA break. Many of the biochemical features that allow BRCA2 to choreograph the activities of RAD51 have been elucidated and include: targeting RAD51 to single-stranded DNA while inhibiting binding to dsDNA, reducing the ATPase activity of RAD51, and facilitating the displacement of the single-strand DNA binding protein, Replication Protein A. These reinforcing activities of BRCA2 culminate in the correct positioning of RAD51 onto a processed DNA double-strand break and initiate its faithful repair by homologous recombination. In this review, I will address current biochemical data concerning the BRCA2 protein and highlight unanswered questions regarding BRCA2 function in homologous recombination and cancer.  相似文献   

7.
PALB2 is essential for BRCA2 anchorage to nuclear structures and for homologous recombinational repair of DNA double-strand breaks. Here, we report that the N-terminal coiled-coil motif of PALB2 regulates its self-association and homologous recombination. Monomeric PALB2 shows higher efficiency to bind DNA and promotes RAD51 filament formation with or without the inhibitory effect of Replication Protein A. Moreover, overexpression of the PALB2 coiled-coil domain severely affects RAD51 loading to DNA damage sites suggesting a competition between PALB2 self-interaction and PALB2–BRCA1 interaction. In the presence of DNA damage, the switch between PALB2–PALB2 and PALB2–BRCA1 interactions allows the activation of HR. Controlling HR via PALB2 self-interactions could be important to prevent aberrant recombination in normal conditions and activate DNA repair when required.  相似文献   

8.
9.
Homologous recombination plays an important role in the high-fidelity repair of DNA double-strand breaks. A central player in this process, RAD51, polymerizes onto single-stranded DNA and searches for homology in a duplex donor DNA molecule, usually the sister chromatid. Homologous recombination is a highly regulated event in mammalian cells: some proteins have direct enzymatic functions, others mediate or overcome rate-limiting steps in the process, and still others signal cell cycle arrest to allow repair to occur. While the human BRCA2 protein has a clear role in delivering and loading RAD51 onto single-stranded DNA generated after resection of the DNA break, the mechanistic functions of the RAD51 paralogs remain unclear. In this study, we sought to determine the genetic interactions between BRCA2 and the RAD51 paralogs during DNA DSB repair. We utilized siRNA-mediated knockdown of these proteins in human cells to assess their impact on the DNA damage response. The results indicate that loss of BRCA2 alone imparts a more severe phenotype than the loss of any individual RAD51 paralog and that BRCA2 is epistatic to each of the four paralogs tested.  相似文献   

10.
BRCA2 is a breast cancer susceptibility gene implicated in the repair of double-strand breaks by homologous recombination with RAD51. BRCA2 associates with a 70-amino-acid protein, DSS1, but the functional significance of this interaction has remained unclear. Recently, deficiency of a DSS1 orthologue in the fungus Ustilago maydis has been shown to cause a defect in recombinational DNA repair. Here we have investigated the consequences of DSS1 depletion in mammalian cells. We show that like BRCA2, DSS1 is required for DNA damage-induced RAD51 focus formation and for the maintenance of genomic stability, indicating a function conserved from lower eukaryotes to humans. However, DSS1 seems to be not required for BRCA2 or RAD51 stability or for BRCA2 and RAD51 to interact, raising the possibility that DSS1 may be required for the BRCA2-RAD51 complex to become associated with sites of DNA damage.  相似文献   

11.
RAD51 is a key factor in homologous recombination (HR) and plays an essential role in cellular proliferation by repairing DNA damage during replication. The assembly of RAD51 at DNA damage is strictly controlled by RAD51 mediators, including BRCA1 and BRCA2. We found that human RAD51 directly binds GEMIN2/SIP1, a protein involved in spliceosome biogenesis. Biochemical analyses indicated that GEMIN2 enhances the RAD51–DNA complex formation by inhibiting RAD51 dissociation from DNA, and thereby stimulates RAD51-mediated homologous pairing. GEMIN2 also enhanced the RAD51-mediated strand exchange, when RPA was pre-bound to ssDNA before the addition of RAD51. To analyze the function of GEMIN2, we depleted GEMIN2 in the chicken DT40 line and in human cells. The loss of GEMIN2 reduced HR efficiency and resulted in a significant decrease in the number of RAD51 subnuclear foci, as observed in cells deficient in BRCA1 and BRCA2. These observations and our biochemical analyses reveal that GEMIN2 regulates HR as a novel RAD51 mediator.  相似文献   

12.
Homologous recombination is essential for the preservation of genome stability, thereby preventing cancer. The recombination protein RAD51 drives DNA strand exchange, which requires the assembly, rearrangement and disassembly of a RAD51 filament on DNA, coupled to ATP binding and hydrolysis. This process is facilitated and controlled by recombination mediators and accessory factors. Here, we have employed a range of single molecule techniques to determine the influence of the C-terminal RAD51 interaction domain (CTRD) of the breast cancer tumor suppressor BRCA2 on intrinsic aspects of RAD51-DNA interactions. We show that at high concentration the CTRD entangles RAD51 filaments and reduces RAD51 filament formation in a concentration dependent manner. It does not affect the rate of filament disassembly measured as the loss of fluorescent signal due to intrinsic RAD51 protein dissociation from double-stranded DNA (dsDNA). We conclude that, outside the context of the full-length protein, the CTRD does not reduce RAD51 dissociation kinetics, but instead hinders filament formation on dsDNA. The CTRDs mode of action is most likely sequestration of multiple RAD51 molecules thereby rendering them inactive for filament formation on dsDNA.  相似文献   

13.
The breast cancer suppressor BRCA2 is essential for the maintenance of genomic integrity in mammalian cells through its role in DNA repair by homologous recombination (HR). Human BRCA2 is 3,418 amino acids and is comprised of multiple domains that interact with the RAD51 recombinase and other proteins as well as with DNA. To gain insight into the cellular function of BRCA2 in HR, we created fusions consisting of various BRCA2 domains and also introduced mutations into these domains to disrupt specific protein and DNA interactions. We find that a BRCA2 fusion peptide deleted for the DNA binding domain and active in HR is completely dependent on interaction with the PALB2 tumor suppressor for activity. Conversely, a BRCA2 fusion peptide deleted for the PALB2 binding domain is dependent on an intact DNA binding domain, providing a role for this conserved domain in vivo; mutagenesis suggests that both single-stranded and double-stranded DNA binding activities in the DNA binding domain are required for its activity. Given that PALB2 itself binds DNA, these results suggest alternative mechanisms to deliver RAD51 to DNA. In addition, the BRCA2 C terminus contains both RAD51-dependent and -independent activities which are essential to HR in some contexts. Finally, binding the small peptide DSS1 is essential for activity when its binding domain is present, but not when it is absent. Our results reveal functional redundancy within the BRCA2 protein and emphasize the plasticity of this large protein built for optimal HR function in mammalian cells. The occurrence of disease-causing mutations throughout BRCA2 suggests sub-optimal HR from a variety of domain modulations.  相似文献   

14.
In human cells, error-free repair of DNA double-strand breaks requires the DNA pairing and strand exchange activities of RAD51 recombinase. Activation of RAD51 recombination activities requires the assembly of RAD51 presynaptic filaments on the single-stranded DNA that forms at resected DSB ends. Mutations in proteins that control presynaptic filament assembly, such as BRCA2, and in RAD51 itself, are associated with human breast cancer. Here we describe the properties of two mutations in RAD51 protein that derive from human lung and kidney tumors, respectively. Sequence variants Q268P and Q272L both map to the DNA binding loop 2 (L2) region of RAD51, a motif that is involved in DNA binding and in the allosteric activation of ATP hydrolysis and DNA strand exchange activities. Both mutations alter the thermal stability, DNA binding, and ATPase properties of RAD51, however both variants retain intrinsic DNA strand exchange activity towards oligonucleotide substrates under optimized conditions. In contrast, both Q268P and Q272L variants exhibit drastically reduced DNA strand exchange activity in reaction mixtures containing long homologous ssDNA and dsDNA substrates and human RPA protein. Mixtures of wild-type and variant proteins also exhibit reduced DNA strand exchange activity, suggesting that heterozygous mutations could negatively affect DNA recombination and repair processes in vivo. Together, the findings of this study suggest that hypomorphic missense mutations in RAD51 protein could be drivers of genomic instability in cancer cells, and thereby contribute to the etiology of metastatic disease.  相似文献   

15.
The breast cancer 2, early onset protein (BRCA2) is central to the repair of DNA damage by homologous recombination. BRCA2 recruits the recombinase RAD51 to sites of damage, regulates its assembly into nucleoprotein filaments and thereby promotes homologous recombination. Localization of BRCA2 to nuclear foci requires its association with the partner and localizer of BRCA2 (PALB2), mutations in which are associated with cancer predisposition, as well as subtype N of Fanconi anaemia. We have determined the structure of the PALB2 carboxy‐terminal β‐propeller domain in complex with a BRCA2 peptide. The structure shows the molecular determinants of this important protein–protein interaction and explains the effects of both cancer‐associated truncating mutants in PALB2 and missense mutations in the amino‐terminal region of BRCA2.  相似文献   

16.
Homologous recombinational repair (HRR) of DNA damage is critical for maintaining genome stability and tumor suppression. RAD51 and BRCA2 colocalization in nuclear foci is a hallmark of HRR. BRCA2 has important roles in RAD51 focus formation and HRR of DNA double-strand breaks (DSBs). We previously reported that BCCIPalpha interacts with BRCA2. We show that a second isoform, BCCIPbeta, also interacts with BRCA2 and that this interaction occurs in a region shared by BCCIPalpha and BCCIPbeta. We further show that chromatin-bound BRCA2 colocalizes with BCCIP nuclear foci and that most radiation-induced RAD51 foci colocalize with BCCIP. Reducing BCCIPalpha by 90% or BCCIPbeta by 50% by RNA interference markedly reduces RAD51 and BRCA2 foci and reduces HRR of DSBs by 20- to 100-fold. Similarly, reducing BRCA2 by 50% reduces RAD51 and BCCIP foci. These data indicate that BCCIP is critical for BRCA2- and RAD51-dependent responses to DNA damage and HRR.  相似文献   

17.
REV1 is a eukaryotic member of the Y-family of DNA polymerases involved in translesion DNA synthesis and genome mutagenesis. Recently, REV1 is also found to function in homologous recombination. However, it remains unclear how REV1 is recruited to the sites where homologous recombination is processed. Here, we report that loss of mammalian REV1 results in a specific defect in replication-associated gene conversion. We found that REV1 is targeted to laser-induced DNA damage stripes in a manner dependent on its ubiquitin-binding motifs, on RAD18, and on monoubiquitinated FANCD2 (FANCD2-mUb) that associates with REV1. Expression of a FANCD2-Ub chimeric protein in RAD18-depleted cells enhances REV1 assembly at laser-damaged sites, suggesting that FANCD2-mUb functions downstream of RAD18 to recruit REV1 to DNA breaks. Consistent with this suggestion we found that REV1 and FANCD2 are epistatic with respect to sensitivity to the double-strand break-inducer camptothecin. REV1 enrichment at DNA damage stripes also partially depends on BRCA1 and BRCA2, components of the FANCD2/BRCA supercomplex. Intriguingly, analogous to FANCD2-mUb and BRCA1/BRCA2, REV1 plays an unexpected role in protecting nascent replication tracts from degradation by stabilizing RAD51 filaments. Collectively these data suggest that REV1 plays multiple roles at stalled replication forks in response to replication stress.  相似文献   

18.
Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response.  相似文献   

19.
Homologous recombination (HR) is critical for error-free repair of DNA double-strand breaks. Chromatin loading of RAD51, a key protein that mediates the recombination, is a crucial step in the execution of the HR repair. Here, we present evidence that SUMOylation of RAD51 is crucial for the RAD51 recruitment to chromatin and HR repair. We found that topoisomerase 1-binding arginine/serine-rich protein (TOPORS) induces the SUMOylation of RAD51 at lysine residues 57 and 70 in response to DNA damaging agents. The SUMOylation was facilitated by an ATM-induced phosphorylation of TOPORS at threonine 515 upon DNA damage. Knockdown of TOPORS or expression of SUMOylation-deficient RAD51 mutants caused reduction in supporting normal RAD51 functions during the HR repair, suggesting the physiological importance of the modification. We found that the SUMOylation-deficient RAD51 reduces the association with its crucial binding partner BRCA2, explaining its deficiency in supporting the HR repair. These findings altogether demonstrate a crucial role for TOPORS-mediated RAD51 SUMOylation in promoting HR repair and genomic maintenance.  相似文献   

20.
Chromatin modification plays an important role in modulating the access of homologous recombination proteins to the sites of DNA damage. TIP49 is highly conserved component of chromatin modification/remodeling complexes, but its involvement in homologous recombination repair in mammalian cells has not been examined in details. In the present communication we studied the role of TIP49 in recruitment of the key homologous recombination protein RAD51 to sites of DNA damage. RAD51 redistribution to chromatin and nuclear foci formation induced by double-strand breaks and interstrand crosslinks were followed under conditions of TIP49 depletion by RNA interference. TIP49 silencing reduced RAD51 recruitment to chromatin and nuclear foci formation to about 50% of that of the control. Silencing of TIP48, which is closely related to TIP49, induced a similar reduction in RAD51 foci formation. RAD51 foci reduction in TIP49-silenced cells was not a result of defective DNA damage checkpoint signaling as judged by the normal histone H2AX phosphorylation and cell cycle distribution. Treatment with the histone deacetylase inhibitor sodium butyrate restored RAD51 foci formation in the TIP49-depleted cells. The results suggest that as a constituent of chromatin modification complexes TIP49 may facilitate the access of the repair machinery to the sites of DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号