首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A serine protease inhibitor with a molecular mass of 6106±2Da (designated as InhVJ) was isolated from the tropical anemone Radianthus macrodactylus by a combination of liquid chromatography methods. The molecule of InhVJ consists of 57 amino acid residues, has three disulfide bonds, and contains no Met or Trp residues. The N-terminal amino acid sequence of the inhibitor (19 aa residues) was established. It was shown that this fragment has a high degree of homology with the N-terminal amino acid sequences of serine protease inhibitors from other anemone species, reptiles, and mammals. The spatial organization of the inhibitor at the levels of tertiary and secondary structures was studied by the methods of UV and CD spectroscopy. The specific and molar absorption coefficients of InhVJ were determined. The percentage of canonical secondary structure elements in the polypeptide was calculated. The inhibitor has a highly ordered tertiary structure and belongs to mixed α/β-or α + β polypeptides. It was established that InhVJ is highly specific toward trypsin (K i 2.49 × 10?9 M) and α-chymotrypsin (K i 2.17 × 10?8 M) and does not inhibit other proteases, such as thrombin, kallikrein, and papain. The inhibitor InhVJ was assigned to the family of the Kunitz inhibitor according to its physicochemical properties.  相似文献   

2.
The complete amino acid sequence of the lectin from Bothrops jararacussu snake venom (BJcuL) is reported. The sequence was determined by Edman degradation and amino acid analysis of the S-carboxymethylated BJcuL derivative (RC-BJcuL) and from its peptides originated from enzymatic digestion. The sequence of amino acid residues showed that this lectin displays the invariant amino acid residues characterized in C-type lectins. Amino acids analysis revealed a high content of acidic amino acids and leucine. These findings suggest that BJcuL, like other snake venom lectins, possesses structural similarities to the carbohydrate recognition domain (CRD) of calcium-dependent animal lectins belonging to the C-type -galactoside binding lectin family.  相似文献   

3.
The membrane-spanning domain (MSD) of the envelope (Env) glycoprotein from human (HIV) and simian immunodeficiency viruses plays a key role in anchoring the Env complex into the viral membrane but also contributes to its biological function in fusion and virus entry. In HIV type 1 (HIV-1), it has been predicted to span 27 amino acids, from lysine residue 681 to arginine 707, and encompasses an internal arginine at residue 694. By examining a series of C-terminal-truncation mutants of the HIV-1 gp41 glycoprotein that substituted termination codons for amino acids 682 to 708, we show that this entire region is required for efficient viral infection of target cells. Truncation to the arginine at residue 694 resulted in an Env complex that was secreted from the cells. In contrast, a region from residues 681 to 698, which contains highly conserved hydrophobic residues and glycine motifs and extends 4 amino acids beyond 694R, can effectively anchor the protein in the membrane, allow efficient transport to the plasma membrane, and mediate wild-type levels of cell-cell fusion. However, these fusogenic truncated Env mutants are inefficiently incorporated into budding virions. Based on the analysis of these mutants, a “snorkeling” model, in which the flanking charged amino acid residues at 681 and 694 are buried in the lipid while their side chains interact with polar head groups, is proposed for the HIV-1 MSD.Human immunodeficiency virus type 1 (HIV-1) infection is initiated by fusion of the viral membrane with that of the target cell and is mediated by the viral envelope glycoprotein (Env). HIV-1 Env, a type 1 membrane-spanning glycoprotein, is a trimeric complex composed of three noncovalently linked heterodimers of gp120, the receptor-binding surface (SU) component, and gp41, the membrane-spanning, transmembrane (TM) component (12, 26, 44, 45). The gp120 and gp41 glycoproteins are synthesized as a precursor gp160 glycoprotein, which is encoded by the env gene. The gp160 precursor is cotranslationally glycosylated and, following transport to the trans-Golgi network, is cleaved into the mature products by a member of the furin family of endoproteases (45). Mature Env proteins are transported to the plasma membrane, where they are rapidly endocytosed or incorporated into virions (5, 33, 43). Recent evidence suggests that endocytosis and intracellular trafficking of Env is required for its interaction with Gag precursors and for efficient assembly into virions (20).HIV-1 Env molecules function as quasistable “spring-loaded” fusion machines. Recent studies have suggested that several regions of gp120 are reoriented following CD4 binding so that a planar “bridging sheet,” which forms the binding site for the coreceptor (CCR5 or CXCR4), can form (6, 7). Coreceptor binding is necessary for additional conformational changes in gp41 and for complete fusion (3). The gp41 monomer has three subdomains, an ectodomain, a membrane-spanning domain (MSD), and a cytoplasmic domain (39). The ectodomain of gp41, which mediates membrane fusion, is composed of a fusion peptide, two heptad repeats, and a tryptophan-rich membrane-proximal external region. Following the binding of gp120 to the CD4 receptor and the CCR5/CXCR4 coreceptor, conformational changes are induced in Env that result in the exposure of the gp41 fusion peptide (32). This peptide inserts into the target cell membrane, allowing gp41 to form a bridge between the viral and cellular membranes. Interaction of the heptad repeats to form a six-helix bundle then brings the target and viral membranes together, allowing membrane fusion to occur (24).While heptad repeat regions 1 and 2 in the N-terminal ectodomain play key roles in Env-mediated fusion by bringing the viral and cell membranes into close proximity, an important function of gp41 is to anchor the glycoprotein complex within the host-derived viral membrane (18). The precise boundaries of the HIV-1 MSD have not been clearly defined; however, the MSD is one of the most conserved regions in the gp41 sequence. Based on the initial functional studies of HIV-1, the MSD of Env was defined as a stretch of 25 predominantly hydrophobic amino acids that span residues K681 to R705 in the NL4-3 sequence (14, 16, 18). These residues were suggested to cross the viral membrane in the form of an alpha helix, the length of which is approximately equal to the theoretical depth of a membrane bilayer. A major caveat of this model is that it places a basic amino acid residue (R694) into the hydrophobic center of the lipid bilayer. While some transmembrane proteins do contain charged amino acid residues in their MSDs, it is normally considered to be energetically unfavorable without some mechanism to neutralize the charge (8, 13). Point mutation studies have yielded varying results, but in general, substitution of K681 is detrimental to fusion and infectivity while mutation of R694 or R705 has only a limited effect on these activities (16, 29). On the other hand, accumulating data argue for a different intramembrane structure of the HIV-1 MSD. Serial small deletions (3 amino acid residues) in the region between R694 and R705 showed normal cell-cell fusion, although larger deletions were detrimental (29), suggesting that, with respect to the biological functions of the Env glycoprotein, the length of this region is more important than its amino acid conservation.Previous C-terminal-truncation studies of simian immunodeficiency virus (SIV) Env (19, 41) suggested that the entire 27-amino-acid region is not required for the biological function of the protein. In the case of SIV, only the 15 apolar amino acids flanked by K689 and R705 (equivalent to K681 and R694 in HIV) and 6 additional amino acids (for a total of 23 amino acids) were required for near-wild-type (WT) fusion (19, 41). Two subsequent residues were required (total, 25 amino acids) for virus-cell entry and infectivity, while a length of 21 amino acid residues was sufficient for SIV Env to be incorporated into viral particles. These results led to a basic amino acid “snorkeling” model for the SIV MSD (41). In this model, the lysine and arginine (NL4-3 equivalents of K681 and R694) are buried in the lipid bilayer, while their long side chains are proposed to extend outward to the membrane surface and present the positively charged amino groups to the negatively charged head groups of the lipid bilayers. Applied to HIV-1 MSD, this model predicts a hydrophobic intramembrane core of only 12 amino acid residues (compared to 15 amino acid residues in the SIV MSD) between K681 and R694. The hydrophobic region C-terminal to K681 is not sufficient to effectively anchor the protein, since mutation of R694 to a stop codon yielded a nonfunctional protein that appeared to be retained in the endoplasmic reticulum (11). This contrasts with truncation experiments with the vesicular stomatitis virus (VSV) G glycoprotein, which have shown that a region of 12 hydrophobic amino acids flanked by basic residues is sufficient to anchor the protein in the membrane (1).In order to understand if the “snorkeling” model is applicable to the HIV-1 MSD, we constructed a series of nonsense mutants with HIV-1 gp41 truncated in single-amino-acid steps at the C terminus from residue R707 to residue R694. For each mutant Env, we determined the membrane stability, fusogenicity, and ability to mediate infectivity. The results of these studies suggest that the 12-residue “core” (36) plus three subsequent hydrophobic amino acids is the minimal anchor domain for HIV-1 Env, as well as the minimal sequence to mediate cell-cell fusion. In contrast to SIV Env, HIV-1 Env requires the entire 25-amino-acid region from K681 to R707 to mediate near-WT incorporation and infectivity.  相似文献   

4.
Summary Pea albumin 2 (PA2:Mr26000) is a major component of the albumin fraction derived from aqueous salt extracts of pea seed. Sodium dodecylsulfate-polyacrylamide gel electrophoresis and chromatography on DEAE-Sephacel resolve PA2 into two closely related components (PA2a and PA2b). A cDNA clone coding for one of these components has been sequenced and the deduced amino acid sequence compared with partial, chemically-determined sequences for cyanogen bromide peptides from both PA2 components. Complete amino acid sequences were obtained for the C-terminal peptides. The PA2 molecule of 230 amino acids contains four imperfect repeat sequences each of approximately 57 amino acids in length.The combined sequence data, together with a comparison of PA2-related polypeptides produced in vitro and in vivo, indicate that PA2 is synthesized without a signal sequence and does not undergo significant post-translational modification. Although both forms of PA2 contain Asn-X-Thr consensus sequences, neither form is glycosylated. Accumulation of PA2 contributes approximately 11% of the sulfur-amino acids in pea seeds (cysteine plus methionine equals 2.6 residues percent). Suppression of levels of PA2 polypeptides and their mRNAs in developing seeds of sulfur-deficient plants is less marked than that for legumin, in spite of the lower content of sulfur-amino acids in legumin.  相似文献   

5.
    
Summary The functional importance of residues 9–12 (-Gly-Glu-Asp-Ala-) in the -turn region of the pancreatic polypeptide-fold (PP-fold) conformation of neuropeptide Y (NPY) has been investigated. Analogs were synthesized that incorporated a dibenzofuran-based -turn template (DBF) in place of either the central two residues in the turn, or all four -turn residues: [(1–9)-DBF-(12–36)]-NPY and [(1–8)-DBF-(13–36)]-NPY, respectively. In addition, [Gln10-Asn11]-NPY and [Lys10-Arg11]-NPY were synthesized, to examine the role of the anionic side chains in the -turn region, and the molecular macrodipole associated with the PP-fold conformation. Circular dichroism (CD) spectropolarimetry indicated that [(1–8)-DBF-(13–36)]-NPY retained the PP-fold conformation, but [(1–9)-DBF-(12–36)]-NPY did not. However, both analogs had significantly lower potencies than NPY in rat-brain receptor binding and rat-vas-deferens (RVD) assays. In contrast, [Gln10-Asn11]-NPY and [Lys10-Arg11]-NPY gave CD spectra, and receptor-binding and RVD activities comparable to those of NPY. We conclude that a large molecular macrodipole is not essential for NPY folding or for full agonist potency in these pharmacological assays.Abbreviations Boc tert-butyloxycarbonyl - Bom benzyloxymethyl - BOP benzotriazolyloxytris(dimethylamino)phosphonium hexafluorophosphate - BrZ 2-bromobenzyloxycarbonyl - BSA bovine serum albumin - CD circular dichroism - CIZ 2-chromobenzyloxycarbonyl - DBF 4-(2-aminoethyl)-6-dibenzofuranpropanoicacid - DCC dicyclohexylcarbodiimide - DCM dichloromethane - DIEA N,N-diisopropylethylamine - DMF dimethylformamide - DMS dimethylsulfide - HBTU O-benzotriazolyl-N,N,N,N-tetramethyluronium hexafluorophosphate - HF hydrogen fluoride - HOBT 1-hydroxybenzotriazole - i-PrOH Iso-propylalcohol - MBHA 4-methylbenzhydrylamine - MeOH methanol - NPY neuropeptide Y - OBzl benzyl ester - Ochx cyclohexyl ester - PP-fold pancreatic polypeptide-fold - RVD rat vas deferens - SEM standard error of the mean - TFA trifluoroacetic acid - Tos tosyl  相似文献   

6.
Using the expression vector gt11 and immunochemical detection, six cDNA clones that encode the entire precursor polypeptides for spinach thioredoxin m were isolated and characterized. The ca. 1.0 kb cDNA sequence of the largest clone hybridizes to an RNA species of 1.1 kb. In each instance the cDNA sequences display single open reading frames encoding polypeptides of 181 amino acid residues corresponding to a molecular mass of 19.8 kDa. The sequences of the independently selected cDNAs fall into two classes that are indicative of at least two (closely related) genes for this protein. The amino acid sequences deduced from the cDNA sequences differ to some extent from the amino acid sequence published for spinach thioredoxin m. The sequences predict identical mature proteins of 112–114 amino acids corresponding to a polypeptide molecular mass of ca. 12.4–12.6 kDa, and include stroma-targeting N-terminal transit peptides of 67 residues which are removed during or after import into the organelle. Precursor protein was made in vitro from each of the different cDNA clones and imported into isolated intact chloroplasts. Independent of the cDNA clone used, two isoforms were detected in the chloroplasts after import in each instance. They comigrated with authentic thioredoxin mb and mc. These results indicate that the size variants observed for this protein in vivo result from post-translational modification and do not originate in different genes.  相似文献   

7.
An analogue of the 10 C-terminal amino acids of neuropeptide Y (NPY) containing taining three d-isomeric substitutions (27–36-d) has been synthesized and its cardiovascular activity studied in Sprague-Dawley (SD) and spontaneously hypertensive (SHR) rats. Intravenous administration of 1000 nmol/kg 27–36-d decreases MAP in SHR (−59.9 ± 5.0 mmHg) and SD rats (−44.4 ± 4.7 mmHg). The hypotension produced by 1000 nmol/kg 27–36-d diminished by 71.2% following pretreatment with the histamine receptor antagonist diphenhydramine, although histamine depletion with compound does not significantly alter this hypotension. These data suggest that NPY(27–36)-d produces a profound and sustained hypotension in two strains of rat which is partially attributable to activity at histamine receptors.  相似文献   

8.
There is little information on how neuropeptide Y (NPY) proteolysis by peptidases occurs in serum, in part because reliable techniques are lacking to distinguish different NPY immunoreactive forms and also because the factors affecting the expression of these enzymes have been poorly studied. In the present study, LC-MS/MS was used to identify and quantify NPY fragments resulting from peptidolytic cleavage of NPY1–36 upon incubation with human serum. Kinetic studies indicated that NPY1–36 is rapidly cleaved in serum into 3 main fragments with the following order of efficacy: NPY3–36 ≫ NPY3–35 > NPY2–36. Trace amounts of additional NPY forms were identified by accurate mass spectrometry. Specific inhibitors of dipeptidyl peptidase IV, kallikrein, and aminopeptidase P prevented the production of NPY3–36, NPY3–35, and NPY2–36, respectively. Plasma kallikrein at physiological concentrations converted NPY3–36 into NPY3–35. Receptor binding assays revealed that NPY3–35 is unable to bind to NPY Y1, Y2, and Y5 receptors; thus NPY3–35 may represent the major metabolic clearance product of the Y2/Y5 agonist, NPY3–36.Neuropeptide Y (NPY)2 is a 36-amino acid peptide involved in the central and peripheral control of blood pressure (14) and in feeding behavior and obesity (59). NPY stimulates at least 6 types of receptors, called Y1, Y2, Y3, Y4, Y5, and y6 (1012). The Y1 receptor has high affinity for full-length NPY, while Y2 and Y5 receptors bind and are stimulated by full-length and N-terminally truncated NPY. The physiological effects associated to the Y1 and Y2 receptors are the best known; exposure to a Y1 agonist causes an increase in blood pressure and potentiates postsynaptically the action of other vasoactive substances (1, 4, 13), whereas Y2 receptors are mainly located presynaptically, and upon stimulation mediate the inhibition of neurotransmitter release (14, 15). NPY is a prototype of peptide whose function can be altered by proteases. Among peptidases displaying a high affinity for NPY, the primary role appears to be played by dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5), a serine-type protease, also known as CD26, that releases an N-terminal dipeptide, Xaa-Xab- -Xac, preferentially when Xab is a proline or an alanine residue (16). By cleaving the Tyr-Pro dipeptide off the NPY N-terminal extremity, DPPIV generates NPY3–36, a truncated form that loses its affinity for the Y1 receptor and becomes a Y2/Y5 receptor agonist (17, 18).NPY can also be degraded by aminopeptidase P (AmP, EC 3.4.11.9), a metalloprotease that hydrolyzes the peptide bond between the first and the second amino acid residue at the N terminus of proteins, if the second amino acid is a proline (19). AmP removes the N-terminal tyrosine from NPY to generate NPY2–36, a selective Y2 agonist (18, 20). There is little information on how NPY cleavage by these enzymes occurs in serum, in part because reliable techniques are lacking to distinguish different NPY immunoreactive (NPYir) forms and also because the factors affecting the expression of these enzymes have been poorly studied. Recently, Frerker et al. (21) reported by MALDI-TOF mass spectrometry that NPY1–36 is exclusively degraded by DPPIV into NPY3–36 in EDTA-plasma but they did not provide kinetics of NPY cleavage efficiency of DPPIV. Beck-Sickinger and co-workers (22) studied with the same technique the metabolic stability of fluorescent N-terminally labeled NPY analogues incubated in human plasma and found that the 36th, 35th, and 33rd residues of NPY analogues may also be removed by unknown carboxypeptidases.We have set up a method using liquid chromatography coupled with tandem mass spectrometry (LC-MSn) to selectively quantify NPY and its C-terminal fragments NPY2–36 and NPY3–36 digested by human serum. The assays used the internal standard methodology with stable isotopes NPY1–36 (IDA) (23, 24) or porcine NPY1–36 as internal standard.The goal of this work was: 1) to determine to which extent NPY1–36 is degraded by proteases present in human serum and whether an inhibition of DPPIV and AmP by vildagliptin and apstatin (two specific protease inhibitors), respectively, may affect the metabolism of NPY in serum; 2) to assign kinetic values to the proteases involved in the cleavage process toward NPY; and 3) to characterize new NPY-truncated forms and to check for their possible binding capacities on NPY receptors.  相似文献   

9.
Summary The nucleotide sequence of the spc determinant of the Staphylococcus aureus transposon Tn554 has been determined. This gene encodes a spectinomycin adenyltransferase, AAD(9), that mediates resistance to spectinomycin but not to streptomycin. The sequence predicts a 260 amino acid protein of molecular weight 28,943. A spectinomycin-sensitive mutant (spc-1) contains a GA transition resulting in substitution of threonine (ACA) for alanine (GCA) at residue 165. The predicted amino acid sequence is 36% homologous to that of a widely distributed, gramnegative streptomycin/spectinomycin adenyltransferase, AAD(3) (9), specified by the aadA determinant (Holingshead and Vapnek 1985).  相似文献   

10.
A configuration partition function, which incorporates concepts embodied in the amphipathic helix hypothesis, has been formulated for a polypeptide in the presence of zwitterionic phospholipid. An enhanced probability is assigned to helix formation in any region of the polypeptide chain where side chains bearing charges of opposite sign will be situated on the same side of the α-helix but displaced from one another by one turn. This situation will arise when residues i ? 4 (or i ? 3) and i bear charges of opposite sign and residue i ? 4 (or i ? 3) through i are in a helical state. Illustrative calculations are performed for polypeptide chains in which the generalized nonionic amino acid residue serving as host has Zimm-Bragg parameters of σ = 10?4, s = 1. These calculations define conditions under which two interacting charged pairs can cooperate in a synergistic helix augmentation even when the two pairs are separated by significantly more than four generalized nonionic amino acid residues. Furthermore, the two interacting charged pairs, as well as the intervening amino acid residues, may become helical as one unit. Significant augmentation in helicity is observed with plausible values for the enhanced probablity assigned to helix formation for an interacting pair. This model predicts correctly that glucagon and secretin, but not vasoactive intestinal peptide, undergo a coil-to-helix trnsition in the presence of zwitterionic phospholipid. This prediction is made with plausible values for the parameter used to express the helicity enhancement. The experimental observation with zwitterionic phospholipids is the direct opposite of that seen for these three peptides in the presence of anionic lipids and detergents. In anionic lipids the amount of induced helicity is in the following order: glucagon < secretin < vasoactive intestinal peptide. Results obtained with these three peptides demonstrate that the nature of the head group of the lipid is important for lipid–protein interaction and that the resulting conformational changes can be rationalized by matrix methods.  相似文献   

11.
The gene encoding α-amino acid ester acyl transferase (AET), the enzyme that catalyzes the peptide-forming reaction from amino acid methyl esters and amino acids, was cloned from Empedobacter brevis ATCC14234 and Sphingobacterium siyangensis AJ2458 and expressed in Escherichia coli. This is the first report on the aet gene. It encodes a polypeptide composed of 616 (ATCC14234) and 619 (AJ2458) amino acids residues. The V max values of these recombinant enzymes during the catalysis of L-alanyl-L-glutamine formation from L-alanine methylester and L-glutamine were 1,010 U/mg (ATCC14234) and 1,154 U/mg (AJ2458). An amino acid sequence similarity search revealed 35% (ATCC14234) and 36% (AJ2458) identity with an α-amino acid ester hydrolase from Acetobacter pasteurianus, which contains an active-site serine in the consensus serine enzyme motif, GxSYxG. In the deduced amino acid sequences of AET from both bacteria, the GxSYxG motif was conserved, suggesting that AET is a serine enzyme.  相似文献   

12.
13.
A biologically active metabolite designated Cyl-2 from a phytopathogenic fungus, Cylindrocladium scoparium, was found to be composed of four amino acid residues, which fully account for all of the atoms constituting Cyl-2. These amino acids were identified as L-pipecolic acid, L-isoleucine, D-O-methyltyrosine and 2-amino-8-oxo-9,10-epoxydecanoic acid. Thus, Cyl-2 was established as a cyclotetrapeptide containing novel amino acid residues.  相似文献   

14.
The amino acid sequences necessary for entomocidal activity of the CryIA(b) protoxin of Bacillus thuringiensis were determined. Introduction of stop codons behind codons Arg601, Phe604 or Ala607 showed that amino acid residues C-terminal to Ala607 are not required for insecticidal activity and that activation by midgut proteases takes place distal to Ala607. The two shortest polypeptides, deleted for part of the highly conserved -strand, were prone to proteolytic degradation, explaining their lack of toxicity. Apparently, this -strand is essential for folding of the molecule into a stable conformation. Proteolytic activation at the N-terminus was investigated by removing the first 28 codons, resulting in a translation product extending from amino acid 29 to 607. This protein appeared to be toxic not only to susceptible insect larvae such as Manduca sexta and Heliothis virescens, but also to Escherichia coli cells. An additional mutant, encoding only amino acid residues 29–429, encompassing the complete putative pore forming domain, but lacking a large part of the receptor-binding domain, was similarly toxic to E. coli cells. This suggests a role for the N-terminal 28 amino acids in rendering the toxin inactive in Bacillus thuringiensis, and indicates that the cytolytic potential of the pore forming domain is only realized after proteolytic removal of these residues by proteases in the insect gut. In line with this hypothesis are results obtained with a mutant protein in which Arg28 at the cleavage site was replaced by Asp. This substitution prevented the protein from being cleaved by trypsin in vitro, and reduced its toxicity to M. sexta larvae.  相似文献   

15.
Hyun Joo  Jerry Tsai 《Proteins》2014,82(9):2128-2140
To understand the relationship between protein sequence and structure, this work extends the knob‐socket model in an investigation of β‐sheet packing. Over a comprehensive set of β‐sheet folds, the contacts between residues were used to identify packing cliques: sets of residues that all contact each other. These packing cliques were then classified based on size and contact order. From this analysis, the two types of four‐residue packing cliques necessary to describe β‐sheet packing were characterized. Both occur between two adjacent hydrogen bonded β‐strands. First, defining the secondary structure packing within β‐sheets, the combined socket or XY:HG pocket consists of four residues i, i+2 on one strand and j, j+2 on the other. Second, characterizing the tertiary packing between β‐sheets, the knob‐socket XY:H+B consists of a three‐residue XY:H socket (i, i+2 on one strand and j on the other) packed against a knob B residue (residue k distant in sequence). Depending on the packing depth of the knob B residue, two types of knob‐sockets are found: side‐chain and main‐chain sockets. The amino acid composition of the pockets and knob‐sockets reveal the sequence specificity of β‐sheet packing. For β‐sheet formation, the XY:HG pocket clearly shows sequence specificity of amino acids. For tertiary packing, the XY:H+B side‐chain and main‐chain sockets exhibit distinct amino acid preferences at each position. These relationships define an amino acid code for β‐sheet structure and provide an intuitive topological mapping of β‐sheet packing. Proteins 2014; 82:2128–2140. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
A family 18 chitinase gene chiA from the thermophile Rhodothermus marinus was cloned and expressed in Escherichia coli. The gene consisted of an open reading frame of 1,131 nucleotides encoding a protein of 377 amino acids with a calculated molecular weight of 42,341 Da. The deduced ChiA was a non-modular enzyme with one unique glycoside hydrolase family 18 catalytic domain. The catalytic domain exhibited 43% amino acid identity with Bacillus circulans chitinase C. Due to poor expression of ChiA, a signal peptide-lacking mutant, chiAsp, was designed and used subsequently. The optimal temperature and pH for chitinase activity of both ChiA and ChiAsp were 70°C and 4.5–5, respectively. The enzyme maintained 100% activity after 16 h incubation at 70°C, with half-lives of 3 h at 90°C and 45 min at 95°C. Results of activity measurements with chromogenic substrates, thin-layer chromatography, and viscosity measurements demonstrated that the chitinase is an endoacting enzyme releasing chitobiose as a major end product, although it acted as an exochitobiohydrolase with chitin oligomers shorter than five residues. The enzyme was fully inhibited by 5 mM HgCl2, but excess ethylenediamine tetraacetic acid relieved completely the inhibition. The enzyme hydrolyzed 73% deacetylated chitosan, offering an attractive alternative for enzymatic production of chitooligosaccharides at high temperature and low pH. Our results show that the R. marinus chitinase is the most thermostable family 18 chitinase isolated from Bacteria so far.  相似文献   

17.
Amino acid analysis of purified dextransucrase (sucrose: 1,6-α-D-glucan 6-α-D-glucosyltransferase EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F was carried out. The enzyme is virtually devoid of cysteine residue there being only one cysteine residue in the whole enzyme molecule comprising over 1500 amino acid residues. The enzyme is rich in acidic amino acid residues. The number of amino acid residues was calculated based on the molecular weight of 188,000 (Goyal and Katiyar 1994). Amino sugars were not found, implying that the enzyme is not a glycoprotein. It has been shown earlier that the cysteine residue in dextransucrase is not essential for enzyme activity (Goyal and Katiyar 1998). The presence of only one cysteine residue per enzyme molecule illustrates that its tertiary structure is solely dependent on other types of non-covalent interactions such as hydrogen bonding, ionic and nonpolar hydrophobic interactions.  相似文献   

18.
Summary The most abundant protein in seeds of Brassica napus (L.) is cruciferin, a legumin-like 12S storage protein. By in vitro translation of embryo RNA, and pulse-chase labelling of cultured embryos with 14C-leucine, we have shown that the 30 kd polypeptides and 20 kd polypeptides of cruciferin are synthesized as a family of 50 kd precursors which are cleaved post-translationally. One member of the cruciferin family was cloned from embryo cDNA and sequenced. The nucleotide sequence of the cruciferin cDNA clone, pC1, contains one long open reading frame, which originates in a hydrophobic signal peptide region. Therefore, the complete sequence of the cruciferin mRNA was obtained by primer extension of the cDNA. The predicted precursor polypeptide is 488 amino acids long, including the 22 amino acids of the putative signal sequence. The amino acid composition of cruciferin protein is very similar to the predicted composition of the precursor. Comparison with an amino acid sequence of legumin from peas, deduced from the nucleotide sequence of a genomic clone, shows that the polypeptide precedes the polypeptide on the precursor. Cruciferin and legumin share 40% homology in the regions which can be aligned. However, cruciferin contains a 38 amino acid region high in glutamine and glycine in the middle of the subunit, which is absent in legumin. Legumin has a highly charged region, 57 amino acids long, at the carboxyl-end of the subunit, which is not found in cruciferin. Both of these regions appear to have originated by reiteration of sequences. re]19850513 ac]19850715  相似文献   

19.
Summary Polypeptides, with elevated levels of essential amino acids, could be useful as partial protein supplements to food and feeds. To obtain DNA fragments coding for these polymers, oligonucleotides were constructed by random synthesis of a mixture of appropriate codon pairs and inserted into a bacterial plasmid in E. coli. Two of the isolated fragments were subjected to DNA sequence analysis and theoretically code for polypeptides containing up to 23% lysine, 12% tryptophan, 12% methionine, 6% isoleucine, and 6% threonine. These five amino acids make up 60% of the total amino acid content of the peptide, compared with 25% for the same amino acids in lactalbumin, a milk protein considered to be high in essential amino acids. These fragments, when fused to an active bacterial promoter, which directs the synthesis of chloramphenicol acetyl transferase (CAT), cause bacteria, harboring these modified genes, to take up more lysine as compared to control cells and produce commensurately larger CAT polypeptides. This method of gene synthesis may permit production of polypeptides with a specified amino acid composition to supplement specific diets low in the essential amino acids.  相似文献   

20.
Some physical and chemical properties were investigated of the crystalline acid-protease from Paecilomyces varioti BAINIER TPR-220. The sedimentation coefficient of the enzyme was calculated to be 2.7 × 10?13 at 15°C and the molecular weight to be 37,300 by Archibald’s method. The isoelectric point of the enzyme protein was determined to lie at pH 3.8. The enzyme protein was consisted of 340 amino acid residues including only one residue of cysteine but excluding cystine. With the feature of amino acid composition of the protease acidic amino acids dominated over the basic ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号