首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide sequencing of the SalI j region of the virulent Malawi (LIL20/1) strain of African swine fever virus (ASFV) identified an open reading frame (ORF), designated j9L, with extensive similarity to the family of protein kinases. This ORF encodes a 35.1-kDa protein of 299 amino acids which shares 24.6% amino acid identity with the human pim-1 proto-oncogene and 21.0% identity with the vaccinia virus B1R-encoded protein kinase. The ASFV ORF contains the motifs characteristic of serine-threonine protein kinases, with the exception of the presumed ATP-binding site, which is poorly conserved. The ORF was expressed to high levels in Escherichia coli, and the recombinant enzyme phosphorylated a calf thymus histone protein on serine residues in vitro. An antibody raised to an amino-terminal peptide of the ASFV protein kinase was reactive with the recombinant protein in Western immunoblot analyses and was used to demonstrate the presence of the protein kinase in ASF virions.  相似文献   

2.
African swine fever virus attachment protein.   总被引:1,自引:8,他引:1       下载免费PDF全文
Treatment of African swine fever virus particles with nonionic detergents released proteins p35, p17, p14, and p12 from the virion. Of these proteins, only p12 bound to virus-sensitive Vero cells but not to virus-resistant L or IBRS2 cells. The binding of p12 was abolished by whole African swine fever virus and not by similar concentrations of subviral particles that lacked the external proteins. A monoclonal antibody (24BB7) specific for p12 precipitated a protein that, when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the absence of 2-mercaptoethanol, showed a molecular mass of 17 kDa (p17*) instead of 12 kDa as found in the presence of 2-mercaptoethanol. The relationship between these two proteins was confirmed by the conversion of p17* to p12 when the former was isolated from polyacrylamide gels in the absence of 2-mercaptoethanol and subsequently treated with the reducing agent. The supernatant obtained after immunoprecipitation with the p12-specific antibody lacked the virus-binding protein.  相似文献   

3.
Protein pB119L of African swine fever virus belongs to the Erv1p/Alrp family of sulfhydryl oxidases and has been described as a late nonstructural protein required for correct virus assembly. To further our knowledge of the function of protein pB119L during the virus life cycle, we have investigated whether this protein possesses sulfhydryl oxidase activity, using a purified recombinant protein. We show that the purified protein contains bound flavin adenine dinucleotide and is capable of catalyzing the formation of disulfide bonds both in a protein substrate and in the small molecule dithiothreitol, the catalytic activity being comparable to that of the Erv1p protein. Furthermore, protein pB119L contains the cysteines of its active-site motif CXXC, predominantly in an oxidized state, and forms noncovalently bound dimers in infected cells. We also show in coimmunoprecipitation experiments that protein pB119L interacts with the viral protein pA151R, which contains a CXXC motif similar to that present in thioredoxins. Protein pA151R, in turn, was found to interact with the viral structural protein pE248R, which contains disulfide bridges and belongs to a class of myristoylated proteins related to vaccinia virus L1R, one of the substrates of the redox pathway encoded by this virus. These results suggest the existence in African swine fever virus of a system for the formation of disulfide bonds constituted at least by proteins pB119L and pA151R and identify protein pE248R as a possible final substrate of this pathway.  相似文献   

4.
5.
Cross-links in African swine fever virus DNA.   总被引:6,自引:2,他引:4       下载免费PDF全文
African swine fever virus DNA sediments in neutral sucrose density gradients as a single component with a sedimentation coefficient of 60S. In alkaline sucrose density gradients, this material shows two components with sedimentation coefficients of 85S and 95S, respectively. The sedimentation rate value of alkali-denatured virus DNA in neutral sucrose density gradients and the renaturation velocity of denatured DNA show that is reassociated much faster than expected from its genetic complexity. This behavior is compatible with the existence of interstrand cross-links in the molecule. We also present results which suggest that there are only a few such cross-links per molecule, that they are sensitive to S1 nuclease digestion, and that they are probably located next to the ends of the DNA.  相似文献   

6.
The nonstructural protein p7 of classical swine fever virus (CSFV) is a small hydrophobic polypeptide with an apparent molecular mass of 6 to 7 kDa. The protein contains two hydrophobic stretches of amino acids interrupted by a short charged segment that are predicted to form transmembrane helices and a cytosolic loop, respectively. Using reverse genetics, partial in-frame deletions of p7 were deleterious for virus growth, demonstrating that CSFV p7 function is critical for virus production in cell cultures. A panel of recombinant mutant CSFVs was created using alanine scanning mutagenesis of the p7 gene harboring sequential three- to six-amino-acid residue substitutions spanning the entire protein. These recombinant viruses allowed the identification of the regions within p7 that are critical for virus production in vitro. In vivo, some of these viruses were partially or completely attenuated in swine relative to the highly virulent parental CSFV Brescia strain, indicating a significant role of p7 in CSFV virulence. Structure-function analyses in model membranes emulating the endoplasmic reticulum lipid composition confirmed that CSFV p7 is a pore-forming protein, and that pore-forming activity resides in the C-terminal transmembrane helix. Therefore, p7 is a viroporin which is clearly involved in the process of CSFV virulence in swine.  相似文献   

7.
8.
In a previous study, it was shown that the protein encoded by the gene B318L of African swine fever virus (ASFV) is a trans-prenyltransferase that catalyzes in vitro the condensation of farnesyl diphosphate and isopentenyl diphosphate to synthesize geranylgeranyl diphosphate and longer chain prenyl diphosphates (Alejo, A., Yá?ez, R. J., Rodríguez, J. M., Vi?uela, E., and Salas, M. L. (1997) J. Biol. Chem. 272, 9417-9423). To investigate the in vivo function of the viral enzyme, we have determined, in this work, its subcellular localization and activity in cell extracts. Two systems were used in these studies: cells infected with ASFV and cells infected with a recombinant pseudo-Sindbis virus carrying the complete B318L gene. In this latter system, the trans-prenyltransferase was found to colocalize with the endoplasmic reticulum marker protein-disulfide isomerase, whereas in cells infected with ASFV, the viral enzyme was present in cytoplasmic viral assembly sites, associated with precursor viral membranes derived from the endoplasmic reticulum. In addition, after subcellular fractionation, the viral enzyme partitioned into the membrane fraction. Extraction of membrane proteins with alkaline carbonate and Triton X-114 indicated that the ASFV enzyme behaved as an integral membrane protein. The membrane enzyme synthesized predominantly all-trans-geranylgeranyl diphosphate from farnesyl diphosphate and isopentenyl diphosphate. These results indicate that the viral B318L protein is a trans-geranylgeranyl-diphosphate synthase, being the only enzyme of this type that is known to have a membrane localization.  相似文献   

9.
We show here that the African swine fever virus (ASFV) protein pE296R, predicted to be a class II apurinic/apyrimidinic (AP) endonuclease, possesses endonucleolytic activity specific for AP sites. Biochemical characterization of the purified recombinant enzyme indicated that the K(m) and catalytic efficiency values for the endonucleolytic reaction are in the range of those reported for Escherichia coli endonuclease IV (endo IV) and human Ape1. In addition to endonuclease activity, the ASFV enzyme has a proofreading 3'-->5' exonuclease activity that is considerably more efficient in the elimination of a mismatch than in that of a correctly paired base. The three-dimensional structure predicted for the pE296R protein underscores the structural similarities between endo IV and the viral protein, supporting a common mechanism for the cleavage reaction. During infection, the protein is expressed at early times and accumulates at later times. The early enzyme is localized in the nucleus and the cytoplasm, while the late protein is found only in the cytoplasm. ASFV carries two other proteins, DNA polymerase X and ligase, that, together with the viral AP endonuclease, could act as a viral base excision repair system to protect the virus genome in the highly oxidative environment of the swine macrophage, the virus host cell. Using an ASFV deletion mutant lacking the E296R gene, we have determined that the viral endonuclease is required for virus growth in macrophages but not in Vero cells. This finding supports the existence of a viral reparative system to maintain virus viability in the infected macrophage.  相似文献   

10.
The published data on the characteristics and properties of structural and nonstructural polypeptides of the African porcine virus are reviewed. Localization of the viral proteins in virions and infected cells, kinetics of biosynthesis, glycosylation, phosphorylation and the antigenicity of the proteins are discussed.  相似文献   

11.
Electron microscopy of African swine fever virus hemadsorption.   总被引:1,自引:0,他引:1  
  相似文献   

12.
African swine fever(ASF) is a lethal hemorrhagic disease that affects wild and domestic swine. The etiological agent of ASF is African swine fever virus(ASFV). Since the first case was described in Kenya in 1921, the disease has spread to many other countries. No commercial vaccines are available to prevent ASF. In this study, we generated a recombinant Newcastle disease virus(r NDV) expressing ASFV protein 72(p72) by reverse genetics and evaluated its humoral and cellular immunogenicity in a mouse model. The recombinant virus, r NDV/p72, replicated well in embryonated chicken eggs and was safe to use in chicks and mice. The p72 gene in r NDV/p72 was stably maintained through ten passages. Mice immunized with r NDV/p72 developed high titers of ASFV p72 specific Ig G antibody, and had higher levels of Ig G1 than IgG2 a. Immunization also elicited T-cell proliferation and secretion of IFN-γ and IL-4. Taken together, these results indicate that r NDV expressing ASFV p72 might be a potential vaccine candidate for preventing ASF.  相似文献   

13.
非洲猪瘟病毒的免疫逃逸策略   总被引:1,自引:0,他引:1  
非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)引起的一种猪烈性传染病。目前无商品化的ASF疫苗,一旦发病,仅能依靠快速扑杀进行防控,严重威胁我国养猪及相关行业的健康发展。ASF疫苗研发面临的主要困难是对ASFV的毒力相关基因、致病及其免疫逃逸机制知之甚少。本文对ASFV的免疫逃逸研究进行了总结,探讨了ASFV免疫逃逸基因及其编码蛋白的功能,以便加深对ASFV及其免疫逃逸策略的认知,为致病机制研究和疫苗研发提供借鉴。  相似文献   

14.
African swine fever virus (ASFV) is a member of a family of large nucleocytoplasmic DNA viruses that include poxviruses, iridoviruses, and phycodnaviruses. Previous ultrastructural studies of ASFV using chemical fixation and cryosectioning for electron microscopy (EM) have produced uncertainty over whether the inner viral envelope is composed of a single or double lipid bilayer. In this study we prepared ASFV-infected cells for EM using chemical fixation, cryosectioning, and high-pressure freezing. The appearance of the intracellular viral envelope was determined and compared to that of mitochondrial membranes in each sample. The best resolution of membrane structure was obtained with samples prepared by high-pressure freezing, and images suggested that the envelope of ASFV consisted of a single lipid membrane. It was less easy to interpret virus structure in chemically fixed or cryosectioned material, and in the latter case the virus envelope could be interpreted as having two membranes. Comparison of membrane widths in all three preparations indicated that the intracellular viral envelope of ASFV was not significantly different from the outer mitochondrial membrane (P < 0.05). The results support the hypothesis that the intracellular ASFV viral envelope is composed of a single lipid bilayer.  相似文献   

15.
Jia  Lijia  Jiang  Mengwei  Wu  Ke  Hu  Juefu  Wang  Yang  Quan  Weipeng  Hao  Mengchan  Liu  Haizhou  Wei  Hongping  Fan  Wenhui  Liu  Wenjun  Hu  Rongliang  Wang  Depeng  Li  Jing  Chen  Jianjun  Liu  Di 《中国科学:生命科学英文版》2020,63(1):160-164
正Dear Editor,African swine fever (ASF) is one of the most pathogenic viral diseases in pigs caused by African swine fever virus(ASFV). The fatality rate is almost 100%, which brings huge economic losses to the hog industry in countries with epi-  相似文献   

16.
Hairpin loop structure of African swine fever virus DNA.   总被引:17,自引:2,他引:15       下载免费PDF全文
The ends of African swine fever virus genome are formed by a 37 nucleotide-long hairpin loop composed, almost entirely, of incompletely paired A and T residues. The loops at each DNA end were present in two equimolar forms that, when compared in opposite polarities, were inverted and complementary (flip-flop), as in the case of poxvirus DNA. The hairpin loops of African swine fever and vaccinia virus DNAs had no homology, but both DNAs had a 16 nucleotide-long sequence, close to the hairpin loops, with an homology of about 80%. An analysis of African swine fever virus replicating DNA showed head-to-head and tail-to-tail linked molecules that may be replicative intermediates.  相似文献   

17.
18.
Multigene families in African swine fever virus: family 110.   总被引:8,自引:6,他引:2       下载免费PDF全文
  相似文献   

19.
20.
An ultrastructural study of Kupffer cells and pulmonary intravascular macrophages (PIMs) of healthy and African Swine Fever (ASF)-infected pigs was carried out. A vascular perfusion method was performed in order to obtain an optimal intravascular morphology and tissue fixation. The infection developed acute ASF lesions in both organs. Both Kupffer cells and PIMs were studied at different stages of infection. The differences observed in both macrophagic cells from uninfected and infected tissues are shown and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号