首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells (NCC). Within the embryonic avian gut, vagal NCC migrate in a rostrocaudal direction to form the majority of neurons and glia along the entire length of the gastrointestinal tract, whereas sacral NCC migrate in an opposing caudorostral direction, initially forming the nerve of Remak, and contribute a smaller number of ENS cells primarily to the distal hindgut. In this study, we have investigated the ability of vagal NCC, transplanted to the sacral region of the neuraxis, to colonise the chick hindgut and form the ENS in an experimentally generated hypoganglionic hindgut in ovo model. Results showed that when the vagal NC was transplanted into the sacral region of the neuraxis, vagal-derived ENS precursors immediately migrated away from the neural tube along characteristic pathways, with numerous cells colonising the gut mesenchyme by embryonic day (E) 4. By E7, the colorectum was extensively colonised by transplanted vagal NCC and the migration front had advanced caudorostrally to the level of the umbilicus. By E10, the stage at which sacral NCC begin to colonise the hindgut in large numbers, myenteric and submucosal plexuses in the hindgut almost entirely composed of transplanted vagal NCC, while the migration front had progressed into the pre-umbilical intestine, midway between the stomach and umbilicus. Immunohistochemical staining with the pan-neuronal marker, ANNA-1, revealed that the transplanted vagal NCC differentiated into enteric neurons, and whole-mount staining with NADPH-diaphorase showed that myenteric and submucosal ganglia formed interconnecting plexuses, similar to control animals. Furthermore, using an anti-RET antibody, widespread immunostaining was observed throughout the ENS, within a subpopulation of sacral NC-derived ENS precursors, and in the majority of transplanted vagal-to-sacral NCC. Our results demonstrate that: (1) a cell autonomous difference exists between the migration/signalling mechanisms used by sacral and vagal NCC, as transplanted vagal cells migrated along pathways normally followed by sacral cells, but did so in much larger numbers, earlier in development; (2) vagal NCC transplanted into the sacral neuraxis extensively colonised the hindgut, migrated in a caudorostral direction, differentiated into neuronal phenotypes, and formed enteric plexuses; (3) RET immunostaining occurred in vagal crest-derived ENS cells, the nerve of Remak and a subpopulation of sacral NCC within hindgut enteric ganglia.  相似文献   

2.
The generation of functional neuromuscular activity within the pre-natal gastrointestinal tract requires the coordinated development of enteric neurons and glial cells, concentric layers of smooth muscle and interstitial cells of Cajal (ICC). We investigated the genesis of these different cell types in human embryonic and fetal gut material ranging from weeks 4–14. Neural crest cells (NCC), labelled with antibodies against the neurotrophin receptor p75NTR, entered the foregut at week 4, and migrated rostrocaudally to reach the terminal hindgut by week 7. Initially, these cells were loosely distributed throughout the gut mesenchyme but later coalesced to form ganglia along a rostrocaudal gradient of maturation; the myenteric plexus developed primarily in the foregut, then in the midgut, and finally in the hindgut. The submucosal plexus formed approximately 2–3 weeks after the myenteric plexus, arising from cells that migrated centripetally through the circular muscle layer from the myenteric region. Smooth muscle differentiation, as evidenced by the expression of -smooth muscle actin, followed NCC colonization of the gut within a few weeks. Gut smooth muscle also matured in a rostrocaudal direction, with a large band of -smooth muscle actin being present in the oesophagus at week 8 and in the hindgut by week 11. Circular muscle developed prior to longitudinal muscle in the intestine and colon. ICC emerged from the developing gut mesenchyme at week 9 to surround and closely appose the myenteric ganglia by week 11. By week 14, the intestine was invested with neural cells, longitudinal, circular and muscularis mucosae muscle layers, and an ICC network, giving the fetal gut a mature appearance.A.S.W. is funded by a PhD studentship awarded to A.J.B. by the Child Health Research Appeal Trust.  相似文献   

3.
The objective of this study was to examine the effects of two different denervation procedures on the distribution of nerve fibers and neurotransmitter levels in the rat jejunum. Extrinsic nerves were eliminated by crushing the mesenteric pedicle to a segment of jejunum. The myenteric plexus and extrinsic nerves were eliminated by serosal application of the cationic surfactant benzyldimethyltetradecylammonium chloride (BAC). The effects of these two denervation procedures were evaluated at 15 and 45 days. The level of norepinephrine in whole segments of jejunum was initially reduced by more than 76% after both denervation procedures, but by 45 days the level of norepinephrine was the same as in control tissue. Tyrosine hydroxylase (nor-adrenergic nerve marker) immunostaining was absent at 15 days, but returned by 45 days. However, the pattern of noradrenergic innervating axons was altered in the segment deprived of myenteric neurons. Immunohistochemical studies showed protein gene product 9.5 (PGP 9.5)-immunoreactive fibers in whole-mount preparations of the circular smooth muscle in the absence of the myenteric plexus and extrinsic nerves. At 45 days, the number of nerve fibers in the circular smooth muscle increased. Vasoactive intestinal polypeptide (VIP)-immunoreactive fibers, a subset of the PGP 9.5 nerve fibers, were present in the circular smooth muscle at both time points examined. Choline acetyltransferase (CAT) activity and VIP and leucine enkephalin levels were measured in separated smooth muscle and submucosa-musosal layers of the denervated jejunum. VIP and leucine-enkephalin levels were no different from control in tissue that was extrinsically denervated alone. However, the levels of these peptides were elevated two-fold in the smooth muscle 15 and 45 days after myenteric and extrinsic denervation. In the submucosa-mucosa, VIP and leucine enkephalin levels also were elevated two-fold at 15 days, but comparable to control at 45 days. CAT activity was equal to control in the smooth muscle but elevated two-fold in the submucosa-mucosa at both times. These results provide evidence for innervation of the circular smooth muscle by the submucosal plexus. Moreover, these nerve fibers originating from the submucosal plexus proliferate in the absence of the myenteric plexus. Furthermore, the myenteric neurons appear to be essential for normal innervation of the smooth muscle by the sympathetic nerve fibers. It is speculated that the sprouting of the submucosal plexus induced by myenteric plexus ablation is mediated by increased production of trophic factors in the hyperplastic smooth muscle.  相似文献   

4.
The nitrergic innervation of the sphincter of Oddi (SO) and duodenum in the Australian brush-tailed possum and the possible association of this innervation with the neuropeptide vasoactive intestinal polypeptide (VIP) were investigated by using immunohistochemical localisation of nitric oxide synthase (NOS) and VIP, together with the general neuronal marker, protein gene product 9.5 (PGP9.5). Whole-mount preparations of the duodenum and attached SO without the mucosa, submucosa and circular muscle (n=12) were double- and triple-labelled. The density of myenteric nerve cell bodies of the SO in the more distal region (duodenal end) was significantly higher than that in the more proximal region. In the SO, approximately 50% of all cells were NOS-immunoreactive (IR), with 27% of the NOS-IR cells being VIP-IR. Within the duodenal myenteric plexus, NOS immunoreactivity was present in about 25% of all neurons, with 27% of these NOS-IR neurons also being VIP-IR, a similar proportion to that in the SO. Varicose nerve fibres with NOS and VIP immunoreactivity were present within the myenteric and submucous plexuses of the SO and duodenum, and in the circular and longitudinal muscle layers. The NOS-positive cells within both the SO and duodenum were unipolar, displaying a typical Dogiel type I morphology. The myenteric plexuses of the SO and duodenum were in direct continuity, with many interconnecting nerve trunks, some of which showed NOS and VIP immunoreactivity. Thus, the possum possesses an extensive NOS innervation of the SO and duodenum, with a significantly higher proportion of NOS-IR neurons within the SO, a subset of which contains VIP.  相似文献   

5.
Very little is known about esophageal innervation in the hamster. In the present study, we used protein gene product 9.5 (PGP 9.5) to determine immunohistochemically the architectural features of the enteric nervous system in the hamster esophagus. The myenteric plexus consisted of a loose and irregular network of ganglia and interganglionic nerve bundles. The density of the neurons in the myenteric plexus was relatively low (479 +/- 75/cm(2), n = 5), with a preferentially higher density in the upper cervical portion than other parts of the esophagus. Regional differences in the number of PGP 9.5-positive neurons and ganglia were observed. PGP 9.5-immunoreactive fibers in the ganglia often branched, giving rise to expanding nerve endings of laminar morphology resembling intraganglionic laminar endings described in rats and cats. Fine varicose fibers originating from the secondary plexus were occasionally observed near the motor endplates, suggested a dual innervation of the striated muscle. The submucosal plexus was free from ganglionated plexus. A regional difference in the submucosal nervous network was observed. The number of motor endplates in the inner muscle layer was higher than that in the outer muscle layer.  相似文献   

6.
The distribution of nerve cells and fibres with immunoreactivity for the calcium-binding protein, calretinin, was studied in the distal colon of the guinea-pig. The projections of the neurons were determined by examining the consequences of lesioning the myenteric plexus. Calretinin-immunoreactive neurons comprised 17% of myenteric nerve cells and 6% of submucous nerve cells. Numerous calretinin-immunoreactive nerve fibres were located in the longitudinal and circular muscle, and within the ganglia of the myenteric and submucous plexuses. Occasional fibres were found in the muscularis mucosae, but they were very rare in the lamina propria of the mucosa. Lesion studies revealed that myenteric neurons innervated the underlying circular muscle and provided both ascending and descending processes that gave rise to varicose branches in myenteric ganglia. Calretinin-immunoreactive fibres also projected to the tertiary component of the myenteric plexus, and are therefore likely to be motor neurons to the longitudinal muscle. Varicose fibres that supplied the submucous ganglia appear to arise from submucous nerve cells. Arterioles of the submucous plexus were sparsely innervated by calretinin-immunoreactive fibres. The submucous plexus was the principal source of immunoreactive nerve fibres in the muscularis mucosae. This work shows that calretinin-IR reveals different neuronal populations in the large intestine to those previously reported in the small intestine.  相似文献   

7.
Distribution, localization, and morphological peculiarities of NO-ergic nerve cells in the intestine of the snow sculpin Myoxocephalus brandti (Cottidae family) were studied using histochemical staining for NADPH-diaphorase ( NADPH-d). These cells were shown to be present in the pyloric appendages, middle and posterior parts of the intestine and in its rectal part. The NO-ergic cells are the most numerous in the myenteric plexus and circular muscle layer of all studied parts of the intestine. Single NO-ergic nerve cells are revealed in the submucosal plexus of pyloric appendages, middle and posterior parts of the intestine. No NO-ergic neural cells were found in subserosal and subepithelial plexuses, longitudinal layer of smooth muscle in all studied parts, and in the submucosal plexus of the rectal part of the intestine.  相似文献   

8.
Summary The morphological and topographical features of the intramural enteric nervous system in the small intestine of the pig has been studied on whole mounts by means of neuron-specific enolase (NSE) and S-100 protein immu-nohistochemistry. A clear visualization of the myenteric plexus allows the recognition of its characteristic morphology, including the thin tertiary plexus coursing within the smooth muscle layers. In the tela submucosa two ganglionated plexuses, each with its own specific characteristics, can clearly be demonstrated: (1) the plexus submucosus externus (Schabadasch) located near the inner surface of the circular muscle layer at the abluminal side of the submucosal vascular arcades, and (2) the plexus submucosus internus (Meissner) close to the outer surface of the lamina muscularis mucosae at the luminal side of the submucosal vascular arcades. Due to the possibility to trace clearly the perivascular plexuses of these vascular arcades by use of immunohistochemical techniques with antibodies to NSE and S-100 protein, the two submucosal nerve plexuses can be demonstrated with exceptional clarity. This is the first report of an investigation of the intramural nerve plexuses of the small intestine of the pig using the NSE and S-100 immunostaining methods, which is sufficiently detailed to substantiate the characteristic topography and structure of the two submucosal plexuses and their relation to the smooth muscle layers and perivascular plexuses. The level of NSE immunoreactivity for enteric neurons displays great variation, a substantial proportion of the type-II neurons appearing strongly stained. Although little is known of the specific function of these enzymes, proposals are discussed.  相似文献   

9.
Junquera  C.  Martínez-Ciriano  C.  Blasco  J.  Aisa  J.  Peg  M. T.  Azanza  M. J. 《Neurochemical research》1998,23(10):1233-1240
Nitric oxide (NO) has been proposed as an inhibitory transmitter in gastrointestinal muscle relaxation. We analyzed the distribution of nitric-oxide producing neurons in the rabbit intestine through nicotinamide-adenine-dinucleotide-phosphate-diaphorase histochemistry. By this reliable and convenient method, we visualized neuronal nitric-oxide-synthase, the enzyme responsible for nitric oxide generation, in the rabbit intestine. In the ileum and rectum, nitric-oxide-synthase-related diaphorase activity was present in the myenteric plexus ganglion cells, and in the nerve fibers in the internodal strand, secondary, and tertiary plexuses. These fibers were particularly abundant in the deep circular rather than in the outer longitudinal muscle layer. In the inner submucosal plexus, we found scarce labeled neurons. Labeled neural somata showed a range of sizes and shapes suggesting different functional roles. The present basic information is required to use the rabbit as an experimental animal in neurochemical NO enteric research.  相似文献   

10.
Summary A quantitative ultrastructural study was made of the neuntes forming the deep muscular and circular muscle plexuses of the guinea-pig small intestine following microsurgical lesions designed to interrupt intrinsic and extrinsic nerve pathways within the intestinal wall. Removal of a collar of longitudinal muscle with attached myenteric plexus from the circumference of a segment of small intestine resulted in the subsequent disappearance of 99.3% of neurites in the underlying circular muscle. The few surviving neurites in the deep muscular plexus and circular muscle disappeared completely from lesioned segments that were, in addition, extrinsically denervated surgically. These results indicate that the majority of nerve fibres in the deep muscular and circular muscle plexuses of the guinea-pig small intestine is intrinsic to the intestine and originates from nerve cell bodies located in the overlying myenteric plexus. At the light-microscopic level, nerve bundles were traced from the myenteric plexus to the circular muscle.  相似文献   

11.
VIP-like immunoreactivity was found in nerve fibres in all layers of the gut wall in both stomach and intestine, and was abundant in the myenteric and submucous plexuses. A few fibres were associated with blood vessels. Nerve cells showing VIP-like immunoreactivity were found in the myenteric plexus. Neurotensin-like immunoreactivity was found in nerve cells and numerous nerve fibres in the myenteric plexus of both stomach and intestine and in nerve fibres of the circular muscle layer, while bombesin-like immunoreactivity was confined to a low number of nerve fibres in the myenteric plexus of the stomach. The results indicate that a VIP-like, a neurotensin-like and a bombesin-like peptide are present in neurons of the gut of Lepisosteus.  相似文献   

12.
Yu Q  Ji R  Gao X  Fu J  Guo W  Song X  Zhao X  Burnstock G  Shi X  He C  Xiang Z 《Cell and tissue research》2011,344(2):227-237
Single- and double-immunostaining techniques were used systematically to study the distribution pattern and neurochemical density of oxytocin-immunoreactive (-ir) neurons in the digestive tract of the guinea pig. Oxytocin immunoreactivity was distributed widely in the guinea pig gastrointestinal tract; 3%, 13%, 17%, 15%, and 10% of ganglion neurons were immunoreactive for oxytocin in the myenteric plexuses of the gastric corpus, jejunum, ileum, proximal colon, and distal colon, respectively, and 36%, 40%, 52%, and 56% of ganglion neurons were immunoreactive for oxytocin in the submucosal plexuses of the jejunum, ileum, proximal colon, and distal colon, respectively. In the myenteric plexus, oxytocin was expressed exclusively in the intrinsic enteric afferent neurons, as identified by calbindin 28 K. In the submucosal plexuses, oxytocin was expressed in non-cholinergic secretomotor neurons, as identified by vasoactive intestinal polypeptide. Oxytocin-ir nerve fibers in the inner circular muscle layer possibly arose from the myenteric oxytocin-ir neurons, and oxytocin-ir nerve fibers in the mucosa possibly arose from both the myenteric and submucosal oxytocin-ir neurons. Thus, oxytocin in the digestive tract might be involved in gastrointestinal tract motility mainly via the regulation of the inner circular muscle and the balance of the absorption and secretion of water and electrolytes.  相似文献   

13.
豚鼠小肠神经节丛的NADPH—黄递酶组织化学观察   总被引:2,自引:0,他引:2  
目前已知,NADPH--黄递酶组化法可选择性地显示--氧化氮合成酶(NOsynthase,NOS)神经元。因此,我们以NADPH-黄递酶组化法,观察了豚鼠小肠肌间神经丛和粘膜下神经丛的神经网格以及NOS神经元。结果表明,三段小肠肌间神经丛的神经网眼大小和形态有明显差异,与对应的粘膜下神经丛相比,差异更显著。在肌间神经丛中,NADPH-黄递酶阳性神经元胞体大小不等;其长突起伸入节间束,而短突起较多,并可见短突起彼此连接.构成节内偶见的局部神经元回路。从小肠上段到下段,NOS神经元数量呈下降趋势。在粘膜下神经丛,我们也观察到少数NOS神经元。  相似文献   

14.
15.
Platelet-activating factor (PAF) is a proinflammatory mediator that may influence neuronal activity in the enteric nervous system (ENS). Electrophysiology, immunofluorescence, Western blot analysis, and RT-PCR were used to study the action of PAF and the expression of PAF receptor (PAFR) in the ENS. PAFR immunoreactivity (IR) was expressed by 6.9% of the neurons in the myenteric plexus and 14.5% of the neurons in the submucosal plexus in all segments of the guinea pig intestinal tract as determined by double staining with anti-human neuronal protein antibody. PAFR IR was found in 6.1% of the neurons with IR for calbindin, 35.8% of the neurons with IR for neuropeptide Y (NPY), 30.6% of the neurons with IR for choline acetyltransferase (ChAT), and 1.96% of the neurons with IR for vasoactive intestinal peptide (VIP) in the submucosal plexus. PAFR IR was also found in 1.5% of the neurons with IR for calbindin, 51.1% of the neurons with IR for NPY, and 32.9% of the neurons with IR for ChAT in the myenteric plexus. In the submucosal plexus, exposure to PAF (200-600 nM) evoked depolarizing responses (8.2 +/- 3.8 mV) in 12.4% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.5% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology, whereas in the myenteric preparations, depolarizing responses were elicited by a similar concentration of PAF in 9.5% of the neurons with S-type electrophysiological behavior and uniaxonal morphology and in 12.0% of the neurons with AH-type electrophysiological behavior and Dogiel II morphology. The results suggest that subgroups of secreto- and musculomotor neurons in the submucosal and myenteric plexuses express PAFR. Coexpression of PAFR IR with ChAT IR in the myenteric plexus and ChAT IR and VIP IR in the submucosal plexus suggests that PAF, after release in the inflamed bowel, might act to elevate the excitability of submucosal secretomotor and myenteric musculomotor neurons. Enhanced excitability of motor neurons might lead to a state of neurogenic secretory diarrhea.  相似文献   

16.
Putative neural stem cells have been identified within the enteric nervous system (ENS) of adult rodents and cultured from human myenteric plexus. We conducted studies to identify neural stem cells or progenitor cells within the submucosa of adult human ENS. Jejunum tissue was removed from adult human subjects undergoing gastric bypass surgery. The tissue was immunostained, and confocal images of ganglia in the submucosal plexus were collected to identify protein gene product 9.5 (PGP 9.5) - immunoractive neurons and neuronal progenitor cells that coexpress PGP 9.5 and nestin. In addition to PGP-9.5-positive/nestin-negative neuronal cells within ganglia, we observed two other types of cells: (1) cells in which PGP 9.5 and nestin were co-localized, (2) cells negative for both PGP 9.5 and nestin. These observations suggest that the latter two types of cells are related to a progenitor cell population and are consistent with the concept that the submucosa of human adult ENS contains stem cells capable of maintenance and repair within the peripheral nervous system.  相似文献   

17.
Calcitonin-gene-related-peptide (CGRP)-like immunoreactivity was localized in nerve fibres, neuronal somata and in mucosal endocrine cells of the human small intestine. Immunoreactive enteric neurons were more numerous in the submucous plexuses than in the myenteric plexus. Morphologically, they predominantly had the appearance of type II neurons. The majority of the CGRP-like immunoreactive nerve fibres ran within the ganglionic nerve plexuses. Only a small proportion could be observed in the lamina propria, the lamina muscularis mucosae, or the circular and longitudinal outer smooth muscle layer. These findings suggest that within the wall of the human small intestine neuronal CGRP of either extrinsic or intrinsic origin exerts its effect chiefly on other enteric neurons, and might be indirectly involved in the regulatory functions of the human small intestine.  相似文献   

18.
The presence of 5-hydroxytryptamine in enteric neurons of the guinea-pig distal colon was demonstrated by immunohistochemistry and the projections of the neurons were determined. 5-Hydroxytryptamine-containing nerve cells were observed in the myenteric plexus but no reactive nerve cells were found in submucous ganglia. Varicose reactive nerve fibres were numerous in the ganglia of both the myenteric and submucous plexuses, but were infrequent in the longitudinal muscle, circular muscle, muscularis mucosae and mucosa. Reactivity also occurred in enterochromaffin cells. Lesion studies showed that the axons of myenteric neurons projected anally to provide innervation to the circular muscle and submucosa and to other more anally located myenteric ganglia. The results suggest that a major population of 5-hydroxytryptamine neurons in the colon is descending interneurons, most of which extend for 10 to 15 mm in the myenteric plexus and innervate both 5-hydroxytryptamine and non-5-hydroxytryptamine neurons.  相似文献   

19.
Katada  Eiichi  Ojika  Kosei  Mitake  Shigehisa  Ueda  Ryuzo 《Brain Cell Biology》2000,29(3):199-207
A novel peptide, hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from young rat hippocampus, affects the development of specific cholinergic neurons of the central nervous system in vitro. In this study, HCNP-like-immunoreactive nerve processes and nerve cell bodies were identified by electron microscopic immunocytochemistry in the rat small intestine. Labeled nerve processes were numerous in the circular muscle layer and around the submucosal blood vessels. In the submucosal and myenteric plexuses, some HCNP-like-immunopositive nerve cell bodies and nerve fibers were present. The reaction product was deposited on the membranes of various subcellular organelles, including the rough endoplasmic reticulum, Golgi saccules, ovoid electron-lucent synaptic vesicles in axon terminals associated with submucosal and myenteric plexuses, and the outer membranes of a few mitochondria. The synaptic vesicles of HCNP-like-positive terminals were 60–85 nm in diameter. The present data provide direct immunocytochemical evidence that HCNP-like-positive nerve cell bodies and nerve fibers are present in the submucosal and myenteric plexuses of the rat small intestine. An immunohistochemical light microscopic study using mirror-image sections revealed that in both the submucosal and myenteric ganglia, almost all choline acetyltransferase (ChAT)-immunoreactive neurons were also immunoreactive for HCNP. These observations suggest (i) that HCNP proper and/or HCNP precursor protein is a membrane-associated protein with a widespread subcellular distribution, (ii) that HCNP precursor protein may be biosynthesized within neurons localized in the rat enteric nervous system, and (iii) that HCNP proper and/or HCNP precursor protein are probably stored in axon terminals.  相似文献   

20.
Summary The distribution of GABA-like immunoreactivity was studied by means of indirect immunocytochemical methods in some lower vertebrate species (carp, frog, chicken). An immunoreactive network was revealed in the myenteric plexus of the alimentary canal of carp. GABA-positive nerve cells were attached closely to the fibres in the stomach. In other gut regions immunostained neurons were less frequent. Immunoreactive fibres often formed baskets on the surfaces of immunonegative neurons along the whole length of the alimentary canal. The number of immunopositive nerve fibres and pericellular baskets seemed to be lower in the mid- and hindgut than in the foregut region. A similar distribution of GABA-immunoreactivity was revealed in the frog myenteric plexus. The ganglionated foregut region possessed a relatively dense GABAergic innervation. This part of the gut contained immunostained nerve cells and fibres, while the mid- and hindgut possessed only a scanty fibre system. Chicken exhibited an extensive immunoreactive plexus for GABA, although the GABA-stained perikarya were restricted mainly to the duodenum. Further regions of the small intestine were poor in immunoreactive cell bodies, which suggests a segmental origin and arrangement of GABAergic innervation within the plexus. In all three species studied, GABA-positive fibres run into the circular muscle layer. The varicosity suggests their influence on the movement of the smooth muscles through modifying the transmitter release of neighbouring terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号