首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular smooth muscle cell (VSMC) and leukocyte proliferation are central features of atherosclerosis. Using 2H2O to label the deoxyribose moiety of newly synthesized DNA in VSMC and atheroma cells from mouse aorta, we developed a method to measure DNA replication and, hence, cell division. Cell turnover/proliferation in aortae from normal and apolipoprotein E (ApoE)-knockout (ApoE–/–) mice was measured. Mice were injected with 2H2O to achieve 2% body water enrichments and then maintained on 4% 2H2O in drinking water for weeks to months. DNA from the intimal-medial layer of the aorta was extracted and hydrolyzed to deoxyribonucleosides. Purified deoxyadenosine was derivatized to pentane tetraacetate for analysis of 2H enrichment by gas chromatography-mass spectrometry. VSMC proliferation was measurable but slow in adult mice (0.12 ± 0.08%/day) and higher in young mice (0.25 ± 0.08%/day). VSMC delabeling revealed that 2H died away slowly in VSMC DNA, confirming the low turnover rate. Atheroma cell proliferation was elevated in ApoE–/– mice fed low- or high-fat diets for 15 wk, concurrent with histological appearance of atherosclerosis. Validation of the method for VSMC was confirmed by comparison of in vitro rat VSMC proliferation rates using 2H2O with cell counts and bromodeoxyuridine proliferative index. In summary, proliferation of VSMC and atheroma cells can be quantified reliably and sensitively without radioactivity and may be an informative biomarker in vascular hyperplastic diseases, including atherosclerosis. atherosclerosis; gas chromatography-mass spectrometry; stable isotopes; animal model  相似文献   

2.
Type 2 diabetes (T2D) is associated with accelerated restenosis rates after angioplasty. We have previously proved that Pin1 played an important role in vascular smooth muscle cell (VSMC) cycle and apoptosis. But neither the role of Pin1 in restenosis by T2D, nor the molecular mechanism of Pin1 in these processes has been elucidated. A mouse model of T2D was generated by the combination of high‐fat diet (HFD) and streptozotocin (STZ) injections. Both Immunohistochemistry and Western blot revealed that Pin1 expression was up‐regulated in the arterial wall in T2D mice and in VSMCs in culture conditions mimicking T2D. Next, increased activity of Pin1 was observed in neointimal hyperplasia after arterial injury in T2D mice. Further analysis confirmed that 10% serum of T2D mice and Pin1‐forced expression stimulated proliferation, inhibited apoptosis, enhanced cell cycle progression and migration of VSMCs, whereas Pin1 knockdown resulted in the converse effects. We demonstrated that STAT3 signalling and mitochondria‐dependent pathways played critical roles in the involvement of Pin1 in cell cycle regulation and apoptosis of VSMCs in T2D. In addition, VEGF expression was stimulated by Pin1, which unveiled part of the mechanism of Pin1 in regulating VSMC migration in T2D. Finally, the administration of juglone via pluronic gel onto injured common femoral artery resulted in a significant inhibition of the neointima/media ratio. Our findings demonstrated the vital effect of Pin1 on the VSMC proliferation, cell cycle progression, apoptosis and migration that underlie neointima formation in T2D and implicated Pin1 as a potential therapeutic target to prevent restenosis in T2D.  相似文献   

3.
Lipocalin-type prostaglandin D2 synthase (L-PGDS) has recently been linked to a variety of pathophysiological cardiovascular conditions including hypertension and diabetes. In this study, we report on the 50% increase in L-PGDS protein expression observed in vascular smooth muscle cells (VSMC) isolated from spontaneously hypertensive rats (SHR). L-PGDS expression also increased 50% upon the differentiation of normotensive control cells (WKY, from Wistar-Kyoto rats). In addition, we demonstrate differential effects of L-PGDS treatment on cell proliferation and apoptosis in VSMCs isolated from SHR versus WKY controls. L-PGDS (50 microg/ml) was able to significantly inhibit VSMC proliferation and DNA synthesis and induce the apoptotic genes bax, bcl-x, and ei24 in SHR but had no effect on WKY cells. Hyperglycemic conditions also had opposite effects, in which increased glucose concentrations (20 mm) resulted in decreased L-PGDS expression in control cells but actually stimulated L-PGDS expression in SHR. Furthermore, we examined the effect of L-PGDS incubation on insulin-stimulated Akt, glycogen synthase kinase-3beta (GSK-3beta), and ERK phosphorylation. Unexpectedly, we found that when WKY cells were pretreated with L-PGDS, insulin could actually induce apoptosis and failed to stimulate Akt/GSK-3beta phosphorylation. Insulin-stimulated ERK phosphorylation was unaffected by L-PGDS pretreatment in both cell lines. We propose that L-PGDS is involved in the balance of VSMC proliferation and apoptosis and in the increased expression observed in the hypertensive state is an attempt to maintain a proper equilibrium between the two processes via the induction of apoptosis and inhibition of cell proliferation.  相似文献   

4.

Background

Atherosclerosis is a complex pathological condition caused by a number of mechanisms including the accelerated proliferation of vascular smooth muscle cells (VSMCs). Diabetes is likely to be an important risk factor for atherosclerosis, as hyperglycemia induces vascular smooth muscle cell (VSMC) proliferation and migration and may thus contribute to the formation of atherosclerotic lesions. This study was performed to investigate whether PGC-1α, a PPARγ coactivator and metabolic master regulator, plays a role in regulating VSMC proliferation and migration induced by high glucose.

Methodology/Principal Findings

PGC-1α mRNA levels are decreased in blood vessel media of STZ-treated diabetic rats. In cultured rat VSMCs, high glucose dose-dependently inhibits PGC-1α mRNA expression. Overexpression of PGC-1α either by infection with adenovirus, or by stimulation with palmitic acid, significantly reduces high glucose-induced VSMC proliferation and migration. In contrast, suppression of PGC-1α by siRNA mimics the effects of glucose on VSMCs. Finally, mechanistic studies suggest that PGC-1α-mediated inhibition of VSMC proliferation and migration is regulated through preventing ERK1/2 phosphorylation.

Conclusions/Significance

These results indicate that PGC-1α is a key regulator of high glucose-induced proliferation and migration in VSMCs, and suggest that elevation of PGC-1α in VSMC could be a useful strategy in preventing the development of diabetic atherosclerosis.  相似文献   

5.
Diabetes mellitus is a major risk factor in the development of atherosclerosis and cardiovascular disease conditions, involving intimal injury and enhanced vascular smooth muscle cell (VSMC) migration. We report a mechanistic basis for divergences between insulin's inhibitory effects on migration of aortic VSMC from control Wistar Kyoto (WKY) rats versus Goto-Kakizaki (GK) diabetic rats. In normal WKY VSMC, insulin increased MAPK phosphatase-1 (MKP-1) expression as well as MKP-1 phosphorylation, which stabilizes it, and inhibited PDGF-mediated MAPK phosphorylation and cell migration. In contrast, basal migration was elevated in GK diabetic VSMCs, and all of insulin's effects on MKP-1 expression and phosphorylation, MAPK phosphorylation, and PDGF-stimulated migration were markedly inhibited. The critical importance of MKP-1 in insulin inhibition of VSMC migration was evident from several observations. MKP-1 small interfering RNA inhibited MKP-1 expression and abolished insulin inhibition of PDGF-induced VSMC migration. Conversely, adenoviral expression of MKP-1 decreased MAPK phosphorylation and basal migration rate and restored insulin's ability to inhibit PDGF-directed migration in GK diabetic VSMCs. Also, the proteasomal inhibitors lactacystin and MG132 partially restored MKP-1 protein levels in GK diabetic VSMCs and inhibited their migration. Furthermore, GK diabetic aortic VSMCs had reduced cGMP-dependent protein kinase Ialpha (cGK Ialpha) levels as well as insulin-dependent, but not sodium nitroprusside-dependent, stimulation of cGMP. Adenoviral expression of cGK Ialpha enhanced MKP-1 inhibition of MAPK phosphorylation and VSMC migration. We conclude that enhanced VSMC migration in GK diabetic rats is due at least in part to a failure of insulin-stimulated cGMP/cGK Ialpha signaling, MKP-1 expression, and stabilization and thus MAPK inactivation.  相似文献   

6.
Cell cycle-dependent calcium oscillations in mouse embryonic stem cells   总被引:2,自引:0,他引:2  
During cell cycle progression, somatic cells exhibit different patterns of intracellular Ca2+ signals during the G0 phase, the transition from G1 to S, and from G2 to M. Because pluripotent embryonic stem (ES) cells progress through cell cycle without the gap phases G1 and G2, we aimed to determine whether mouse ES (mES) cells still exhibit characteristic changes of intracellular Ca2+ concentration during cell cycle progression. With confocal imaging of the Ca2+-sensitive dye fluo-4 AM, we identified that undifferentiated mES cells exhibit spontaneous Ca2+ oscillations. In control cultures where 50.4% of the cells reside in the S phase of the cell cycle, oscillations appeared in 36% of the cells within a colony. Oscillations were not initiated by Ca2+ influx but depended on inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release and the refilling of intracellular stores by a store-operated Ca2+ influx (SOC) mechanism. Using cell cycle synchronization, we determined that Ca2+ oscillations were confined to the G1/S phase (70% oscillating cells vs. G2/M with 15% oscillating cells) of the cell cycle. ATP induced Ca2+ oscillations, and activation of SOC could be induced in G1/S and G2/M synchronized cells. Intracellular Ca2+ stores were not depleted, and all three IP3 receptor isoforms were present throughout the cell cycle. Cell cycle analysis after EGTA, BAPTA-AM, 2-aminoethoxydiphenyl borate, thapsigargin, or U-73122 treatment emphasized that IP3-mediated Ca2+ release is necessary for cell cycle progression through G1/S. Because the IP3 receptor sensitizer thimerosal induced Ca2+ oscillations only in G1/S, we propose that changes in IP3 receptor sensitivity or basal levels of IP3 could be the basis for the G1/S-confined Ca2+ oscillations. pluripotent; IP3; store operated Ca entry; IP3 receptor  相似文献   

7.
The proliferation and migration of vascular smooth muscle cells (VSMCs) are important factors in the occurrence of cardiovascular diseases, such as blood flow abnormalities, stroke and atherosclerosis. Evening primrose, known as Oenothera biennis, is a plant native to Korea that exerts physiological activities, such as antioxidant effects, the inhibition of lipid accumulation and the prevention of muscle atrophy. However, the function of evening primrose stem (EVP) in the regulation of VSMC proliferation and migration and the underlying mechanisms have not been identified. In this study, the effect of EVP on the platelet-derived growth factor (PDGF)-induced proliferation and migration of VSMCs was investigated. The results show that PDGF-BB-induced proliferation of VSMCs was inhibited by EVP at concentrations of 25, 50 or 100 μg/mL in a concentration-dependent manner, and a migration assay showed that EVP inhibited cell migration. Cell cycle analysis was performed to confirm the mechanism by which cell proliferation and migration was inhibited. The results indicate that proteins involved in the cell cycle, such as cyclin, CDK and phosphorylated Rb, were downregulated by EVP at concentrations of 100 μg/mL, thereby increasing the proportion of cells in the G0/G1 phase and inhibiting cell cycle progression. In the PDGF receptor (PDGFR) signaling pathway, phosphorylation of the PDGFR was inhibited by EVP at concentrations of 100 μg/mL, and PLCγ phosphorylation was also decreased. The PDGF-BB-induced effect of EVP on the proliferation of VSMCs involved the inhibition of Akt phosphorylation and the reduction in the phosphorylation of MAPK proteins such as ERK, P38 and JNK. In conclusion, the results demonstrate that EVP inhibited PDGF-BB-induced VSMC proliferation and migration by regulating cell-cycle-related proteins.  相似文献   

8.
Atherosclerosis can result in multiple cardiovascular diseases. Circular RNAs (CircRNAs) have been reported as significant non-coding RNAs in atherosclerosis progression. Dysfunction of vascular smooth muscle cells (VSMCs) is involved in atherosclerosis. However, up to now, the effect of circ_0002984 in atherosclerosis is still unknown. Currently, we aimed to investigate the function of circ_0002984 in VSMCs incubated by oxidized low-density lipoprotein (ox-LDL). Firstly, our findings indicated that the expression levels of circ_0002984 were significantly up-regulated in the serum of atherosclerosis patients and ox-LDL-incubated VSMCs. Loss of circ_0002984 suppressed VSMC viability, cell cycle distribution and migration capacity. Then, we carried out ELISA assay to determine TNF-α and IL-6 levels. The data implied that lack of circ_0002984 obviously repressed ox-LDL–stimulated VSMC inflammation. Meanwhile, miR-326-3p, which was predicted as a target of circ_0002984, was obviously down-regulated in VSMCs treated by ox-LDL. Additionally, after overexpression circ_0002984 in VSMCs, a decrease in miR-326-3p was observed. Subsequently, miR-326-3p was demonstrated to target vesicle-associated membrane protein 3 (VAMP3). Therefore, we hypothesized that circ_0002984 could modulate expression of VAMP3 through sponging miR-326-3p. Furthermore, we confirmed that up-regulation of miR-326-3p rescued the circ_0002984 overexpressing-mediated effects on VMSC viability, migration and inflammation. Additionally, miR-326-3p inhibitor-mediated functions on VSMCs were reversed by knockdown of VAMP3. In conclusion, circ_0002984 mediated cell proliferation, migration and inflammation through modulating miR-326-3p and VAMP3 in VSMCs, which suggested that circ_0002984 might hold great promise as a therapeutic strategy for atherosclerosis.  相似文献   

9.

Aims

This study was designed to demonstrate simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) leading to accelerated vein graft remodeling and to explore the underlying mechanisms.

Methods

Vein grafts were performed in non-diabetic and diabetic mice. The cultured quiescent VSMCs were subjected to mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs). Harvested vein grafts and treated VSMCs were used to detect cell proliferation, apoptosis, mitogen-activated protein kinases (MAPKs) activation and SM-α-actin expression.

Results

Significantly thicker vessel walls and greater increases in proliferation and apoptosis were observed in diabetic vein grafts than those in non-diabetic. Both SS and AGEs were found to induce different activation of three members of MAPKs and simultaneous increases in proliferation and apoptosis of VSMCs, and combined treatment with both had a synergistic effect. VSMCs with strong SM-α-actin expression represented more activated JNKs or p38MAPK, and cell apoptosis, while the cells with weak SM-α-actin expression demonstrated preferential activation of ERKs and cell proliferation. In contrast, inhibition of MAPKs signals triggered significant decreases in VSMC proliferation, and apoptosis. Treatment of the cells with RNA interference of receptor of AGEs (RAGE) also resulted in significant decreases in both proliferation and apoptosis.

Conclusions

Increased pressure-induced SS triggers simultaneous increases in proliferation and apoptosis of VSMCs in the vein grafts leading to vein arterializations, which can be synergistically accelerated by high glucose-induced AGEs resulting in vein graft atherosclerosis. Either SS or AGEs and their combination induce simultaneous increases in proliferation and apoptosis of VSMCs via different activation of three members of MAPKs resulting from different VSMC subtypes classified by SM-α-actin expression levels.  相似文献   

10.
Calcineurin mediates repression of plasma membrane Ca2+-ATPase-4 (PMCA4) expression in neurons, whereas c-Myb is known to repress PMCA1 expression in vascular smooth muscle cells (VSMC). Here, we describe a novel mouse VSMC line (MOVAS) in which 45Ca efflux rates decreased 50%, fura 2-AM-based intracellular Ca2+ concentrations ([Ca2+]i) increased twofold, and real-time RT-PCR and Western blot revealed a 40% decrease in PMCA4 expression levels from G0 to G1/S in the cell cycle, where PMCA4 constituted 20% of total PMCA protein. Although calcineurin activity increased fivefold as MOVAS progressed from G0 to G1/S, inhibition of this increase with either BAPTA or retroviral transduction with peptide inhibitors of calcineurin (CAIN), or its downstream target nuclear factor of activated T cells (NFAT) (VIVIT), had no effect on the repression of PMCA4 mRNA expression at G1/S. By contrast, Ca2+-independent activity of the calmodulin-dependent protein kinase-II (CaMK-II) increased eightfold as MOVAS progressed from G0 to G1/S, and treatment with an inhibitor of CaMK-II (KN-93) or transduction of a c-Myb-neutralizing antibody significantly alleviated the G1/S-associated repression of PMCA4. These data show that G1/S-specific PMCA4 repression in proliferating VSMC is brought about by c-Myb and CaMK-II and that calcineurin may regulate cell cycle-associated [Ca2+]i through alternate targets. calcineurin; c-Myb; plasma membrane Ca2+-ATPase-4; cell cycle  相似文献   

11.
12.
The tumor suppressor gene p53 regulates apoptotic cell death and the cell cycle. In this study, we investigated the role of p53 in nitric oxide (NO)-induced apoptosis in vascular smooth muscle cells (VSMCs). We found that the NO donor S-nitroso-N-acetylpenicillamine (SNAP) increased apoptotic cell death in p53-deficient VSMCs compared with wild-type cells. The heme oxygenase (HO) inhibitor tin protoporphyrin IX reduced the resistance of wild-type VSMCs to SNAP-induced cell death. SNAP promoted HO-1 expression in both cell types. HO-2 protein was increased only in wild-type VSMCs following SNAP treatment; however, similar levels of HO-2 mRNA were detected in both cell types. SNAP significantly increased the levels of non-heme-iron and dinitrosyl iron-sulfur clusters in wild-type VSMCs compared with p53-deficient VSMCs. Moreover, pretreatment with FeSO4 and the carbon monoxide donor CORM-2, but not biliverdin, significantly protected p53-deficient cells from SNAP-induced cell death compared with normal cells. These results suggest that wild-type VSMCs are more resistant to NO-mediated apoptosis than p53-deficient VSMCs through p53-dependent up-regulation of HO-2.  相似文献   

13.
14.
Activation of the JAK/STAT pathway in vascular smooth muscle by serotonin   总被引:4,自引:0,他引:4  
Serotonin (5-hydroxytryptamine, 5-HT) is a vasoconstrictor and mitogen whose levels are elevated in diabetes. Previous studies have shown the presence of 5-HT2A, 5-HT2B, and 5-HT1B receptors in vascular smooth muscle cells (VSMCs). There are currently no data regarding 5-HT2B and 5-HT1B receptor activation of the JAK/STAT pathway in VSMCs and resultant potential alterations in 5-HT signaling in diabetes. Therefore, we tested the hypothesis that 5-HT differentially activates the JAK/STAT pathway in VSMCs under conditions of normal (5 mM) and high (25 mM) glucose. Treatment of rat VSMCs with 5-HT (10–6 M) resulted in time-dependent activation (2-fold) of JAK2, JAK1, and STAT1, but not STAT3 (maximal at 5 min, returned to baseline by 30 min). The 5-HT2B receptor agonist BW723C86 and the 5-HT1B receptor agonist CGS12066A (10–9–10–5 M, 5-min stimulation) did not activate the JAK/STAT pathway. Treatment with the 5-HT2A receptor antagonist ketanserin (10 nM) inhibited JAK2 activation by 5-HT. Treatment of streptozotocin-induced diabetic rats with ketanserin (5 mg·kg–1·day–1) reduced activation of JAK2 and STAT1 but not STAT3 in endothelium-denuded thoracic aorta in vivo. 5-HT (10–6 M) treatment resulted in increased cell proliferation and increased DNA synthesis, which were inhibited by the JAK2 inhibitor AG490. Further studies with apocynin, diphenyleneiodonium chloride, catalase, and virally transfected superoxide dismutase had no effect at either glucose concentration on activation of the JAK/STAT pathway by 5-HT. Therefore, we conclude that 5-HT activates JAK2, JAK1, and STAT1 via the 5-HT2A receptors in a reactive oxygen species-independent manner under both normal and high glucose conditions. reactive oxygen species; 5-hydroxytryptamine  相似文献   

15.
The mechanism of arachidonic acid (AA)-induced apoptosis in vascular smooth muscle cells (VSMCs) was studied in the A-10 rat aortic smooth muscle cell line. Treatment of serum-deprived VSMCs with 50 microM AA for 24 h resulted in a loss of cell viability. The apoptotic effect of AA was characterized by annexin V binding, sub-G1 population of cells, cell shrinkage and chromatin condensation. AA-induced VSMC death was attenuated by antioxidants alpha-tocopherol and glutathione, the hydrogen peroxide (H2O2) scavenger catalase and by serum proteins, albumin and gamma globulins. Moreover, the AA peroxidation products, 12(S)-hydroperoxyeicosatetraenoic acid (HPETE), 15(S)-HPETE, 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA) caused VSMC apoptosis. These data suggest an oxidative mechanism of AA-induced VSMC death. The apoptotic effect of AA was pH-dependent, being inhibited by extracellular alkalinization to pH 8.0. AA inhibited serum-stimulated cell cycle progression in quiescent cells, but not in proliferating cells. In conclusion, AA, through its oxidation products causes VSMC apoptosis. Antioxidants, by inhibiting VSMC apoptosis, may prevent consequent pathological events such as atherosclerotic plaque rupture.  相似文献   

16.
Recently wedemonstrated the induction of apoptosis by the addition ofrecombinant lipocalin-type prostaglandin D2 synthase (L-PGDS) to the culture medium of LLC-PK1 cells. Becauseprotein kinase C (PKC) has been shown to be involved in theapoptotic process of various cell types, we examined the potentialrole of L-PGDS in phorbol 12-myristate 13-acetate (PMA)-inducedapoptosis. We report here the enzymatic activation andphosphorylation of L-PGDS in response to phorbol ester in cellculture and the direct phosphorylation of recombinant L-PGDS by PKC invitro. Treatment of cells with PMA or L-PGDS decreasedphosphatidylinositol 3-kinase (PI3-K) activity and concomitantlyinhibited protein kinase B (PKB/Akt) phosphorylation, which led to thehypophosphorylation and activation of Bad. In addition,hypophosphorylation of retinoblastoma protein was also observed inresponse to L-PGDS-induced apoptosis. Cellular depletion ofL-PGDS levels by using an antisense RNA strategy prevented PI3-Kinactivation by phorbol ester and inhibited caspase-3 activation andapoptosis. We conclude that phorbol ester-induced apoptosis is mediated by L-PGDS phosphorylation and activation by PKC and is accompanied by inhibition of the PI3-K/PKBanti-apoptotic signaling pathways.

  相似文献   

17.
18.
Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G(2)/M fraction consistent with a mitotic defect; 4',6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G(2)/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury without destabilizing the vessel wall.  相似文献   

19.
Lipocalin-type prostaglandin D(2) synthase (L-PGDS) is a highly glycosylated protein found in several body fluids. Elevated L-PGDS levels have been observed in the serum of patients with renal impairment, diabetes mellitus, and hypertension. Recently, we demonstrated the ability of L-PGDS to induce apoptosis in a variety of cell types including epithelial cells, neuronal cells, and vascular smooth muscle cells (VSMCs). The aim of this study was to investigate the effect several site-directed mutations had on L-PGDS-induced apoptosis in order to identify potential sites of regulation. Point mutations created in a glycosylation site (Asn51), a protein kinase C phosphorylation site (Ser106), and the enzymatic active site (Cys65) all inhibited L-PGDS-induced apoptosis as determined by both terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) and caspase3 activity. We also compared the L-PGDS isoforms present in GK rat serum to WKY control serum using two-dimensional gel electrophoresis and observed distinct differences which vanished after PNGase F glycolytic digestion. We conclude that post-translational modification of L-PGDS, by either glycosylation or phosphorylation, enhances its apoptotic activity and inhibits VSMC hyperproliferation and postulate that this process is altered in type 2 diabetes.  相似文献   

20.

Aim

Atherosclerosis is the complex lesion that consists of endothelial inflammation, macrophage foam cell formation, vascular smooth muscle cell (VSMC) migration and proliferation, and extracellular matrix production. Human urocortin 1 (Ucn1), a 40-amino acid peptide member of the corticotrophin-releasing factor/urotensin I family, has potent cardiovascular protective effects. This peptide induces potent and long-lasting hypotension and coronary vasodilation. However, the relationship of Ucn1 with atherosclerosis remains unclear. The present study was performed to clarify the effects of Ucn1 on atherosclerosis.

Methods

We assessed the effects of Ucn1 on the inflammatory response and proliferation of human endothelial cells (ECs), human macrophage foam cell formation, migration and proliferation of human VSMCs, extracellular matrix expression in VSMCs, and the development of atherosclerosis in apolipoprotein E-deficient (Apoe −/−) mice.

Results

Ucn1 significantly suppressed cell proliferation without inducing apoptosis, and lipopolysaccharide-induced up-regulation of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1 in human ECs. Ucn1 significantly reduced oxidized low-density lipoprotein-induced foam cell formation with a significant down-regulation of CD36 and acyl-CoA:cholesterol acyltransferase 1 in human monocyte-derived macrophages. Ucn1 significantly suppressed the migration and proliferation of human VSMCs and increased the activities of matrix metalloproteinase-2 (MMP2) and MMP9 in human VSMCs. Intraperitoneal injection of Ucn1 into Apoe −/− mice for 4 weeks significantly retarded the development of aortic atherosclerotic lesions.

Conclusions

This study provided the first evidence that Ucn1 prevents the development of atherosclerosis by suppressing EC inflammatory response and proliferation, macrophage foam cell formation, and VSMC migration and proliferation. Thus, Ucn1 could serve as a novel therapeutic target for atherosclerotic cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号