首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteoglycans in mineralized (0.5 M-EDTA/4 M-guanidinium chloride-extractable) and non-mineralized (4 M-guanidinium chloride-extractable) matrices synthesized by a mouse osteoblastic-cell line MC3T3-E1 were characterized at different phases of mineralization in vitro. Cell cultures were labelled with [35S]sulphate and either [3H]glucosamine or 3H-labelled amino acids. At the mineralization phase a large majority of proteoglycans were extracted with 4 M-guanidinium chloride (G extract), and at least five species of labelled proteoglycans were identified; dermatan sulphate proteoglycans (DSPG), apparent Mr approx. 120,000 and 70,000), heparan sulphate proteoglycans (HSPG, apparent Mr approx. 200,000 and 120,000) and DS chains with very little core protein. DSPGs weakly bound to an octyl-Sepharose CL-4B column and HSPGs bound more tightly, whereas DS chains did not bind to the column. Amounts of labelled proteoglycans extracted with 0.5 M-EDTA/4 M-guanidinium chloride (EDTA extract) were much less than those in G extract. Although the predominant species in the EDTA extract were comparable with the DS or DSPGs in the G extract, none of them bound to octyl-Sepharose CL-4B, indicating their lack of hydrophobicity. At the nonmineralizing phase a large chondroitin sulphate proteoglycan (Mr greater than 600,000) was found in the matrix in addition to the five proteoglycan species similar to those at the mineralization phase. Although DS chains at the early phase were similar in size to those at the mineralization phase, the ratio of 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulpho-D-galactose to 2-acetamido-2-deoxy-3-O-(beta-D-gluculo-4-enepyranosyluronic acid)-6-O-sulpho-D-galactose was less than that at the mineralization phase. These results agree with those of previous studies performed in vivo and suggest that alteration in the synthesis of proteoglycans is involved in the mineralization process. They also suggest that at the osteoblastic mineralization front proteoglycans undergo partial degradation and lose their hydrophobicity.  相似文献   

2.
Human embryonic skin fibroblasts were pretreated with transforming growth factor-beta (TGF-beta) for 6 h and then labeled with [35S]sulphate and [3H]leucine for 24 h. Radiolabeled proteoglycans from the culture medium and the cell layer were isolated and separated by isopycnic density-gradient centrifugation, followed by gel, ion-exchange and hydrophobic-interaction chromatography. The major proteoglycan species were examined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate before and after enzymatic degradation of the polysaccharide chains. The results showed that TGF-beta increased the production of several different 35S-labelled proteoglycans. A large chondroitin/dermatan sulphate proteoglycan (with core proteins of approximately 400-500 kDa) increased 5-7-fold and a small dermatan sulphate proteoglycan (PG-S1, also termed biglycan, with a core protein of 43 kDa) increased 3-4-fold both in the medium and in the cell layer. Only a small effect was observed on another dermatan sulphate proteoglycan, PG-S2 (also named decorin). These observations are generally in agreement with results of other studies using similar cell types. In addition, we have found that the major heparan sulphate proteoglycan of the cell layer (protein core approximately 350 kDa) was increased by TGF-beta treatment, whereas all the other smaller heparan sulphate proteoglycans with protein cores from 250 kDa to 30 kDa appeared unaffected. To investigate whether TGF-beta also influences the glycosaminoglycan (GAG) chain-synthesizing machinery, we also characterized GAGs derived from proteoglycans synthesized by TGF-beta-treated cells. There was generally no increase in the size of the GAG chains. However, the dermatan sulphate chains on biglycan and decorin from TGF-beta treated cultures contained a larger proportion of D-glucuronosyl residues than those derived from untreated cultures. No effect was noted on the 4- and 6-sulphation of the GAG chains. By the use of p-nitrophenyl beta-D-xyloside (an initiator of GAG synthesis) it could be demonstrated that chain synthesis was also enhanced in TGF-beta-treated cells (approximately twofold). Furthermore, the dermatan sulphate chains synthesized on the xyloside in TGF-beta-treated fibroblasts contained a larger proportion of D-glucuronosyl residues than those of the control. These novel findings indicate that TGF-beta affects proteoglycan synthesis both quantitatively and qualitatively and that it can also change the copolymeric structure of the GAG by affecting the GAG-synthesizing machinery. Altered proteoglycan structure and production may have profound effects on the properties of extracellular matrices, which can affect cell growth and migration as well as organisation of matrix fibres.  相似文献   

3.
Low molecular mass proteoglycans (PG) were isolated from human articular cartilage and from pig laryngeal cartilage, which contained protein cores of similar size (Mr 40-44 kDa). However, the PG from human articular cartilage contained dermatan sulphate (DS) chains (50% chondroitinase AC resistant), whereas chains from pig laryngeal PG were longer and contained only chondroitin sulphate (CS). Disaccharide analysis after chondroitinase ABC digestion showed that the human DS-PG contained more 6-sulphated residues (34%) than the pig CS-PG (6%) and both contained fewer 6-sulphated residues than the corresponding high Mr aggregating CS-PGs from these tissues (86% and 20% from human and pig respectively). Cross-reaction of both proteoglycans with antibodies to bovine bone and skin DS-PG-II and human fibroblasts DS-PG suggested that the isolated proteoglycans were the humans DS-PG-II and pigs CS-PG-II homologues of the cloned and sequenced bovine proteoglycan. Polyclonal antibodies raised against the pig CS-PG-II were shown to cross-react with human DS-PG-II. SDS/polyacrylamide-gel analysis and immunoblotting of pig and human cartilage extracts showed that some free core protein was present in the tissues in addition to the intact proteoglycan. The antibodies were used in a competitive radioimmunoassay to determine the content of this low Mr proteoglycan in human cartilage extracts. Analysis of samples from 5-80 year-old humans showed highest content (approximately 4 mg/g wet wt.) in those from 15-25 year-olds and lower content (approximately 1 mg/g wet wt.) in older tissue (greater than 55 years). These changes in content may be related to the deposition and maintenance of the collagen fibre network with which this class of small proteoglycan has been shown to interact.  相似文献   

4.
A little is known about proteoglycan (PG) changes, occuring in the course of scarring of tissues another than skin. The aim of present study was biochemical characterization of glycosaminoglycans (GAGs) and proteoglycans (PGs) of normal and scarred fascia. Samples of normal fascia lata were taken at autopsy from 23 individuals and samples of scarred fascia lata were removed from 23 patients at reoperations for femoral fracture. The obtained tissues were divided into two samples: first of them was submitted to GAG isolation and the second one to PG isolation.GAGs were extracted by extensive papain digestion followed by the fractionation using cetylpyridinium chloride. In order to qualitative and quantitative characterization GAGs were submitted to electrophoresis on cellulose acetate before and after treatment with enzymes, specifically depolymerizing some kinds of GAGs. PGs were extracted using 4 M guanidine HCl followed by purification by forming complexes with Alcian blue. PGs were submitted to gel permeation chromatography on Sepharose 4B. In order to obtain core proteins PGs were depolymerized with chondroitinase ABC. The purified PGs and their core proteins were separated with sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS/PAGE). It was found that total GAGs content was significantly elevated in scarred fascia. Both types of fascia contained chondroitin-, dermatan- and heparan sulphates and hyaluronic acid. Dermatan sulphates (DS) were the predominant GAGs of normal and scarred fascia. The contents of all GAG types were increased in scarred fascia. Both types of fascia contained two kinds of dermatan sulphate proteoglycans (DSPGs); first being similar to biglycan and the second one similar to decorin, as it was judged by molecular weight of their native molecules and core proteins as well as type of GAG components. Densitometric analysis showed that decorin is a predominant DSPG in both fascia types, but in scarred tissue the ratio of biglycan to decorin is considerably higher. Moreover, in scarred fascia a large chondroitin sulphate proteoglycan (CSPG) was also observed. The obtained results have shown that the scar formation is accompanied by quantitative and qualitative alterations in GAGs/PGs resembling those observed in hypertrophic skin scars. The biochemical modification of the scarred fascia lata may partly explain the clinically manifested damage to biomechanical properties of this tissue.  相似文献   

5.
The regulation of vascular endothelial cell behavior during angiogenesis and in disease by transforming growth factor-beta(1) (TGF-beta(1)) is complex, but it clearly involves growth factor-induced changes in extracellular matrix synthesis. Proteoglycans (PGs) synthesized by endothelial cells contribute to the formation of the vascular extracellular matrix and also influence cellular proliferation and migration. Since the effects of TGF-beta(1) on vascular smooth muscle cell growth are dependent on cell density, it is possible that TGF-beta(1) also directs different patterns of PG synthesis in endothelial cells at different cell densities. In the present study, dense and sparse cultures of bovine aortic endothelial cells were metabolically labeled with [(3)H]glucosamine, [(35)S]sulfate, or (35)S-labeled amino acids in the presence of TGF-beta(1). The labeled PGs were characterized by DEAE-Sephacel ion exchange chromatography and Sepharose CL-4B molecular sieve chromatography. The glycosaminoglycan M(r) and composition were analyzed by Sepharose CL-6B chromatography, and the core protein M(r) was analyzed by SDS-polyacrylamide gel electrophoresis, before and after digestion with papain, heparitinase, or chondroitin ABC lyase. These experiments indicate that the effect of TGF-beta(1) on vascular endothelial cell PG synthesis is dependent on cell density. Specifically, TGF-beta(1) induced an accumulation of small chondroitin/dermatan sulfate PGs (CS/DSPGs) with core proteins of approximately 50 kDa in the medium of both dense and sparse cultures, but a cell layer-associated heparan sulfate PG with a core protein size of approximately 400 kDa accumulated only in dense cultures. Moreover, only in the dense cell cultures did TGF-beta(1) cause CS/DSPG hydrodynamic size to increase, which was due to the synthesis of CS/DSPGs with longer glycosaminoglycan chains. The heparan sulfate PG and CS/DSPG core proteins were identified as perlecan and biglycan, respectively, by Western blot analysis. The present data suggest that TGF-beta(1) promotes the synthesis of both perlecan and biglycan when endothelial cell density is high, whereas only biglycan synthesis is stimulated when the cell density is low. Furthermore, glycosaminoglycan chains are elongated only in biglycan synthesized by the cells at a high cell density.  相似文献   

6.
Characteristics of the chondroitin sulfate/dermatan sulfate proteoglycans (CS/DSPGs) and heparan sulfate proteoglycans (HSPGs) from retinas of 14-day chicken embryos were examined following specific lyase digestion of the HSPG and CS/DSPG glycosaminoglycans, respectively. On the basis of gel exclusion chromatography the prevalent CS/DSPGs in the tissue were above Mr 400 X 10(3) with two or three glycosaminoglycan chains of Mr 60-70 X 10(3). The HSPGs existed in two distinct populations in the tissue. Those in the dominant population appeared to be in the range of Mr 250-300 X 10(3) with 9 to 12 glycosaminoglycan chains of Mr 15-25 X 10(3). The other population consisted of free heparan sulfate chains of Mr 15-25 X 10(3). The HSPGs in the medium tended to be intermediate in size. To examine the distribution of proteoglycans, tissues were sequentially homogenized and extracted in saline and reextracted with 4 M guanidine HCl (GdnHCl) and Triton X-100 (TX), or they were washed in heparin solution and dissociated to single cells with trypsin before sequential extraction in saline and GdnHCl with TX. Through comparison of the results of these two extraction methods, CS/DSPGs were found to be almost entirely within the medium or matrix or loosely associated with the cell surface, and most HSPGs were associated with either the basal lamina or the plasma membrane. The single heparan sulfate glycosaminoglycan chains appeared to be intracellular degradation products. These results support reports that CS/DSPGs may be present in the retina interphotoreceptor matrix and that HSPGs may be present in regions of synaptogenesis, associated with cell membranes.  相似文献   

7.
The chondroitin sulfate/dermatan sulfate proteoglycans (CS/DSPGs) of the human umbilical cord vein, arteries and Wharton's jelly matrices were characterized and localized by immunohistochemical analysis. The CS/DSPGs were found to be decorins and biglycans with 43-48 kDa core proteins and are distributed throughout the umbilical cord. A truncated form of decorin having only the approximately 14 kDa NH(2)-terminal portion of the core protein was found exclusively in the vein. The proteoglycans, regardless of their locations, have two types of CS/DS chains, one with approximately 90% CS and approximately 10% DS and the other with approximately 65% CS and approximately 35% DS. The glycosaminoglycan (GAG) chains of the truncated decorin consist of approximately 53% CS and approximately 47% DS. Both decorin and biglycan including the truncated form of decorin could efficiently bind collagen I and fibronectin. The decorin and biglycan with approximately 10% DS and approximately 90% CS were loosely bound in the extracellular matrices, whereas those with approximately 35% DS bound strongly. Together, these data demonstrate that, the GAG chains with 35-47% DS but not those with 10% DS, interact strongly with the matrix. Our data also show that the GAG chain composition is a significant factor in binding of the decorin and biglycan to matrix proteins. The expression of decorin and biglycan with distinctively different CS/DS proportions implies specific biological functions for these PGs in the umbilical cord. The occurrence of the truncated form of decorin exclusively in the umbilical vein suggests a specific functional role.  相似文献   

8.
Physicochemical and chemical properties of small proteoglycans containing galactosaminoglycan chains from cultured human skin fibroblasts and human smooth-muscle cells were compared to determine the extent of structural similarity. The proteoglycan secreted by smooth-muscle cells was of larger molecular size and of higher buoyant density, due to longer glycosaminoglycan chains, than the secretion product of skin fibroblasts. Additionally, both proteoglycans differed in the ratio of iduronic acid and glucuronic acid residues. On the other hand, degradation of secreted [3H]leucine-labelled proteoglycans with chondroitin ABC lyase followed by SDS/polyacrylamide-gel electrophoresis resulted in the appearance of core protein bands of identical size (Mr 48,000 and 45,000, depending on the number of asparagine-bound oligosaccharides). An Mr value of 40,000 was determined for the core protein of cells pretreated with tunicamycin. An antibody against the core protein from fibroblast secretions was cross-reactive with the core protein from smooth-muscle cells. Core protein accumulating intracellularly after treatment with carbonyl cyanide m-chlorophenylhydrazone exhibited, on reduction and alkylation, an isoelectric point of 7.8 in both cell types. Limited proteolysis by staphylococcal V8 serine proteinase or endoproteinase Lys-C led in both instances to the formation of peptides of identical size. Peptides bearing asparagine-bound oligosaccharides were free of glycosaminoglycan chains. Similar peptide patterns were obtained when 125I-labelled core proteins were digested with either trypsin or chymotrypsin. Thus small proteoglycans from fibroblasts and smooth-muscle cells can be differentiated by their glycosaminoglycan moieties but not by the nature of their core proteins.  相似文献   

9.
1. The structure of chondroitin/dermatan and heparan-sulphate chains from various proteoglycan populations derived from cultured human skin fibroblasts have been examined. Confluent cell cultures were biosynthetically labelled with [3H]-glucosamine and 35SO4(2-), and proteoglycans were purified according to buoyant density, size and charge density [Schmidtchen, A., Carlstedt, I., Malmstr?m, A. & Fransson, L.-A. (1990) Biochem. J. 265, 289-300]. Some proteoglycan fractions were further fractionated according to hydrophobicity on octyl-Sepharose in Triton X-100 gradients. The glycosaminoglycan chains, intact or degraded by chemical or enzymic methods were then analysed by gel chromatography on Sepharose CL-6B, Bio-Gel P-6, ion exchange HPLC and gel electrophoresis. 2. Three types of dermatan-sulphate chains were identified on the basis of disaccharide composition and chain length. They were derived from the large proteoglycan, two small proteoglycans and a cell-associated proteoglycan with core proteins of 90 kDa and 45 kDa. Intracellular, free dermatan-sulphate chains were very similar to those of the small proteoglycans. 3. Heparan-sulphate chains from different proteoglycans had, in spite of small but distinct differences in size, strikingly similar compositional features. They contained similar amounts of D-glucuronate, L-iduronate (with or without sulphate) and N-sulphate groups. They all displayed heparin-lyase-resistant domains with average molecular mass of 10-15 kDa. The heparan-sulphate chains from proteoglycans with 250-kDa and 350-kDa cores were the largest greater than 50 kDa), containing an average of four or five domains, in contrast to heparan-sulphate chains from the small heparan-sulphate proteoglycans which had average molecular mass of 45 kDa and consisted of three or four such domains. Free, cell-associated heparan-sulphate chains were heterogeneous in size (5-45 kDa). 4. These results suggest that the core protein may have important regulatory functions with regard to dermatan-sulphate synthesis. On the other hand, synthesis of heparan sulphate may be largely controlled by the cell that expresses a particular proteoglycan core protein.  相似文献   

10.
Heparan sulphate and chondroitin/dermatan sulphate proteoglycans of human skin fibroblasts were isolated and separated after metabolic labelling for 48 h with 35SO4(2-) and/or [3H]leucine. The proteoglycans were obtained from the culture medium, from a detergent extract of the cells and from the remaining ''matrix'', and purified by using density-gradient centrifugation, gel and ion-exchange chromatography. The core proteins of the various proteoglycans were identified by electrophoresis in SDS after enzymic removal of the glycosaminoglycan side chains. Skin fibroblasts produce a number of heparan sulphate proteoglycans, with core proteins of apparent molecular masses 350, 250, 130, 90, 70, 45 and possibly 35 kDa. The major proteoglycan is that with the largest core, and it is principally located in the matrix. A novel proteoglycan with a 250 kDa core is almost entirely secreted or shed into the culture medium. Two exclusively cell-associated proteoglycans with 90 kDa core proteins, one with heparan sulphate and another novel one with chondroitin/dermatan sulphate, were also identified. The heparan sulphate proteoglycan with the 70 kDa core was found both in the cell layer and in the medium. In a previous study [Fransson, Carlstedt, Cöster & Malmström (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5657-5661] it was suggested that skin fibroblasts produce a proteoglycan form of the transferrin receptor. However, the core protein of the major heparan sulphate proteoglycan now purified does not resemble this receptor, nor does it bind transferrin. The principal secreted proteoglycans are the previously described large chondroitin sulphate proteoglycan (PG-L) and the small dermatan sulphate proteoglycans (PG-S1 and PG-S2).  相似文献   

11.
Hybrid chondroitin/dermatan sulfate (CS/DS) glycosaminoglycan chains, derived from decorin secreted by human skin fibroblasts, were shown to interact with FGF-2, as did oligosaccharides derived therefrom by chondroitin B lyase digestion. In a first attempt to identify the biologically active sequence, a novel protocol for structural analysis of enzyme-resistant oligosaccharides larger than standard trisulfated hexasaccharides was developed. The method bases on capillary electrophoresis (CE) for separating oversulfated species in offline combination with nanoelectrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoESI-QTOF-MS/MS) in the negative ion mode. Under optimized CE and ESI-MS conditions, up to 12-mer oligosaccharides with different degrees of sulfation were identified. A novel tandem MS protocol (CID-VE) was applied to elucidate the structure of a previously undescribed pentasulfated CS/DS hexasaccharide, Delta-4,5-IdoAGalNAc[GlcAGalNAc]2(5S). In this molecular species, detected as a triply charged ion at m/z 511.38, three sulfates are found in the IdoAGalNAcGlcA moiety offering two structural variants: one containing sulfated IdoA together with a disulfated GalNAc moiety and in the other one both uronic acids, that is, GlcA and IdoA and the amino sugar each carry a sulfate ester group.  相似文献   

12.
Subconfluent cultures of human embryonic skin fibroblasts were labelled with [35S]sulphate for 3 days, after which cell-free extracellular matrix was isolated. A chondroitin sulphate proteoglycan (CSPG) and a heparan sulphate proteoglycan (HSPG) were purified from the matrix. Chromatography on Sepharose CL-2B gave peak Kav. values of 0.35 and 0.38 respectively for the CSPG and the HSPG. The polysaccharide chains released from the two PGs were of similar size (Kav. 0.50 on Sepharose CL-4B). Approx. 50% of the CSPG showed affinity for hyaluronic acid (HA). However, it differed immunologically from the HA-aggregating CSPG of human articular cartilage, and had a larger core protein (apparent molecular mass 290 kDa) than had the cartilage PG. Neither metabolically [35S]sulphate-labelled PGs, isolated from the medium of fibroblast cultures, nor chemically 3H-labelled polysaccharides (HA, CS, HS and heparin) were incorporated into the extracellular matrix when added to unlabelled cell cultures. These results indicate that the matrix PGs are not derived from the PGs present in the medium and that an interation between polysaccharide chains and matrix components is not sufficient for incorporation of PGs into the matrix. Incubation of cell-free 35S-labelled matrix with unlabelled polysaccharides did not lead to the release of any 35S-labelled material, supporting this conclusion. Furthermore, so-called 'link proteins' were not present in the fibroblast cultures, indicating that the CSPGs were anchored in the matrix in a manner different from the link-stabilized association of CSPG with HA in chondrocyte matrix. The identification of a proteinase, secreted by fibroblasts in culture, that after activation with heparin has the ability to release 35S-labelled PGs from the matrix may also indicate that the core proteins are important for the association of the PGs to the matrix.  相似文献   

13.
Radiolabelled proteoheparan sulphates were isolated from confluent monolayers of fibroblasts and from their spent media. The cell-surface-associated proteoglycan (Mr 350 000) has a core protein of Mr 180 000 that is cleaved by reduction of disulphide bonds into polypeptides of Mr 90 000, both of which can bind transferrin [Fransson, Carlstedt, Cöster & Malmström (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5657-5661]. Thrombin digestion of the proteoglycan yielded two major fragments. The larger one contained the heparan sulphate chains and glycoprotein-type oligosaccharides, whereas the smaller one contained interchain disulphide bond(s) and had affinity for transferrin as well as for octyl-Sepharose. The larger thrombic fragment was cleaved by trypsin into fragments containing the heparan sulphate chains and the oligosaccharides respectively. The smaller proteoheparan sulphate derived from the culture medium (Mr 150 000) had a core protein of Mr 30 000, which contained heparan sulphate-attachment and oligosaccharide-attachment regions, but no domains for binding of transferrin or for hydrophobic interactions.  相似文献   

14.
O-linked oligosaccharides and keratan sulphate chains have been isolated from the proteoglycan subunits of human articular cartilage. The oligosaccharides possessed a size and chemical composition similar to the equivalent moieties present in the proteoglycan submits of the Swarm rat chondrosarcoma. Futhermore, the size and chemical composition of th oligosaccharides showed little change with the age of the individual from whom the proteoglycan was obtained. In contrast, the keratan sulphate chains appeared to increase in chain lenght with increased age of the individual. The total number of keratan sulphate and oligosaccharide chains per core protien decreased with age, but it was not clear whether there was any change in the ration of the two components with respect to one another.  相似文献   

15.
A minor low-sulphated dermatan sulphate proteoglycan was isolated from ray skin by extraction with 2% sodium dodecyl sulphate, followed with ion-exchange chromatography, gel chromatography and density gradient centrifugation. The proteoglycan with a relative molecular mass (Mr) ranging from 70 to 120 kDa is composed of about two dermatan sulphate chains (Mr 33 kDa) bound on a protein core of Mr 27 kDa, and oligosaccharides consisting of uronic acids, hexosamines and neutral sugars. The major amino acids of the protein core were glycine (corresponding to about one-fourth of the total amino acids), serine, threonine, glutamic acid/glutamine, leucine and cysteine, together amounting to 56% of the total. The isolated proteoglycan does not interact with hyaluronic acid and does not form self-aggregates. Dermatan sulphate was rich in iduronic acid (62% of total uronic acid) and composed of non-sulphated (44%), and mono-sulphated disaccharides bearing esterified sulphate groups at positions C-4 (53%) or C-6 (3%) of the N-acetyl galactosamine. HPLC analysis of a pure preparation of dermatan sulphate, showed the presence of galactose and glucose possibly as branches on the dermatan sulphate chain.  相似文献   

16.
Endogenous pleiotrophin and hepatocyte growth factor (HGF) mediate the neurite outgrowth-promoting activity of chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chains isolated from embryonic pig brain. CS/DS hybrid chains isolated from shark skin have a different disaccharide composition, but also display these activities. In this study, pleiotrophin- and HGF-binding domains in shark skin CS/DS were investigated. A high affinity CS/DS fraction was isolated using a pleiotrophin-immobilized column. It showed marked neurite outgrowth- promoting activity and strong inhibitory activity against the binding of pleiotrophin to immobilized CS/DS chains from embryonic pig brain. The inhibitory activity was abolished by chondroitinase ABC or B, and partially reduced by chondroitinase AC-I. A pentasulfated hexasaccharide with a novel structure was isolated from the chondroitinase AC-I digest using pleiotrophin affinity and anion exchange chromatographies. It displayed a potent inhibitory effect on the binding of HGF to immobilized shark skin CS/DS chains, suggesting that the pleiotrophin- and HGF-binding domains at least partially overlap in the CS/DS chains involved in the neuritogenic activity. Computational chemistry using molecular modeling and calculations of the electrostatic potential of the hexasaccharide and two pleiotrophin-binding octasaccharides previously isolated from CS/DS hybrid chains of embryonic pig brain identified an electronegative zone potentially involved in the molecular recognition of the oligosaccharides by pleiotrophin. Homology modeling of pleiotrophin based on a related midkine protein structure predicted the binding pocket of pleiotrophin for the oligosaccharides and provided new insights into the molecular mechanism of the interactions between the oligosaccharides and pleiotrophin.  相似文献   

17.
Human lung fibroblasts produce heparan sulphate proteoglycans (HSPG) that are associated with the plasma membrane. A monoclonal-antibody (Mab)-secreting hybridoma, S1, was produced by fusion of SP 2/0-AG 14 mouse myeloma cells with spleen cells from mice immunized with partially purified cellular HSPG fractions. The HSPG character of the material carrying the epitope recognized by Mab S1 was demonstrated by: (i) the co-purification of the S1 epitope with the membrane HSPG of human lung fibroblasts; (ii) the decrease in size of the material carrying the S1 epitope upon treatment with heparinase or heparitinase, and the resistance of this material to heparinase treatment after N-desulphation. The S1 epitope appears to be part of the core protein, since it was destroyed by proteinase treatment and by disulphide-bond reduction, but not by treatments that depolymerize the glycosaminoglycan chains and N-linked oligosaccharide chains. Polyacrylamide-gel electrophoresis of non-reduced heparitinase-digested membrane HSPG followed by Western blotting and immunostaining with Mab S1 revealed a single band with apparent molecular mass of 64 kDa. Membrane proteoglycans isolated from detergent extracts or from 4 M-guanidinium chloride extracts of the cells yielded similar results. Additional digestion with N-glycanase lowered the apparent molecular mass of the immunoreactive material to 56 kDa, suggesting that the core protein also carries N-linked oligosaccharides. Fractionation of 125I-labelled membrane HSPG by immuno-affinity chromatography on immobilized Mab S1, followed by heparitinase digestion and polyacrylamide-gel electrophoresis of the bound material, yielded a single labelled band with apparent molecular mass 64 kDa. Treatment with dithiothreitol caused a slight increase in apparent molecular mass, suggesting that the core protein of this membrane proteoglycan of a single subunit containing (an) intrachain disulphide bond(s).  相似文献   

18.
Dermatan sulfate (DS) chains are variants of chondroitin sulfate (CS) that are expressed in mammalian extracellular matrices and are particularly prevalent in skin. DS has been implicated in varied biological processes including wound repair, infection, cardiovascular disease, tumorigenesis, and fibrosis. The biological activities of DS have been attributed to its high content of IdoA(alpha1-3)GalNAc4S(beta1-4) disaccharide units. Mature CS/DS chains consist of blocks with high and low GlcA/IdoA ratios, and sulfation may occur at the 4- and/or 6-position of GalNAc and 2-position of IdoA. Traditional methods for the analysis of CS/DS chains involve differential digestion with specific chondroitinases followed by steps of chromatographic isolation of the products and di-saccharide analysis on the individual fraction. This work reports the use of tandem mass spectrometry to determine the patterns of sulfation and epimerization of CS/DS oligosaccharides in a single step. The approach is first validated and then applied to a series of skin DS samples and to decorins from three different tissues. DS samples ranged from 74 to 99% of CSB-like repeats, using this approach. Decorin samples ranged from 30% CSB-like repeats for those samples from articular cartilage to 75% for those from sclera. These values agree with known levels of glucuronyl C5-epimerase in these tissues.  相似文献   

19.
The lysosomal enzyme alpha-L-fucosidase from human skin fibroblasts is synthesized as a 53 kDa glycosylated precursor which is then proteolytically processed to a 50 kDa mature form. This was confirmed by pulse-chase labeling studies with chase times up to 72 h. In fibroblasts treated with 1-deoxymannojirimycin to prevent trimming of high mannose oligosaccharides, endoglycosidase H (endo H) treatment completely deglycosylated and reduced the size of immunoprecipitated alpha-fucosidase by 4-5 kDa, suggesting the presence of two oligosaccharide units. Endoglycosidase H and endo F studies on untreated alpha-fucosidase suggested the presence of one complex-type and one high mannose-type unit, and that the final processing from 53 to 50 kDa did not involve the removal of carbohydrate. Processing was inhibited by the thiol proteinase inhibitor Ep-459, but not by Ep-475 or leupeptin. Since Ep-459 treatment increased both alpha-fucosidase activity (3-fold) and the amount of immunoprecipitable alpha-fucosidase protein in normal human skin fibroblasts, this suggests a role for cysteine-like proteinases either directly or indirectly in lysosomal hydrolase processing and turnover. Subcellular fractionation studies revealed that the proteolytic processing of the 53 kDa precursor to the 50 kDa mature form occurred in the lysosome, or some other dense organelle.  相似文献   

20.
We have previously described the structures of neutral and sialylated O-glycosidic mannose-linked tetrasaccharides and keratan sulphate polysaccharide chains in the chondroitin sulphate proteoglycan of brain. The present paper provides information on a series of related sialylated and/or sulphated tri- to penta-saccharides released by alkaline-borohydride treatment of the proteoglycan glycopeptides. The oligosaccharides were fractionated by ion-exchange chromatography and gel filtration, and their structural properties were studied by methylation analysis and fast-atom-bombardment mass spectrometry. Five fractions containing [35S]sulphate-labelled oligosaccharides were obtained by ion-exchange chromatography, each of which was eluted from Sephadex G-50 as two well-separated peaks. The apparent Mr values of both the large- and small-molecular-size fractions increased with increasing acidity (and sulphate labelling) of the oligosaccharides. The larger-molecular-size fractions contained short mannose-linked keratan sulphate chains of Mr 3000-4500, together with some asparagine-linked oligosaccharides. The smaller tri- to penta-saccharides, of Mr 800-1400, appear to have a common GlcNac(beta 1-3)Manol core, and to contain one to two residues of sialic acid and/or sulphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号