首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD4+ T cells differentiate into subsets that promote immunity or minimize damage to the host. T helper 17 cells (Th17) are effector cells that function in inflammatory responses. T regulatory cells (Tregs) maintain tolerance and prevent autoimmunity by secreting immunosuppressive cytokines and expressing check point receptors. While the functions of Th17 and Treg cells are different, both cell fate trajectories require T cell receptor (TCR) and TGF-β receptor (TGF-βR) signals, and Th17 polarization requires an additional IL-6 receptor (IL-6R) signal. Utilizing high-resolution phosphoproteomics, we identified that both synergistic and additive interactions between TCR, TGF-βR, and IL-6R shape kinase signaling networks to differentially regulate key pathways during the early phase of Treg versus Th17 induction. Quantitative biochemical analysis revealed that CD4+ T cells integrate receptor signals via SMAD3, which is a mediator of TGF-βR signaling. Treg induction potentiates the formation of the canonical SMAD3/4 trimer to activate a negative feedback loop through kinases PKA and CSK to suppress TCR signaling, phosphatidylinositol metabolism, and mTOR signaling. IL-6R signaling activates STAT3 to bind SMAD3 and block formation of the SMAD3/4 trimer during the early phase of Th17 induction, which leads to elevated TCR and PI3K signaling. These data provide a biochemical mechanism by which CD4+ T cells integrate TCR, TGF-β, and IL-6 signals via generation of alternate SMAD3 complexes that control the development of early signaling networks to potentiate the choice of Treg versus Th17 cell fate.  相似文献   

2.
Low Ag dose promotes induction and persistence of regulatory T cells (Tregs) in mice, yet few studies have addressed the role of Ag dose in the induction of adaptive CD4(+)FOXP3(+) Tregs in humans. To this end, we examined the level of FOXP3 expression in human CD4(+)CD25(-) T cells upon activation with autologous APCs and varying doses of peptide. Ag-specific T cells expressing FOXP3 were identified by flow cytometry using MHC class II tetramer (Tmr). We found an inverse relationship between Ag dose and the frequency of FOXP3(+) cells for both foreign Ag-specific and self Ag-specific T cells. Through studies of FOXP3 locus demethylation and helios expression, we determined that variation in the frequency of Tmr(+)FOXP3(+) T cells was not due to expansion of natural Tregs, but instead, we found that induction, proliferation, and persistence of FOXP3(+) cells was similar in high- and low-dose cultures, whereas proliferation of FOXP3(-) T cells was favored in high Ag dose cultures. The frequency of FOXP3(+) cells positively correlated with suppressive function, indicative of adaptive Treg generation. The frequency of FOXP3(+) cells was maintained with IL-2, but not upon restimulation with Ag. Together, these data suggest that low Ag dose favors the transient generation of human Ag-specific adaptive Tregs over the proliferation of Ag-specific FOXP3(-) effector T cells. These adaptive Tregs could function to reduce ongoing inflammatory responses and promote low-dose tolerance in humans, especially when Ag exposure and tolerance is transient.  相似文献   

3.
IL-6 is a proinflammatory cytokine and its overproduction is implicated in a variety of inflammatory disorders. Recent in vitro analyses suggest that IL-6 is a key cytokine that determines the balance between Foxp3(+) regulatory T cells (Tregs) and Th17 cells. However, it remains unclear whether excessive IL-6 production in vivo alters the development and function of Foxp3(+) Tregs. In this study, we analyzed IL-6 transgenic (Tg) mice in which serum IL-6 levels are constitutively elevated. Interestingly, in IL-6 Tg mice, whereas peripheral lymphoid organs were enlarged, and T cells exhibited activated phenotype, Tregs were not reduced but rather increased compared with wild-type mice. In addition, Tregs from Tg mice normally suppressed proliferation of naive T cells in vitro. Furthermore, Tregs cotransferred with naive CD4 T cells into SCID-IL-6 Tg mice inhibited colitis as successfully as those transferred into control SCID mice. These results indicate that overproduction of IL-6 does not inhibit development or function of Foxp3(+) Tregs in vivo. However, when naive CD4 T cells alone were transferred, Foxp3(+) Tregs retrieved from SCID-IL-6 Tg mice were reduced compared with SCID mice. Moreover, the Helios(-) subpopulation of Foxp3(+) Tregs, recently defined as extrathymic Tregs, was significantly reduced in IL-6 Tg mice compared with wild-type mice. Collectively, these results suggest that IL-6 overproduced in vivo inhibits inducible Treg generation from naive T cells, but does not affect the development and function of natural Tregs.  相似文献   

4.
Peripheral tolerance is maintained in part by thymically derived CD25+CD4+ T cells (regulatory T cells (Tregs)). Their mechanism of action has not been well characterized. Therefore, to get a better understanding of Treg action, we investigated the kinetics of murine Treg activity in vitro. Tregs were suppressive within a surprisingly narrow kinetic window: necessary and sufficient only in the first 6-10 h of culture. Visualization of this time frame, using a sensitive single-cell assay for IL-2, revealed the early elaboration of target cell IL-2 producers in the first 6 h despite the presence of CD25+CD4+ Tregs. However, after 6 h, a rapid rise in the number of IL-2 producers in the absence of Tregs was dramatically abrogated by the presence of Tregs. Importantly, the timing of suppression was dictated by the kinetics of target T cell activation suggesting that early target T cell signals may alter susceptibility to suppression. Modulating target T cell activation signals with provision of CD28, IL-2, or high Ag dose all abrogated suppression of proliferation late in culture. However, only CD28 signals enabled target T cells to resist the early Treg-induced down-regulation of IL-2. Therefore the quality of early target T cell activation signals, in particular engagement of CD28, represents an important control point in the balance between vulnerability and resistance to Treg suppression.  相似文献   

5.
The mechanisms underlying the extrathymic generation of CD25+CD4 regulatory T cells (Tregs) are largely unknown. In this study the IL-4R alpha-chain-binding cytokines, IL-4 and IL-13, were identified as inducers of CD25+ Tregs from peripheral CD25-CD4 naive T cells. IL-4-induced CD25+ Tregs phenotypically and functionally resemble naturally occurring Tregs in that they are anergic to mitogenic stimulation, inhibit the proliferation of autologous responder T cells, express high levels of the Forkhead box P3 and the surface receptors glucocorticoid-induced TNFR family-related protein and CTLA-4, and inhibit effector T cells in a contact-dependent, but cytokine-independent, manner. The IL-4-induced generation of peripheral Tregs was independent of the presence of TGF-beta or IL-10, but was dependent on Ag-specific stimulation and B7 costimulation. The significance of the IL-4Ralpha-binding cytokines in the generation of Ag-specific Tregs was emphasized in a mouse model of oral tolerance, in which neutralization of IL-4 and IL-13 in mice transgenic for the TCR specific for OVA completely inhibited the expansion of OVA-specific Tregs that can be induced in untreated mice by feeding the nominal Ag. Together, our results demonstrate that IL-4 and IL-13 play an important role in generating Forkhead box P3-expressing CD25+ Tregs extrathymically in an Ag-dependent manner and therefore provide an intriguing link between the well-established immunoregulatory capacity of Th2 cells and the powerful CD25+ Treg population. Moreover, our findings might provide the basis for the design of novel therapeutic approaches for targeted immunotherapy with Tregs to known Ags in autoimmune diseases or graft-vs-host reactions.  相似文献   

6.
We have previously shown that mice lacking the IL-12-specific receptor subunit beta2 (IL-12Rbeta2) develop more severe experimental autoimmune encephalomyelitis than wild-type (WT) mice. The mechanism underlying this phenomenon is not known; nor is it known whether deficiency of IL-12Rbeta2 impacts other autoimmune disorders similarly. In the present study we demonstrate that IL-12Rbeta2(-/-) mice develop earlier onset and more severe disease in the streptozotocin-induced model of diabetes, indicating predisposition of IL-12Rbeta2-deficient mice to autoimmune diseases. T cells from IL-12Rbeta2(-/-) mice exhibited significantly higher proliferative responses upon TCR stimulation. The numbers of naturally occurring CD25(+)CD4(+) regulatory T cells (Tregs) in the thymus and spleen of IL-12Rbeta2(-/-) mice were comparable to those of WT mice. However, IL-12Rbeta2(-/-) mice exhibited a significantly reduced capacity to develop Tregs upon stimulation with TGF-beta, as shown by significantly lower numbers of CD25(+)CD4(+) T cells that expressed Foxp3. Functionally, CD25(+)CD4(+) Tregs derived from IL-12Rbeta2(-/-) mice were less efficient than those from WT mice in suppressing effector T cells. The role of IL-12Rbeta2 in the induction of Tregs was confirmed using small interfering RNA. These findings suggest that signaling via IL-12Rbeta2 regulates both the number and functional maturity of Treg cells, which indicates a novel mechanism underlying the regulation of autoimmune diseases by the IL-12 pathway.  相似文献   

7.
CD8 T cells stimulated with a suboptimal dose of anti-CD3 Abs (100 pg/ml) in the presence of IL-15 retain a naive phenotype with expression of CD45RA, CD28, CD27, and CCR7 but acquire new functions and differentiate into immunosuppressive T cells. CD8(+)CCR7(+) regulatory T cells (Tregs) express FOXP3 and prevent CD4 T cells from responding to TCR stimulation and entering the cell cycle. Naive CD4 T cells are more susceptible to inhibition than memory cells. The suppressive activity of CD8(+)CCR7(+) Tregs is not mediated by IL-10, TGF-β, CTLA-4, CCL4, or adenosine and relies on interference with very early steps of the TCR signaling cascade. Specifically, CD8(+)CCR7(+) Tregs prevent TCR-induced phosphorylation of ZAP70 and dampen the rise of intracellular calcium in CD4 T cells. The inducibility of CD8(+)CCR7(+) Tregs is correlated with the age of the individual with PBLs of donors older than 60 y yielding low numbers of FOXP3(low) CD8 Tregs. Loss of CD8(+)CCR7(+) Tregs in the elderly host may be of relevance in the aging immune system as immunosenescence is associated with a state of chronic smoldering inflammation.  相似文献   

8.
IL-6 activates various cell types carrying the membrane bound IL-6R (classical IL-6 signaling) as well as IL-6R(-) gp130(+) cells via the soluble IL-6R (IL-6 trans-signaling). IL-6 signaling plays a pivotal role in controlling the differentiation and activation of T lymphocytes by inducing the Jak/STAT-3 and the Ras/Erk/C/EBP pathways. In particular, IL-6 modulates the resistance of T cells against apoptosis, induces activation of T helper cells and controls the balance between regulatory T cells and Th17 cells. Importantly, recent findings suggest that blockade of IL-6 signaling is effective in treating experimental models of autoimmune and chronic inflammatory diseases such as inflammatory bowel diseases, diabetes, multiple sclerosis, asthma and rheumatoid arthritis as well as models of inflammation-associated cancer. Thus, anti-IL-6/anti-IL-6R strategies emerge as promising novel approaches for therapy of inflammatory diseases in humans. In this review article, we discuss the latest findings on the role of IL-6 in experimental models of autoimmunity and cancer, as well as clinical perspectives.  相似文献   

9.
Regulatory T cells (Tregs) play a critical role in the maintenance of airway tolerance. We report that inhaled soluble Ag induces adaptive Foxp3(+) Tregs, as well as a regulatory population of CD4(+) T cells in the lungs and lung-draining lymph nodes that express latency-associated peptide (LAP) on their cell surface but do not express Foxp3. Blocking the cytokine IL-10 or TGF-β prevented the generation of LAP(+) Tregs and Foxp3(+) Tregs in vivo, and the LAP(+) Tregs could also be generated concomitantly with Foxp3(+) Tregs in vitro by culturing naive CD4(+) T cells with Ag and exogenous TGF-β. The LAP(+) Tregs strongly suppressed naive CD4(+) T cell proliferation, and transfer of sorted OVA-specific LAP(+) Tregs in vivo inhibited allergic eosinophilia and Th2 cytokine expression in the lung, either when present at the time of Th2 sensitization or when injected after Th2 cells were formed. Furthermore, inflammatory innate stimuli from house dust mite extract, nucleotide-binding oligomerization domain containing 2 ligand, and LPS, which are sufficient for blocking airway tolerance, strongly decreased the induction of LAP(+) Tregs. Taken together, we concluded that inducible Ag-specific LAP(+) Tregs can suppress asthmatic lung inflammation and constitute a mediator of airway tolerance together with Foxp3(+) Tregs.  相似文献   

10.
IL-17A is a proinflammatory cytokine that has received attention for its role in the pathogenesis of several autoimmune diseases. IL-17A has also been implicated in cardiac and renal allograft rejection. Accordingly, we hypothesized that depletion of IL-17A would enhance corneal allograft survival. Instead, our results demonstrate that blocking IL-17A in a mouse model of keratoplasty accelerated the tempo and increased the incidence of allograft rejection from 50 to 90%. We describe a novel mechanism by which CD4(+)CD25(+) regulatory T cells (Tregs) respond to IL-17A and enhance corneal allograft survival. Our findings suggest the following: 1) IL-17A is necessary for ocular immune privilege; 2) IL-17A is not required for the induction of anterior chamber-associated immune deviation; 3) Tregs require IL-17A to mediate a contact-dependent suppression; 4) corneal allograft Tregs suppress the efferent arm of the immune response and are Ag specific; 5) Tregs are not required for corneal allograft survival beyond day 30; and 6) corneal allograft-induced Treg-mediated suppression is transient. Our findings identify IL-17A as a cytokine essential for the maintenance of corneal immune privilege and establish a new paradigm whereby interplay between IL-17A and CD4(+)CD25(+) Tregs is necessary for survival of corneal allografts.  相似文献   

11.
CD28/B7 blockade leads to exacerbated autoimmune disease in the nonobese diabetic mouse strain as a result of a marked reduction in the number of CD4(+)CD25(+) regulatory T cells (Tregs). Herein, we demonstrate that CD28 controls both thymic development and peripheral homeostasis of Tregs. CD28 maintains a stable pool of peripheral Tregs by both supporting their survival and promoting their self-renewal. CD28 engagement promotes survival by regulating IL-2 production by conventional T cells and CD25 expression on Tregs.  相似文献   

12.
The progranulin (PGRN) is known to protect regulatory T cells (Tregs) from a negative regulation by TNF-α, and its levels are elevated in various kinds of autoimmune diseases. Whether PGRN directly regulates the conversion of CD4+CD25-T cells into Foxp3-expressing regulatory T cells (iTreg), and whether PGRN affects the immunosuppressive function of Tregs, however, remain unknown. In this study we provide evidences demonstrating that PGRN is able to stimulate the conversion of CD4+CD25-T cells into iTreg in a dose-dependent manner in vitro. In addition, PGRN showed synergistic effects with TGF-β1 on the induction of iTreg. PGRN was required for the immunosuppressive function of Tregs, since PGRN-deficient Tregs have a significant decreased ability to suppress the proliferation of effector T cells (Teff). In addition, PGRN deficiency caused a marked reduction in Tregs number in the course of inflammatory arthritis, although no significant difference was observed in the numbers of Tregs between wild type and PGRN deficient mice during development. Furthermore, PGRN deficiency led to significant upregulation of the Wnt receptor gene Fzd2. Collectively, this study reveals that PGRN directly regulates the numbers and function of Tregs under inflammatory conditions, and provides new insight into the immune regulatory mechanism of PGRN in the pathogenesis of inflammatory and immune-related diseases.  相似文献   

13.
14.
15.
The outcome of malaria infection is determined, in part, by the balance of pro-inflammatory and regulatory immune responses. Failure to develop an effective pro-inflammatory response can lead to unrestricted parasite replication, whilst failure to regulate this response leads to the development of severe immunopathology. IL-10 and TGF-beta are known to be important components of the regulatory response, but the cellular source of these cytokines is still unknown. Here we have examined the role of natural and adaptive regulatory T cells in the control of malaria infection and find that classical CD4+CD25(hi) (and Foxp3+) regulatory T cells do not significantly influence the outcome of infections with the lethal (17XL) strain of Plasmodium yoelii (PyL). In contrast, we find that adaptive IL-10-producing, CD4+ T cells (which are CD25-, Foxp3-, and CD127- and do not produce Th1, Th2, or Th17 associated cytokines) that are generated during both PyL and non-lethal P. yoelii 17X (PyNL) infections are able to down-regulate pro-inflammatory responses and impede parasite clearance. In summary, we have identified a population of induced Foxp3- regulatory (Tr1) T cells, characterised by production of IL-10 and down regulation of IL-7Ralpha, that modulates the inflammatory response to malaria.  相似文献   

16.
Thymus-derived CD4+ CD25+ T regulatory cells (Tregs) are essential for the maintenance of self-tolerance. What critical factors and conditions are required for the extra-thymic development of Tregs remains an important question. In this study, we show that the anti-inflammatory extracellular matrix protein, thrombospondin-1, promoted the generation of human peripheral regulatory T cells through the ligation of one of its receptor, CD47. CD47 stimulation by mAb or a thrombospondin-1 peptide induced naive or memory CD4+ CD25- T cells to become suppressive. The latter expressed increased amounts of CTLA-4, OX40, GITR, and Foxp3 and inhibited autologous Th0, Th1, and Th2 cells. Their regulatory activity was contact dependent, TGF-beta independent, and partially circumvented by IL-2. This previously unknown mechanism to induce human peripheral Tregs in response to inflammation may participate to the limitation of collateral damage induced by exacerbated responses to self or foreign Ags and thus be relevant for therapeutic intervention in autoimmune diseases and transplantation.  相似文献   

17.
Allergic airway inflammation (AAI) is characterized by airway hyperreactivity, eosinophilia, goblet cell hyperplasia, and elevated serum IgE, however, it is unclear what mediates natural resolution after cessation of allergen exposure. This is important because the outcome of subsequent allergen challenge may depend on the concurrent inflammatory milieu of the lung. Using a murine AAI model, we demonstrate that after exposure to a defined natural protein allergen, Der p1, the response in lungs and draining mediastinal lymph nodes (dMLN) peaks between 4 and 6 days then declines until resolution by 21 days. Der p1-specific serum IgE follows the same pattern while IgG1 continues to increase. Resolution of AAI is mediated by CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), which appear in lungs and dMLN following airway challenge. Treg depletion exacerbated lung eosinophilia, increased dMLN IL-5 and IL-13 but not IL-10 secretion, and increased allergic Ab responses. Most convincingly, transfer of CD4(+)CD25(+)Foxp3(+) T cells from Ag naive mice (natural Tregs) abolished AAI, decreased dMLN IL-5 and IL-13 secretion, increased dMLN IL-10 secretion, abolished IgE, and decreased IgG1 Abs. Blocking IL-10 receptor function in vivo did not block the anti-inflammatory function of transferred natural Tregs but did restore dMLN IL-5 and IL-13 secretion. Thus natural Tregs can control AAI in an IL-10 independent manner.  相似文献   

18.
T cell Ig domain and mucin domain (TIM)-3 has previously been established as a central regulator of Th1 responses and immune tolerance. In this study, we examined its functions in allograft rejection in a murine model of vascularized cardiac transplantation. TIM-3 was constitutively expressed on dendritic cells and natural regulatory T cells (Tregs) but only detected on CD4(+)FoxP3(-) and CD8(+) T cells in acutely rejecting graft recipients. A blocking anti-TIM-3 mAb accelerated allograft rejection only in the presence of host CD4(+) T cells. Accelerated rejection was accompanied by increased frequencies of alloreactive IFN-γ-, IL-6-, and IL-17-producing splenocytes, enhanced CD8(+) cytotoxicity against alloantigen, increased alloantibody production, and a decline in peripheral and intragraft Treg/effector T cell ratio. Enhanced IL-6 production by CD4(+) T cells after TIM-3 blockade plays a central role in acceleration of rejection. Using an established alloreactivity TCR transgenic model, blockade of TIM-3 increased allospecific effector T cells, enhanced Th1 and Th17 polarization, and resulted in a decreased frequency of overall number of allospecific Tregs. The latter is due to inhibition in induction of adaptive Tregs rather than prevention of expansion of allospecific natural Tregs. In vitro, targeting TIM-3 did not inhibit nTreg-mediated suppression of Th1 alloreactive cells but increased IL-17 production by effector T cells. In summary, TIM-3 is a key regulatory molecule of alloimmunity through its ability to broadly modulate CD4(+) T cell differentiation, thus recalibrating the effector and regulatory arms of the alloimmune response.  相似文献   

19.
Regulatory T cells (Tregs) induced by oral tolerance may suppress immunity by production of TGF-beta that could also enhance Treg activity. However, all cells that are phenotypically Tregs in rats (CD4(+)CD45RC(high)-RC(high)) may not have regulatory function. Because Smad7 expression in T cells is associated with inflammation and autoimmunity, then lack of Smad7 may identify those cells that function as Tregs. We reported that feeding type V collagen (col(V)) to WKY rats (RT1(l)) induces oral tolerance to lung allografts (F344-RT1(lvl)) by T cells that produce TGF-beta. The purpose of the current study was to identify the Tregs that mediate col(V)-induced tolerance, and determine Smad7 expression in these cells. RC(high) cells from tolerant rats were unresponsive to allogeneic stimulation and abrogated rejection after adoptive transfer. In contrast, CD4(+)CD45RC(low) (RC(low)) cells from tolerant rats and RC(high) or RC(low) cells from normal rats or untreated allograft recipients proliferated vigorously in response to donor Ags, and did not suppress rejection after adoptive transfer. TGF-beta enhanced proliferation in response to col(V) presented to tolerant RC(high), but not other cells. In contrast to other cells, only RC(high) cells from tolerant rats did not express Smad7. Collectively, these data show that the Tregs that mediate col(V)-induced tolerance to lung allografts do not express SMAD7 and, therefore, are permissive to TGF-beta-mediated signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号