首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Delta strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.  相似文献   

8.
During alcoholic fermentations yeast cells are subjected to several stress conditions and, therefore, yeasts have developed molecular mechanisms in order to resist this adverse situation. The mechanisms involved in stress response have been studied in Saccharomyces cerevisiae laboratory strains. However a better understanding of these mechanisms in wine yeasts could open the possibility to improve the fermentation process. In this work an analysis of the stress response in three wine yeasts has been carried out by studying the expression of several representative genes under several stress conditions which occur during fermentation. We propose a simplified method to study how these stress conditions affect the viability of yeast cells. Using this approach an inverse correlation between stress-resistance and stuck fermentations has been found. We also have preliminary data about the use of the HSP12 gene as a molecular marker for stress-resistance in wine yeasts.  相似文献   

9.
10.
Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Δ strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.  相似文献   

11.
12.
13.
14.
15.
Alcoholic fermentation is an essential step in wine production that is usually conducted by yeasts belonging to the species Saccharomyces cerevisiae. The ability to carry out vinification is largely influenced by the response of yeast cells to the stress conditions that affect them during this process. In this work, we present a systematic analysis of the resistance of 14 commercial S. cerevisiae wine yeast strains to heat shock, ethanol, oxidative, osmotic and glucose starvation stresses. Significant differences were found between these yeast strains under certain severe conditions, Vitilevure Pris Mouse and Lalvin T73 being the most resistant strains, while Fermiblanc arom SM102 and UCLM S235 were the most sensitive ones. Induction of the expression of the HSP12 and HSP104 genes was analyzed. These genes are reported to be involved in the tolerance to several stress conditions in laboratory yeast strains. Our results indicate that each commercial strain shows a unique pattern of gene expression, and no clear correlation between the induction levels of either gene and stress resistance under the conditions tested was found. However, the increase in mRNA levels in both genes under heat shock indicates that the molecular mechanisms involved in the regulation of their expression by stress function in all of the strains.  相似文献   

16.
17.
Molecular and physiological analyses were used to study the evolution of the yeast population, from alcoholic fermentation to biological aging in the process of "fino" sherry wine making. The four races of "flor" Saccharomyces cerevisiae (beticus, cheresiensis, montuliensis, and rouxii) exhibited identical restriction patterns for the region spanning the internal transcribed spacers 1 and 2 (ITS-1 and ITS-2) and the 5.8S rRNA gene, but this pattern was different, from those exhibited by non-flor S. cerevisiae strains. This flor-specific pattern was detected only after wines were fortified, never during alcoholic fermentation, and all the strains isolated from the velum exhibited the typical flor yeast pattern. By restriction fragment length polymorphism of mitochondrial DNA and karyotyping, we showed that (i) the native strain is better adapted to fermentation conditions than commercial strains; (ii) two different populations of S. cerevisiae strains are involved in the process of elaboration, of fino sherry wine, one of which is responsible for must fermentation and the other, for wine aging; and (iii) one strain was dominant in the flor population integrating the velum from sherry wines produced in González Byass wineries, although other authors have described a succession of races of flor S. cerevisiae during wine aging. Analyzing all these results together, we conclude that yeast population dynamics during biological aging is a complex phenomenon and differences between yeast populations from different wineries can be observed.  相似文献   

18.
Saccharomyces cerevisiae is the main yeast responsible for alcoholic fermentation of grape juice during wine making. This makes wine strains of this species perfect targets for the improvement of wine technology and quality. Progress in winemaking has been achieved through the use of selected yeast strains, as well as genetic improvement of wine yeast strains through the sexual and pararexual cycles, random mutagenesis and genetic engineering. Development of genetically engineered wine yeasts, their potential application, and factors affecting their commercial viability will be discussed in this review.  相似文献   

19.
AIMS: During fermentation yeast cells should cope with stress conditions. We pursue a better understanding of the stress response in wine yeasts at the beginning of vinification. METHODS AND RESULTS: We analyse by means of quantitative PCR the expression of several stress induced genes in 24 efficient commercial wine yeast strains at the beginning of vinifications performed under standard conditions or with small variations in pH and temperature. In all cases, high levels (with differences among strains) of GPD1 mRNA but quite low expression of other stress genes (TRX2, HSP104 and SSA3) were found. For all these genes, mRNA levels increase as temperature decreases or pH increases. CONCLUSIONS: Important levels of expression of GPD1 (but not of other stress genes) are required during the first hours of vinification, because of the need for glycerol production to counteract the hyperosmotic stress at this point. The differences among strains suggest that certain level of expression is enough to ensure the continuity of the process. Variations in the pH and temperature of the vinification can affect gene expression. SIGNIFICANCE AND IMPACT OF THE STUDY: A common pattern of stress response between efficient wine strains exists, which could be used as a criterion for selection. Studies of this kind can allow the establishment of connections between gene expression and physiological traits.  相似文献   

20.
While unfermented grape must contains approximately equal amounts of the two hexoses glucose and fructose, wine producers worldwide often have to contend with high residual fructose levels (>2 gl(-1)) that may account for undesirable sweetness in finished dry wine. Here, we investigate the fermentation kinetics of glucose and fructose and the influence of certain environmental parameters on hexose utilisation by wine yeast. Seventeen Saccharomyces cerevisiae strains, including commercial wine yeast strains, were evaluated in laboratory-scale wine fermentations using natural Colombard grape must that contained similar amounts of glucose and fructose (approximately 110 gl(-1) each). All strains showed preference for glucose, but to varying degrees. The discrepancy between glucose and fructose utilisation increased during the course of fermentation in a strain-dependent manner. We ranked the S. cerevisiae strains according to their rate of increase in GF discrepancy and we showed that this rate of increase is not correlated with the fermentation capacity of the strains. We also investigated the effect of ethanol and nitrogen addition on hexose utilisation during wine fermentation in both natural and synthetic grape must. Addition of ethanol had a stronger inhibitory effect on fructose than on glucose utilisation. Supplementation of must with assimilable nitrogen stimulated fructose utilisation more than glucose utilisation. These results show that the discrepancy between glucose and fructose utilisation during fermentation is not a fixed parameter but is dependent on the inherent properties of the yeast strain and on the external conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号