首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hexarhenium cyanohydroxo anionic cluster complex [Re6Se8(CN)4(OH)2]4− was synthesized for the first time starting from [Re6Se8(OH)6]4−, which was crystallized as a salt of the composition Cs2.75K1.25[Re6Se8(CN)4(OH)2]·H2O (1). The reaction of the complex with Cu2+ in an aqueous ammonia or methylamine solutions afforded [Cu(NH3)5]2[Re6Se8(CN)4(OH)2]·8H2O (2) or [{Cu(CH3NH2)4}2Re6Se8(CN)4(OH)2] (3), respectively. All of these three compounds were characterized by a single-crystal X-ray diffraction method. Compound 1 is crystallized in the tetragonal space group I4/m with eight formula units per cell (a = b = 17.4823(14) Å, c = 19.430(2) Å, V = 5938.3(10) Å3); compound 2 is crystallized in the monoclinic space group P21/n with two formula units per cell (a = 12.1845(13) Å, b = 8.6554(9) Å, c = 19.2568(19) Å, β = 91.081(2)°, V = 2030.5(4) Å3); compound 3 is crystallized in the orthorhombic space group Cmcm with four formula units per cell (a = 19.816(4) Å, b = 14.611(3) Å, c = 13.751(3) Å, V = 3981.2(13) Å3). The luminescence properties of 1 were studied in both aqueous solution and solid state. In addition, the electronic structure of [Re6Se8(CN)4(OH)2]4− was elucidated by DFT calculations.  相似文献   

2.
Supramolecular compounds {C8N2H22@Cuc[6]}{Re6S8(H2O)2(OH)4}·18H2O (1), and K2{C8N2H22@Cuc[6]}{Re6S8(OH)6}·14H2O (2) were obtained by crystallization from aqueous solutions that contained the macrocyclic cavitand cucurbit[6]uril (C36H36N24O12), 1,8-diaminooctane and the cluster thiohydroxo complex [Re6S8(OH)6]4−. The resultant composition of the formed compounds depends on the experiment technique. According to the X-ray diffraction analysis, 1,8-diaminooctane molecules are encapsulated within the cavity of the cucurbit[6]uril molecules in such a way that the aminogroups are above and below the plane of the cavitand. The 1,8-diaminooctane molecules formed hydrogen bonds with the cavitand and the cluster thiohydroxo complexes to give chains.  相似文献   

3.
A new layered compound, [MV][{Mn(CH3OH)2}{Re6Se8(CN)6}] (1) consists of a layer alternately knitted by hexarhenium cluster and Mn complex, and MV2+ cations (methyl viologen dication = 1,1′-dimethyl-4,4′-bipyridilium dication) reside between the layers. The title compound 1 is the first layered framework containing cyano-hexarhenium clusters with photoactive guest molecules, MV2+. The MV2+ can be partly exchanged by H2TMB2+ (N,N,N′,N′-tetramethylbenzidine dication) to form a compound [H2TMB2+]x[MV2+]1−x [{Mn(CH3OH)2}{Re6Se8(CN)6}] (2) showing an electronic interaction between the layered framework and [H2TMB]2+ cation.  相似文献   

4.
The reaction between the dirhenium(III,III) anion, [Re2Cl8]2−, and the secondary phosphine, PCy2H, yields a mixture of products as a result of disproportionation, namely, a dirhenium(II,III) chloride-phosphine complex 1,3,6-Re2Cl5(PCy2H)3 (1) and a dirhenium(IV) face-sharing bioctahedral compound with bridging phosphido groups, [Bu4N][Re2(μ-PCy2)3Cl6] (2). The diphenylphosphine analogue of 2, [Bu4N][Re2(μ-PPh2)3Cl6] (3) has been similarly prepared from the reaction of [Re2Cl8]2− with PPh2H. An interesting dirhenium(III,III) complex, [Bu4N]2[Re2(μ-PPh2)2(PPh2H)2Cl6] (4) having both neutral terminal phosphines and anionic phosphido bridges, has also been isolated as an intermediate in the latter system. Crystal structures of 1-4 have been determined by X-ray crystallography. The compounds were also characterized by cyclic voltammetry, IR and 31P NMR spectroscopy.  相似文献   

5.
The electrochemical behavior of the S,S-bridged adducts of square planar metalladithiolene complexes was investigated by using cyclic voltammetry and electrochemical spectroscopies (visible, near-IR, and ESR). The norbornene-bridged S,S-adduct [Ni(S2C2Ph2)2(C7H8)] (2a; C7H8=norbornene) formed by [Ni(S2C2Ph2)2] (1a) and quadricyclane (Q) was dissociated by an electrochemical reduction, and anion 1a and norbornadiene (NBD) were formed. Q was isomerized to NBD in the overall reaction. The o-xylyl-bridged S,S-adduct [Ni(S2C2Ph2)2(CH2)2(C6H4)] (3a; (CH2)2(C6H4)=o-xylyl) was also dissociated by an electrochemical reduction, and this reaction gave the o-xylyl radical (o-quinodimethane). The reduction of complex 3a in the presence of excess o-xylylene dibromide underwent the catalytic formation of o-quinodimethane. The butylene-bridged S,S-adduct [Ni(S2C2Ph2)2(CH2)4] (4a; (CH2)4=butylene) was stable on an electrochemical reduction. The lifetimes of reduced species of these adducts 2a-4a were influenced by the stability of the eliminated group (stability: NBD > o-xylyl radical (o-quinodimethane) > butylene radical). Therefore, the reduced species are stable in the sequence 4a > 3a > 2a. Although the palladium complex [Pd(S2C2Ph2)2] (1b) was easier to reduce than the nickel complex 1a or the platinum complex [Pt(S2C2Ph2)2] (1c), their S,S-adducts were easier to reduce in the order of Ni adduct > Pd adduct > Pt adduct.  相似文献   

6.
Two new octahedral cluster complexes - [Re6S8(3,5-Me2PzH)6]Br2 · 2(3,5-Me2PzH) (1) and [Re6Se8(3,5-Me2PzH)6]Br2 · 2(3,5-Me2PzH) (2), where 3,5-Me2PzH is 3,5-dimethylpyrazole, have been synthesized using reaction of rhenium chalcobromide complexes Cs4[Re6S8Br6] · 2H2O and Cs3[Re6Se8Br6] · H2O, respectively, with molten 3,5-dimethylpyrazole. Both compounds synthesized were characterized by X-ray single-crystal diffraction and chemical analysis, IR and luminescent spectra.  相似文献   

7.
The reaction of [HRe3(CO)12]2− with an excess of Ph3PAuCl in CH2Cl2 yields [(Ph3PAu)4Re(CO)4]+ as the main product, which crystallizes as [(Ph3PAu)4Re(CO)4]PF6 · CH2Cl2 (1 · CH2Cl2) after the addition of KPF6.The crystal structure determination reveals a trigonal bipyramidal Au4Re cluster with the Re atom in equatorial position.If [(Ph3PAu)4Re(CO)4]+ is reacted with PPh4Cl, a cation [Ph3PAu]+ is eliminated as Ph3PAuCl, and the neutral cluster [(Ph3PAu)3Re(CO)4] (2) is formed.It combines with excess [(Ph3PAu)4Re(CO)4]+ to afford the cluster cation, [(Ph3PAu)6AuRe2(CO)8]+. It crystallizes from CH2Cl2 as[(Ph3PAu)6AuRe2(CO)8]PF6 · 4CH2Cl2 (3 · 4CH2Cl2). In [(Ph3PAu)3Re(CO)4] the metal atoms are arranged in form of a lozenge while in [(Ph3PAu)6AuRe2(CO)8]+ two Au4Re trigonal bipyramids are connected by a common axial Au atom.The treatment of [(Ph3PAu)4Re(CO)4]+ with KOH and Ph3PAuCl in methanol yields the cluster cation [(Ph3PAu)6Re(CO)3]+, which crystallizes with from CH2Cl2 as [(Ph3PAu)6Re(CO)3]PF6 · CH2Cl2 (4 · CH2Cl2). The metal atoms in this cluster form a pentagonal bipyramid with the Re atom in the axial position.  相似文献   

8.
New cluster complex [Mo3SeO3(acac)3(py)3]+ was obtained by ligand substitution in the aqua complex [Mo3SeO3(H2O)9]4+. Crystal structure was determined for [Mo3SeO3(acac)3(py)3]PF6·C6H5CH3. The complex was characterized by 77Se NMR, electrospray mass-spectrometry, and cyclic voltammetry. DFT calculations were used to confirm the assignment of chemical shift and to study Mo-Mo bonding in the cluster core.  相似文献   

9.
Phosphonium zwitterions of a known type were obtained in high yield via a 1:1 reaction of p-benzoquinone or methoxy-p-benzoquinone with the tertiary phosphines R3P [R = (CH2)3OH, Ph, Et, Me] and Ph2MeP, in acetone or benzene at room temperature. In all cases, attack of the P-atom occurs at a C-atom rather than at an O-atom. The products were characterized to various degrees by elemental analysis, 31P{1H}, 1H and 13C NMR spectroscopies, and mass spectrometry, and two of the zwitterions, the new [HO(CH2)3]3P+C6H2(O)(OH)(MeO) and the known Ph3P+C6H3(O)(OH), were structurally characterized by X-ray analysis. The PEt3 reaction also produces small amounts of the ‘dimeric’, μ-oxo co-product Et3P+C6H2(O)(OH)-O-C6H3(O)P+Et3 that is tentatively characterized by 1D- and 2D-NMR data. 2,5-Di-tert-butyl- and 2,3,5,6-tetramethyl-p-benzoquinone do not react with [HO(CH2)3]3P under the conditions noted above. Heating D2O solutions of the water-soluble zwitterions R3P+C6H3(O)(OH) [R = (CH2)3OH, Et] at 90 °C for 72 h leads to complete H/D exchange of the H-atom in the position ortho to the phosphonium center.  相似文献   

10.
The new acrylamide iron(II)/iron(III) complex [Fe(O-OC(NH2)CHCH2)6][Fe2OCl6] (1) was obtained by the reaction of a mixture of anhydrous FeCl2 and anhydrous FeCl3 with acrylamide (molar ratio 1:2:6) in 98% pure commercial nitromethane under nitrogen atmosphere. According to an X-ray structural analysis, the acrylamide ligands in the cation are coordinated via the amide-oxygen atoms. The formation of the (μ-oxo)bis[trichloroferrate(III)]2− anion presumably resulted from partial hydrolysis of FeCl3 or [FeCl4] by small amounts of water in the nitromethane and/or by the nitromethane itself.  相似文献   

11.
Two synthetic procedures have been employed that allow access to the new tetranuclear cluster [Fe4O2(O2CMe)6(N3)2(phen)2] (1), where phen is 1,10-phenanthroline. Complex 1 · 3MeCN displays an unusual structural asymmetry (observed for the second time) in its [Fe4O2]8+ core that can be considered as a hybrid of the bent (butterfly) and planar dispositions of four metal ions seen previously in such compounds with transition metals. Complex 1 has been characterized by variable-temperature magnetic susceptibility studies, and by IR and variable-temperature 57Fe Mössbauer spectroscopies. Magnetochemical data reveal a diamagnetic ground state (S=0) with antiferromagnetic body-body and body-wingtip interactions between the iron(III) ions of the butterfly core (Jbb=−11 cm−1, Jwb=−70 cm−1). Magnetochemical and Mössbauer studies on 1 show that its structural asymmetry has practically no influence on these properties compared with the more symmetric types.  相似文献   

12.
The reactivity of the metalloligand [Pt2(μ-S)2(PPh3)4] towards a variety of indium(III) substrates has been explored. Reaction with excess In(NO3)3 and halide (KBr or NaI) gave the four-coordinate adducts [Pt2(μ-S)2(PPh3)4InX2]+[InX4] (X = Br, I). An X-ray structure determination on the iodo complex revealed a slightly distorted tetrahedral coordination geometry at indium. In contrast, reaction of [Pt2(μ-S)2(PPh3)4] with indium(III) chloride was more complex; the ion [Pt2(μ-S)2(PPh3)4InCl2]+ was initially observed in solution (using ESI mass spectrometry), and isolated as its BPh4 salt. Analysis of [Pt2(μ-S)2(PPh3)4InCl2]+[BPh4] by ESI MS showed the parent cation when analysed in MeCN solution. However in solutions containing methanol, partial solvolysis occurred to give the di-indium species [{Pt2(μ-S)2(PPh3)4InCl(OMe)}2]2+ (proposed to contain an In2(μ-OMe)2 unit with five-coordinate indium) and its fragment ion [Pt2(μ-S)2(PPh3)4InCl(OMe)]+. Reaction of [Pt2(μ-S)2(PPh3)4] with InCl3·3H2O, 8-hydroxyquinoline (HQ) and trimethylamine in methanol gave the adduct [Pt2(μ-S)2(PPh3)4InQ2]+, isolated as its PF6 salt. The same cationic complex is formed when [Pt2(μ-S)2(PPh3)4] is reacted with InQ3 in methanol, but in this case the product is contaminated with the mononuclear complex [(Ph3P)2PtQ]+ formed by disintegration of the trinuclear complex [Pt2(μ-S)2(PPh3)4InQ2]+ with byproduct Q. [(Ph3P)2PtQ]+BPh4 was independently prepared from cis-[PtCl2(PPh3)2] and HQ/Me3N, and is the first example of a platinum 8-hydroxyquinolinate complex containing phosphine ligands.  相似文献   

13.
Crystal structure of [ReO2(4-MeOpy)4][PF6] (4-MeOpy = 4-methoxypyridine) complex has been examined by the single crystal X-ray analytical method. This complex shows a trans-dioxo geometry (average Re-O bond length = 1.766(2) Å) and its equatorial plane is occupied by four 4-MeOpy molecules (average Re-N bond length = 2.156(4) Å). Electrochemical reaction of [ReO2(4-MeOpy)4]+ in CH3CN solution containing tetra-n-butylammonium perchlorate as a supporting electrolyte has been studied using cyclic voltammetry at 24 °C. Cyclic voltammograms show one redox couple around 0.65 V (Epa) and 0.58 V (Epc) [versus ferrocene/ferrocenium ion redox couple, (Fc/Fc+)]. Potential differences between two peaks (ΔEp) at scan rates in the range from 0.01 to 0.10 V s−1 are 65 mV, which is almost consistent with the theoretical ΔEp value (59 mV) for the reversible one electron transfer reaction at 24 °C. The ratio of anodic peak currents to cathodic ones is 1.04 ± 0.03 and the (Epa + Epc)/2 value is constant, 0.613 ± 0.001 V versus Fc/Fc+, regardless of the scan rate. Spectroelectrochemical experiments have also been carried out by applying potentials from 0.40 to 0.77 V versus Fc/Fc+ with an optically transparent thin layer electrode. It was found that the UV-visible absorption spectra show clear isosbestic points at 228, 276, and 384 nm, and that the electron stoichiometry is evaluated as 1.03 from the Nernstian plot. These results indicate that the [ReO2(4-MeOpy)4]+ complex is oxidized reversibly to the [ReO2(4-MeOpy)4]2+ complex. Furthermore, it was clarified that the [ReO2(4-MeOpy)4]2+ in CH3CN has the characteristic absorption bands at 236, 278, 330, 478, and 543 nm and their molar absorption coefficients are 4.3 × 104, 4.5 × 103, 1.0 × 104, and 6.1 × 103 M−1 cm−1 (M = mol dm−3), respectively.  相似文献   

14.
A novel organic-inorganic hybrid pentaborate [Ni(C4H10N2)(C2H8N2)2][B5O6(OH)4]2 has been synthesized by hydrothermal reaction and characterized by FT-IR, Raman spectroscopy, elemental analyses and DTA-TGA. Its crystal structure was determined from single crystal X-ray diffraction. The structure consists of isolated polyborate anion [B5O6(OH)4] and nickel complex cation of [Ni(C4H10N2)(C2H8N2)2]2+, in which the two kinds of ligands come from the decomposition of triethylenetriamine material. The [B5O6(OH)4] units are connected to one another through hydrogen bonds, forming a three-dimensional framework with large channel along the a and c axes, in which the templating [Ni(C4H10N2)(C2H8N2)2]2+ cations are located. The assignments of the record FT-IR absorption frequencies and Raman shifts were given.  相似文献   

15.
Crystal and molecular structure of silver magnesium mellitate, Ag2Mg2[C6(COO)6] · 8H2O, was synthesized hydrothermally and characterized by X-ray structure analysis. The complex crystallizes in the monoclinic system, space group P2/n, with unit cell dimensions of a=7.4347(2), b=9.9858(2), c=14.4248(3) Å, β=99.2429(5)°, V=1055.01(4) Å3, and Z=2. The structure was solved and refined to R=0.036 (Rw=0.045) for 1707 independent reflections [Io>2σ(Io)]. The Ag cations are coordinated by six carboxylic oxygen atoms of mellitate anions with composition of [C6(COO)6]6− on the (1 0 1) plane; each mellitate anion linking three neighboring Ag distorted trigonal prisms produces a two-dimensional layered structure parallel to (1 0 1). The Mg cations, which are coordinated by four water molecules and two carboxylic oxygen atoms, are intercalated between the two-dimensional layer stacks. The carboxylate group coordinated to Mg and Ag cations serve as a tridentate ligand in that structure. The number of water molecules incorporated into the mellitate compound is controlled mainly by ionic radii of metal cation in the structure. Furthermore, the ionic radii of metal cations in the mellitate compound play an essential role in arrangement of mellitate anions in the structure, whether as a one-dimensional infinite chain, a two-dimensional layered structure, or a three-dimensional framework structure.  相似文献   

16.
Reaction of the precursor Ir complex [Ir(H)2(PPh3)2(Me2CO)2]PF6 with 3,6-bis(2-pyridyl)tetrazine (bptz) in CH2Cl2 gave a novel dinuclear Ir hydrido complex [Ir2(H)4(PPh3)4(bptz)](PF6)2 · 4CH2Cl2. Crystallographic study described an interesting coordination environment having a π-π interaction and 1H NMR study showed unique upfield shifts of pyridyl rings that are likely induced by the ring current effect of neighboring PPh3 ligands.  相似文献   

17.
The scope of formation and structures of tungsten-iron-sulfur clusters has been explored using reactions based on [(Tp*)WS3]1− (1) as the ultimate precursor. The reaction system 1/FeCl2/NaSEt/S affords the cubane cluster [(Tp*)WFe3S4Cl3]1− (2), which with NaSEt is converted to [(Tp*)WFe3S4(SEt)3]1− (3).Clusters 2 and 3 contain the cubane [WFe33-S)4]3+ core.Complex 1 with FeCl2/NaSEt forms [(Tp*)WFe2S3Cl2(SEt)]1− (4) with the cuboidal [WFe22-S)23-S)(μ2-SR)]2+ core.Treatment of 2 with excess Et3P yields the edge-bridged double [(Tp*)2W2Fe6S8(PEt3)4] (5) with the [W2Fe63-S)64-S)2] core. Reaction of 2 with excess leads a mixture of products, from which [(Tp*)2W2Fe5S9Na(SH)(MeCN)]3−(6) was identified.This cluster, as closely related [(Tp)2Mo2Fe6S9(SH)2]3−, exhibits a core topology [W2Fe5Na(μ2-S)23-S)66-S)] very similar to the PN cluster of nitrogenase. All reactions were carried out in acetonitrile. The structures of 2-6 were established crystallographically as Et4N+ salts. In the cubane series, substitution of tungsten for molybdenum decreases the [MFe3S4]3+/2+ redox potential by ca. 0.20 V but has a negligible effect on electron distribution. This work expands the small set of previously known weak-field W-Fe-S clusters, demonstrates the existence of tungsten-containing edge-bridged double cubanes and clusters with the PN core topology, and introduces a new cuboidal core structure as found in 4 (Tp = hydrotris(pyrazolyl)borate, Tp* = hydrotris(3,5-dimethylpyrazolyl)borate).  相似文献   

18.
Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)4]2− (NN = 2,2′-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)4]2− salts, in the formation of small amounts of salts of the dinuclear species [Ru2(NN)2(CN)7]3−. These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)4]2− following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)5.5][Ru2(bipy)2(CN)7] · 11H2O and [Pr(H2O)6][Ru2(phen)2(CN)7] · 9H2O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru2Ln2(μ-CN)4 squares and Ru4Ln2(μ-CN)6 hexagons, which alternate to form a one-dimensional chain. In [CH6N3]3[Ru2(bipy)2(CN)7] · 2H2O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru2(NN)2(CN)7]3− anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4′-tBu2-2,2′-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3]2[Ru(tBu2bipy)(CN)4] · 2H2O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru2(phen)2(CN)7]3− could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)4]2− if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru2(bipy)2(CN)7]3− (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)4]2−, with a 3MLCT emission at 581 nm.  相似文献   

19.
Reaction of Mo2(O2CCH3)2(DMepyF)2 (HDMepyF=N,N-di(6-methyl-2-pyridyl)formamidine) with HBF4 in CH2Cl2/CH3CN afforded the complex trans-[Mo2(H2DMepyF)2(CH3CN)4](BF4)6 (1), which crystallized in two forms, trans-[Mo2(H2DMepyF)2(CH3CN)4](ax-CH3CN)2(BF 4)6 · 2CH3CN (1a), and trans- [Mo2(H2DMepyF)2(CH3CN)4](ax-BF4) 2(BF4)4 · 2CH3CN (1b). The molecular structures of complexes (1) consist of two quadruply bonded molybdenum atoms, which are spanned by two trans-bridging formamidinate ligands and coordinated by four trans-CH3CN. Each H2DMepyF+ ligand adopts an s-cis,s-cis- conformation. The difference between 1a and 1b is that complex 1a contains two CH3CN molecules as axial ligands, while 1b contains two BF4 anions as axial ligands. Complex 1 is the first dimolybdenum complex containing a pair of trans bridging ligands and two pairs of trans-CH3CN ligands.  相似文献   

20.
Selective substitution of the chlorine atom coordinated to cobalt in the paramagnetic Mo3(CoCl)S4(dmpe)3Cl3 (dmpe = 1,2-bis(dimethylphosphanyl) ethane) complex with a S = 1/2 ground state has been achieved by iodine oxidation to afford the also paramagnetic [Mo3(CoI)S4(dmpe)3Cl3]I ([1]I) salt with a S = 1 ground state in almost quantitative yield. Replacement of chorine by iodine has no significant effect on the structural and electrochemical properties of the Mo3CoS4 system. Metathesis of the [1]I salt with the paramagnetic nickel anionic dithiolate [Ni(mnt)2] (mnt = maleonitrilodithiolate) affords [1]2[Ni(mnt)2]. The stoichiometry evidenced by X-ray analysis reveals that reduction of the [Ni(mnt)2] radical to the corresponding diamagnetic closed shell [Ni(mnt)2]2− dianion, presumably via dismutation, has occurred during the metathesis process. The crystal structure of [1]2[Ni(mnt)2] consists of [Ni(mnt)2]2− dianions sandwiched by two cluster 1+ cations which yield {1+·[Ni(mnt)2]2−·1+} subunits arranged along the crystallographic c axis. Magnetic susceptibility measurements for [1]2[Ni(mnt)2] show a χT product of 0.99 emu K/mol largely unchanged in the 10-300 K range. This behavior agrees with the presence of an S = 1 cluster 1+ cation while the Ni(mnt)2 moiety does not contribute to the paramagnetism of the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号