首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study was conducted to determine the effects of graphene and carbon nanotubes on the thermo-mechanical properties of asphalt binder using molecular simulations and experiments. Micro-morphology of graphene and carbon nanotubes was measured by scanning electron microscopy. Thermal stability and glass transition temperature were investigated by differential scanning calorimeter. Simulation results indicated that the Tg had slightly changed for graphene-modified asphalt (GMA) and carbon nanotubes-modified asphalt (CNsMA) and that the thermal expansion coefficients and thermal conductivity increased along with the adding amount of graphene or carbon nanotubes. The Tg calculated by density–temperature method was closer than the experimental Tg and the Tg decreased in the order of CNsMA, GMA and asphalt. Young’s modulus of asphalt, GMA and CNsMA were 9.2658, 25.7563 and 17.8249 GPa at 298 K, respectively, which indicated that thermo-mechanical properties of asphalt showed considerable improvements after the addition of graphene or carbon nanotubes, and carbon nanotubes-modified asphalt and GMA were promising candidates for the future modified asphalt.  相似文献   

2.
Trogtalite CoSe2 nanobuds encapsulated into boron and nitrogen codoped graphene (BCN) nanotubes (CoSe2@BCN‐750) are synthesized via a concurrent thermal decomposition and selenization processes. The CoSe2@BCN‐750 nanotubes deliver an excellent storage capacity of 580 mA h g?1 at current density of 100 mA g?1 at 100th cycle, as the anode of a sodium ion battery. The CoSe2@BCN‐750 nanotubes exhibit a significant rate capability (100–2000 mA g?1 current density) and high stability (almost 98% storage retention after 4000 cycles at large current density of 8000 mA g?1). The reasons for these excellent storage properties are illuminated by theoretical calculations of the relevant models, and various possible Na+ ion storage sites are identified through first‐principles calculations. These results demonstrate that the insertion of heteroatoms, B–C, N–C as well as CoSe2, into BCN tubes, enables the observed excellent adsorption energy of Na+ ions in high energy storage devices, which supports the experimental results.  相似文献   

3.
The use of polydopamine as a nitrogen containing precursor to generate catalytically active nitrogen‐doped carbon (CNx) materials on carbon nanotubes (CNTs) is reported. These N‐doped CNx/CNT materials display excellent electrocatalytic activity toward the reduction of triiodide electrolyte in dye‐sensitized solar cells (DSSCs). Further, the influence of various synthesis parameters on the catalytic performance of CNx/CNTs is investigated in detail. The best performing device fabricated with the CNx/CNTs material delivers power conversion efficiency of 7.3%, which is comparable or slightly higher than that of Pt (7.1%) counter electrode‐based DSSC. These CNx/CNTs materials show great potential to address the issues associated with the Pt electrocatalyst including the high cost and scarcity.  相似文献   

4.
Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices1-4. Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity.To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT 5, narrow the diameter distribution of metallic catalyst particles and carbon nanotubes 6, and change the ratio of metallic and semiconducting carbon nanotubes 7, as well as lead to graphene synthesis 8. Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions.  相似文献   

5.
Doping of fullerenes has received considerable attention, both experimentally and theoretically, as a tool to fine tuning their physical and chemical properties. In this contribution, we report the results of quantum-chemical calculations on several isomers of the boron and nitrogen doped fullerene derivative C48B6N6. Optimized structures, relative stability and spectroscopic properties were computed at the B3LYP/6-31G level of theory. The more stable structures were characterized by computing vibrational frequencies along with Raman and IR intensities and by modeling their absorption spectra with semiempirical and TD-DFT calculations of excitation energies and intensities. Owing to the symmetry lowering with respect to C60, the first allowed transitions of the more stable C48B6N6 cages appear at lower energies. Despite this, the HOMO-LUMO energy gap, a measure of the semiconducting property, is only slightly reduced, compared to C60. The calculated atomic charge distributions indicate considerable localization of charge on the heteroatoms. As a result, these isomers are expected to have more interesting condensed phase properties than C60 owing to their enhanced intermolecular interactions. Among the isomers considered, the reduced structural deformation and favorable electrostatic interactions lead to a preference for the S6 structure in which two B3N3 aggregates are located on opposite hexagons on the cage.  相似文献   

6.
2D transition metal‐dichalcogenides are emerging as efficient and cost‐effective electrocatalysts for the hydrogen evolution reaction (HER). However, only the edge sites of their trigonal prismatic phase show HER‐electrocatalytic properties, while the basal plane, which is absent of defective/unsaturated sites, is inactive. Herein, the authors tackle the key challenge of increasing the number of electrocatalytic sites by designing and engineering heterostructures composed of single‐/few‐layer MoSe2 flakes and carbon nanomaterials (graphene or single‐wall carbon nanotubes) produced by solution processing. The electrochemical coupling between the materials that comprise the heterostructure effectively enhances the HER‐electrocatalytic activity of the native MoSe2 flakes. The optimization of the mass loading of MoSe2 flakes and their electrode assembly via monolithic heterostructure stacking provides a cathodic current density of 10 mA cm?2 at overpotential of 100 mV, a Tafel slope of 63 mV dec?1, and an exchange current density (j0) of 0.203 µA cm?2. In addition, thermal and chemical treatments are exploited to texturize the basal planes of the MoSe2 flakes (through Se‐vacancies creation) and to achieve in situ semiconducting‐to‐metallic phase conversion, respectively, thus they activate new HER‐electrocatalytic sites. The as‐engineered electrodes show a 4.8‐fold enhancement of j0 and a decrease in the Tafel slope to 54 mV dec?1.  相似文献   

7.
A 3D porous composite consisting of nano‐0D MoS2, nano‐1D carbon nanotubes (CNTs), and nano‐2D graphene is successful prepared using an electrostatic spray deposition (ESD) technique. Depending on the preparation procedure either nanodots of amorphous MoS2 (0.5–5 nm) or nanocrystalline few‐layered MoS2 (5–10 nm) bonded to graphene‐carbon nanotubes backbone are obtained. These functionalized carbon nanotubes adhere to a porous graphene‐based network. Such composites can be directly ­deposited on the current collectors without any binder or conductive additives to assemble a battery that shows superior rate performance and cycling ­stability. For nanodots, nucleation and diffusion issues usually connected with ­conversion are largely mitigated if not totally nullified. The use of mechanically and diffusionally isolated but electrochemically well connected electroactive nanodots offer an effective solution to render conversion reaction reversible. The use of nano‐1D and nano‐2D carbon structures offer additional electrical and mechanical advantages that are discussed. Furthermore, this technique, which is easily extendable to other electrode materials, seems to be of a great potential, especially for thin‐film batteries, flexible batteries, and future ­paintable batteries.  相似文献   

8.
Abstract

We report a quantum mechanics calculation and molecular dynamics simulation study of Carmustine drug (BNU) adsorption on the surface of nitrogen (N) and boron (B) doped-functionalized single-walled carbon nanotubes. The stability of the optimized complexes is determined on the basis of relative adsorption energy (ΔEads). The ΔEads results claim that drug molecule tends to adsorb on the nitrogen and boron doped functionalized tubes with the energy values in the range of ?61.177 to ?95.806?kJ/mol. Based on the obtained results, it is observed that N-doping compared with B-doping has improved more effectively drug absorption on the surface of functionalized nanotube. The results of Atoms in Molecule calculations indicate that drug adsorbs molecularly via hydrogen bonds interactions on the surface doped-functionalized carbon nanotubes. Moreover, molecular dynamics simulation is performed to investigate the dynamics behavior of the drug molecules on the nitrogen-doped functionalized carbon nanotube (f-NNT) and functionalized carbon nanotube (f-CNT). The higher average calculated electrostatic and van der Waals energies as well as higher number of intermolecular hydrogen bonds in BNU-f-NNT in comparison with BNU-f-CNT model suggest the more effectual interaction between drug molecules and nitrogen-doped functionalized carbon nanotube.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
The dissociation of O2 and HO2 are important reactions that occur at the cathode of fuel cells and require catalysts to proceed. There is a need to replace the presently used platinum catalyst with less expensive materials. Modelling has been used to identify potential two-dimensional catalysts such as boron- and nitrogen-doped graphene. Here, the possibility of boron nitride nano-ribbons and nano-tubes which do not require doping are considered. Density functional calculations are used to show that O2 and HO2 can bond to zig–zag and armchair boron nitride nano-ribbons and nano-tubes. The bond dissociation energies (BDEs) to remove an O and an OH from O2 and HO2 bonded to the boron nitride ribbons and tubes are calculated and are a measure of the catalytic effectiveness of the boron nitride structures. The results show that both the zig–zag and armchair boron nitride ribbons could be a catalyst for HO2 dissociation but not O2 dissociation. However, zig–zag boron nitride nano-tubes are shown not to be effective catalysts for the dissociation of O2 or HO2. An armchair boron nitride nano-tube is shown to have a very low BDEs to remove OH from HO2 bonded to it and could be an affective catalyst.  相似文献   

10.
This is a report of microbial formation of multiwall carbon nanotubes (MWCNT) and nanofibers at normal pressure and temperature. Our results demonstrate a single cell organism's ability to form complicated material of high industrial interest. The microorganism, Gallionella, is classified as autotrophic and dysoxic. It uses CO2 for its carbon source and grows in environments with low concentrations of free oxygen. The organisms were taken from a deep bedrock tunnel where water leaking from cracks in the rock formed a precipitate of iron as a bacterial slime on the rock wall. Detailed investigations of the samples by transmission electron microscopy (TEM) revealed several types of MWCNT. The stalk single MWCNT was observed with a diameter of about 10 nm and with an inner diameter of 1.35 nm. The wall of the nanotube is built by graphite layers. The 10 to 20 sheets are used to form the tubes. The measured spacing between the lines is 0.34 nm, which is an average value of interlayer spacing, close to the graphitic distance (0.335 nm). HRTEM images reveal a two-dimensional lattice with a spacing of 0.24 nm, indicating the presence of graphene.  相似文献   

11.
目的 二氧化硅纳米管由于具有生物相容性好、光学性质优异等特殊性能在不同领域展现出良好的应用前景,其尺寸和形貌可显著影响材料性质。为制备尺寸较大的纳米管并拓展其在不同领域的应用,本研究选择尺寸较大的多肽组装体为模板,进行二氧化硅的仿生矿化。方法 以Bola型多肽Ac-KI3VK-CONH2自组装形成的尺寸较大(直径约40 nm)的纳米管为模板,通过仿生矿化的方法制备二氧化硅纳米材料。首先考察了多肽纳米管的稳定性,发现在稀释、加入有机溶剂和改变溶液pH值时,纳米管的形貌均被破坏,展示出较差的稳定性。在此基础上,以该多肽纳米管为模板,选择反应速率较快的正硅酸甲酯(TMOS)为前驱体仿生矿化二氧化硅纳米材料,探索了不同矿化条件对二氧化硅纳米管尺寸和形貌的影响。结果 以反应速率较快的TMOS为硅源、体积百分比浓度为1.11%~3.33%、溶液为中性或者弱碱性时能够矿化形成形貌和尺寸较大且分布均匀的二氧化硅纳米管。结论 通过选择合适的多肽组装体模板和反应速率快的TMOS为硅源,成功制备出了尺寸较大的二氧化硅纳米管,这为拓展其在不同领域的应用奠定了基础,具有重要意义。  相似文献   

12.
A three‐component, flexible electrode is developed for supercapacitors over graphitized carbon fabric, utilizing γ‐MnO2 nanoflowers anchored onto carbon nanotubes (γ‐MnO2/CNT) as spacers for graphene nanosheets (GNs). The three‐component, composite electrode doubles the specific capacitance with respect to GN‐only electrodes, giving the highest‐reported specific capacitance (308 F g?1) for symmetric supercapacitors containing MnO2 and GNs using a two‐electrode configuration, at a scan rate of 20 mV s?1. A maximum energy density of 43 W h kg?1 is obtained for our symmetric supercapacitors at a constant discharge‐current density of 2.5 A g?1 using GN–(γ‐MnO2/CNT)‐nanocomposite electrodes. The fabricated supercapacitor device exhibits an excellent cycle life by retaining ≈90% of the initial specific capacitance after 5000 cycles.  相似文献   

13.
Gerretsen  F. C.  de Hoop  H. 《Plant and Soil》1954,5(4):349-367
Summary 1. It was shown that boron is an essential micro-element forAzotobacter chroococcum.2. Multiplication, CO2 production, N fixation and pigmentation are closely related to the boron content of the culture medium. Of these, pigmentation is most susceptible to slight boron deficiency; with an easily assimilable carbon source (mannite, glucose) nitrogen fixation seems to be more susceptible than multiplication to boron deficiency.3. With increasing gifts of boron, the CO2 production curves in quartz sand with nutrients as well as in liquid cultures follow each other at regular sequences.4. The optimum boron content for normal development ofAzotobacter amounts toca 2 ppm in liquid cultures, to 5 ppm in quartz sand cultures, whereas in soils sometimes 8 ppm B are tolerated, without noticeable loss of activity.  相似文献   

14.
It is worth remarking that the C20 cage like isomer has been the topic of concentrated theoretical research. C20 single fullerene molecular devices gained a lot of popularity in the field of nano research due to their superlative doping dependent conductive properties. In this work, the double fullerene device has been considered. Here double fullerene molecular junction is created when two C20 fullerene molecules, one in pristine form and other in doped form, are positioned between gold electrodes. Doping was done firstly by second period elements, boron, nitrogen, oxygen, and fluorine and then by group 14 tetragens, silicon, germanium, tin, and lead. For both the cases current characteristics were investigated. Superior conductivity was observed in the boron doped double C20 molecular device while the fluorine doped device was the least conducting. Further for group 14 doping, the silicon doped double C20 device showed maximum current carrying feature, whereas, least value of current was noted in tin doped C20 device.  相似文献   

15.
H. Shen 《Molecular simulation》2013,39(11):939-944
The Molecular dynamics (MD) method was used to predict the thermal-stability and tensile properties of two single-walled Si nanotubes that are hydrogenated outside and both inside and outside respectively, i.e. the Sio–H and Siio–H nanotubes. Further, the axial-tensile properties of the two Si–H nanotubes were discussed by comparison with one (14,14) carbon nanotube. The obtained results show that: (1) the two Si–H nanotubes both have the Si skeletons with the structure similar to the {110} planes of single-crystal silicon, and they can stably exist only at the temperature lower than 200 and 125 K respectively and (2) the Sio–H and Siio–H nanotubes, respectively, have the tensile strength of 4.0 and 1.2 GPa as well as the fracture strain of 0.35 and 0.32; both their tensile strength and fracture strain are much lower than the corresponding ones of the (14,14) carbon-tube.  相似文献   

16.
The integration of graphene nanosheets on the macroscopic level using a self‐assembly method has been recognized as one of the most effective strategies to realize the practical applications of graphene materials. Here, a facile and scalable method is developed to synthesis two types of graphene‐based networks, manganese dioxide (MnO2)–graphene foam and carbon nanotube (CNT)–graphene foam, by solution casting and subsequent electrochemical methods. Their practical applications in flexible all‐solid‐state asymmetric supercapacitors are explored. The proposed method facilitates the structural integration of graphene foam and the electroactive material and offers several advantages including simplicity, efficiency, low‐temperature, and low‐cost. The as‐prepared MnO2–graphene and CNT–graphene electrodes exhibit high specific capacitances and rate capability. By using polymer gel electrolytes, a flexible all‐solid‐state asymmetric supercapacitor was synthesized with MnO2–graphene foam as the positive electrode and CNT‐graphene as the negative electrode. The asymmetric supercapacitors can be cycled reversibly in a high‐voltage region of 0 to 1.8 V and exhibit high energy density, remarkable rate capability, reasonable cycling performance, and excellent flexibility.  相似文献   

17.
We have extended an earlier study, in which we characterized in detail the electrostatic potentials on the inner and outer surfaces of a group of carbon and BxNx model nanotubes, to include several additional ones with smaller diameters plus a new category, C2xBxNx. The statistical features of the surface potentials are presented and analyzed for a total of 19 tubes as well as fullerene and a small model graphene. The potentials on the surfaces of the carbon systems are relatively weak and rather bland; they are much stronger and more variable for the BxNx and C2xBxNx. A qualitative correlation with free energies of solvation indicates that the latter two categories should have considerably greater water solubilities. The inner surfaces are generally more positive than the corresponding outer ones, while both positive and negative potentials are strengthened by increasing curvature. The outsides of BxNx tubes have characteristic patterns of alternating positive and negative regions, while the insides are strongly positive. In the closed C2xBxNx systems, half of the C–C bonds are double-bond-like and have negative potentials above them; the adjacent rows of boron and nitrogens show the usual BxNx pattern. When the C2xBxNx tubes are open, with hydrogens at the ends, the surface potentials are dominated by the B+–H and N–H+ linkages.Figure Calculated electrostatic potential on the molecular surface of closed (6,0) B48N48; a is an outside view, while b shows the interior. Color ranges, in kcal mol–1: red, greater than 20; yellow, between 20 and 0; green, between 0 and –10; blue, between –10 and –20; purple, more negative than –20  相似文献   

18.
Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China's forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10‐km‐resolution gridded historical data sets (tropospheric O3 concentrations, climate variability/change, and other environmental factors such as land‐cover/land‐use change (LCLUC), increasing CO2 and nitrogen deposition), we conducted nine simulation experiments to: (1) investigate the temporo‐spatial patterns of NPP and NCE in China's forest ecosystems from 1961–2005; and (2) quantify the effects of tropospheric O3 pollution alone or in combination with climate variability and other environmental stresses on forests' NPP and NCE. Results China's forests acted as a carbon sink during 1961–2005 as a result of the combined effects of O3, climate, CO2, nitrogen deposition and LCLUC. However, simulated results indicated that elevated O3 caused a 7.7% decrease in national carbon storage, with O3‐induced reductions in NCE (Pg C year?1) ranging from 0.4–43.1% among different forest types. Sensitivity experiments showed that climate change was the dominant factor in controlling changes in temporo‐spatial patterns of annual NPP. The combined negative effects of O3 pollution and climate change on NPP and NCE could be largely offset by the positive fertilization effects of nitrogen deposition and CO2. Main conclusions In the future, tropospheric O3 should be taken into account in order to fully understand the variations of carbon sequestration capacity of forests and assess the vulnerability of forest ecosystems to climate change and air pollution. Reducing air pollution in China is likely to increase the resilience of forests to climate change. This paper offers the first estimate of how prevention of air pollution can help to increase forest productivity and carbon sequestration in China's forested ecosystems.  相似文献   

19.
Hybrid nanostructures containing 1D carbon nanotubes and 2D graphene sheets have many promising applications due to their unique physical and chemical properties. In this study, the authors find Prussian blue (dehydrated sodium ferrocyanide) can be converted to N‐doped graphene–carbon nanotube hybrid materials through a simple one‐step pyrolysis process. Through field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectra, atomic force microscopy, and isothermal analyses, the authors identify that 2D graphene and 1D carbon nanotubes are bonded seamlessly during the growth stage. When used as the sulfur scaffold for lithium–sulfur batteries, it demonstrates outstanding electrochemical performance, including a high reversible capacity (1221 mA h g?1 at 0.2 C rate), excellent rate capability (458 and 220 mA h g?1 at 5 and 10 C rates, respectively), and excellent cycling stability (321 and 164 mA h g?1 at 5 and 10 C (1 C = 1673 mA g?1) after 1000 cycles). The enhancement of electrochemical performance can be attributed to the 3D architecture of the hybrid material, in which, additionally, the nitrogen doping generates defects and active sites for improved interfacial adsorption. Furthermore, the nitrogen doping enables the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much‐improved cycling performance. Therefore, the hybrid material functions as a redox shuttle to catenate and bind polysulfides, and convert them to insoluble lithium sulfide during reduction. The strategy reported in this paper could open a new avenue for low cost synthesis of N‐doped graphene–carbon nanotube hybrid materials for high performance lithium–sulfur batteries.  相似文献   

20.
Electrochemical reduction of CO2 provides an opportunity to reach a carbon‐neutral energy recycling regime, in which CO2 emissions from fuel use are collected and converted back to fuels. The reduction of CO2 to CO is the first step toward the synthesis of more complex carbon‐based fuels and chemicals. Therefore, understanding this step is crucial for the development of high‐performance electrocatalyst for CO2 conversion to higher order products such as hydrocarbons. Here, atomic iron dispersed on nitrogen‐doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO2 reduction to CO. Fe/NG has a low reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen‐confined atomic Fe moieties on the nitrogen‐doped graphene layer is confirmed by aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy and X‐ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. The CO2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N4) embedded in nitrogen‐doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号