首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation constants of equimolar and bis-chelate copper(II) and zinc(II) complexes with three aliphatic and four aromatic-substituted β-aminophosphonates have been determined in water solution by potentiometric studies. Spectroscopic parameters clearly indicate involvement of {NH3, PO3 2−} in both metal ions coordination. The comparison of the stability constants reveals slightly higher coordination power of the aliphatic-substituted β-aminophosphonic acids, which may be due to the higher basicity of their amino groups. All studied ligands are more effective in Cu2+ and Zn2+ coordination than phosphonic analogue of simple β-amino acid.  相似文献   

2.
A macrocyclic ligand possessing a donor set of {N3S2} synthesised via Cs+-templation, 4-(pyridin-2-ylmethyl)-1,7-dithia-4,10-diazacyclododecane (L) and its Cu(II) complex, [CuL(NCMe)]2+ (6), are described. This Cu(II) complex interacts with a range of anions, F, Cl, Br, I, HCOO, AcO, CO32−, NO3, C2O42−, H2PO4, SCN, CN, BF4. Of the investigated anions, I, SCN, and CN, show strong interaction with the Cu(II) centre as indicated by their spectral variations. The iodide particularly demonstrates distinct change in colour. This change originates from a newly appeared band at 471 nm upon iodide binding, which arises from the ligand (I) to Cu(II) charge transfer (LMCT) in the iodide-substituted Cu(II) complex, [CuLI]+ (7). All organic compounds are characterised by NMR spectroscopy and/or microanalysis. The identities of the two Cu(II) complexes are confirmed by using microanalysis and the complex 6 is crystallographically analysed.  相似文献   

3.
《Inorganica chimica acta》2009,362(3):707-229
Aminophosphonates were found to be effective metal ion chelators. Ethylenediamine (EN) itself binds strongly to a series of metal ions forming efficient five-membered chelate ring using two nitrogen donors. Combination of EN with phosphonate function results in the family of low molecular chelating agents. Introduction of a pyridine moiety into EN-phosphonate structure results in the very effective ligands involving a four-nitrogen donor set to coordinate the metal ion. In this work, the potentiometric and spectroscopic data for two analogues 2,2′-(ethylenedi-imino)bis(3-pyridylphosphonic-acid) - L2 and 2,2′-(ethylenedi-imino)bis(2-pyridyl-phosphonic-acid) - L3, comprising EN, two phosphonates and two pyridines with Cu(II), Ni(II) and Zn(II) ions are presented showing very high efficacy of one of the ligands studied.  相似文献   

4.
The template reaction between salicylaldehyde S-methyl-isothiosemicarbazone and 2-formylpyridine in presence of nickel(II) or copper(II) salts yields two new coordination compounds with general formula [NiL1]2(1) and [CuL2]2(2) (L1 = the dianionic (N1-salicylidene)(N4-(hydroxy(pyridin-2-yl)methyl) S-methyl-isothiosemicarbazide) ligand and L2 = the doubly deprotonated (N1-salicylidene)(N4-(picolinoyl) S-methyl-isothiosemicarbazide) ligand). In the complex 1, the formed L1 ligand appears as result of an addition reaction of the precursors, while for 2 a redox mechanism is implicated in the formation of L2. Despite the fact that the initial organic precursors are the same, the resulting ligands obtained in the template reaction are different. In 1, the Ni(II) metal ion adopts a square-planar geometry and the [NiL1] units are forming dimerized chains through weak Ni···Ni interactions (3.336 and 3.632 Å). In 2, the Cu(II) metal ions adopt a square-pyramidal geometry and form dinuclear species through weak Cu···O (phenoxo) interactions. The magnetic susceptibility measurements of the complexes reveal the diamagnetic nature of 1 as expected for a square planar Ni(II) complex and a paramagnetic behavior for 2 with weak intra-dimer antiferromagnetic interaction (J/kB = −2.1(1) K).  相似文献   

5.
1‐phenyl‐3‐methyl‐4‐benzoyl‐5‐pyrazolone 4‐ethyl‐thiosemicarbazone (HL) and its copper(II), vanadium(V) and nickel(II) complexes: [Cu(L)(Cl)]·C2H5OH·( 1 ), [Cu(L)2]·H2O ( 2 ), [Cu(L)(Br)]·H2O·CH3OH ( 3 ), [Cu(L)(NO3)]·2C2H5OH ( 4 ), [VO2(L)]·2H2O ( 5 ), [Ni(L)2]·H2O ( 6 ), were synthesized and characterized. The ligand has been characterized by elemental analyses, IR, 1H NMR and 13C NMR spectroscopy. The tridentate nature of the ligand is evident from the IR spectra. The copper(II), vanadium(V) and nickel(II) complexes have been characterized by different physico‐chemical techniques such as molar conductivity, magnetic susceptibility measurements and electronic, infrared and electron paramagnetic resonance spectral studies. The structures of the ligand and its copper(II) ( 2 , 4 ), and vanadium(V) ( 5 ) complexes have been determined by single‐crystal X‐ray diffraction. The composition of the coordination polyhedron of the central atom in 2 , 4 and 5 is different. The tetrahedral coordination geometry of Cu was found in complex 2 while in complex 4 , it is square planar, in complex 5 the coordination polyhedron of the central ion is distorted square pyramid. The in vitro antibacterial activity of the complexes against Escherichia coli, Salmonella abony, Staphylococcus aureus, Bacillus cereus and the antifungal activity against Candida albicans strains was higher for the metal complexes than for free ligand. The effect of the free ligand and its metal complexes on the proliferation of HL‐60 cells was tested.  相似文献   

6.
Schiff base condensation of m-phenylenediamine with two equivalents of o-(diphenylphophino)benzaldehyde products the potentially tetradentate molecule 1,3-(Ph2P(o-C6H4)CHN)2C6H4 (1) in high yield. The reaction of 1 and [Cu(NCMe)4]BF4 affords the dinuclear complex [(1,3-(Ph2P(o-C6H4)CHN)2C6H4)2Cu2](BF4)2 (2) through coordination of the imino-phosphine groups. The structure of 2 has been determined by an X-ray diffraction study.  相似文献   

7.
Prompted by the recently reported capacity of the physiologically occurring Cu(I)-[glutathione]2 complex (Cu(I)-[GSH)]2) to reduce oxygen, the effect of various GSH-binding metals (Co2+, Cd2+, Zn2+, Pb2+, Al3+, Hg2+ and Ni2+) on the superoxide-generating capacity of such complex was investigated. Amongst all tested metals, only Hg2+ was able to substantially affect the capacity of Cu(I)-[GSH]2 to generate superoxide. When Hg2+ and Cu(I)-[GSH]2 were mixed equimolarly, the superoxide formation, assessed through the cytochrome c reduction and dihydroethidium oxidation, was increased by over 50%. Such effect was totally inhibitable by SOD. Based on the reportedly higher affinity of Hg2+ for GSH and the observed ability of Hg2+ to lower the concentration of Cu(I)-[GSH]2 (spectroscopically assessed), we suggest that Hg2+ displaces Cu(I) from Cu(I)-[GSH]2, to release Cu(I) ions and form a Hg(II)-[GSH]2 complex. The latter species would account for the Hg2+-induced exacerbation of the superoxide production. In fact, the present study provides first time evidence that a preformed Hg(II)-[GSH]2 complex is able to concentration-dependently reduce oxygen. Such redox-activity was evidenced using cytochrome c and confirmed by EPR studies using DMPO (5,5-dimethyl-1-pyrroline N-oxide, a spin-trapping agent). Considering this novel ability of Hg(II)-[GSH]2 to generate superoxide, a further characterization of its redox-activity and its potential to affect superoxide-susceptible biological targets appears warranted.  相似文献   

8.
A new chitosan derivative has been synthesized by crosslinking a metal complexing agent, [6,6′-piperazine-1,4-diyldimethylenebis (4-methyl-2-formyl) phenol] (L), with chitosan (CTS). The resulting material (CCTSL) was characterized by elemental (CHN), spectral (FTIR and solid-state NMR), thermal (TGA and DTA), and structural (powder XRD and SEM) analyses. Adsorption experiments (pH dependency, kinetics, and equilibrium) of CCTSL toward various metal ions such as Mn(II), Fe(II), Co(II), Cu(II), Ni(II), Cd(II), and Pb(II) were carried out at 25 °C. The results showed that the adsorption was dependent on the pH of the solution, with a maximum capacity between pHs 6.5 and 8.5. The kinetics was evaluated by applying the pseudo-first-order and pseudo-second-order equation models and the equilibrium data were analyzed by Langmuir isotherm model. The maximum adsorption capacity was 1.21 mmol g−1 for Cu(II) and the order of adsorption capacities for the metal(II) ions studied was found to be Cu(II) > Ni(II) > Cd(II)  Co(II)  Mn(II)  Fe(II)  Pb(II).  相似文献   

9.
An amphiphilic swallow-tail bipyridyl ligand, 4,4′-bis(dihexylmethyl)-2,2′-bipyridine, and its heteroleptic ruthenium (II) complex were synthesized starting from dichloro-(p-cymene)ruthenium (II) dimer. The complex was characterized by UV/Vis and FTIR spectrophotometers, NMR spectroscopy and cyclic voltammetry. The performance of this complex as charge transfer photosensitizer in nc-TiO2 based dye sensitized solar cells was studied under standard AM 1.5 sunlight and by using an electrolyte consisting of 0.6 M N-methyl-N-butyl imidazolium iodide (BMII), 0.1 M LiI, 0.05 M I2, 0.5 M 4-tert-butyl pyridine (TBP) in acetonitrile. The complex, CS9 in DMF, gave a photocurrent density of 12.62 mA/cm2, 630 mV open circuit potential and 0.62 fill factor yielding 5.68% efficiency.  相似文献   

10.
Schiff base ligand (L) was obtained by condensation reaction between 4-aminopyrimidin-2(1H)-one (cytosine) with 2-hydroxybenzaldehyde. The synthesized Schiff base was used for complexation with Cu(II) and Fe(II) ions used by a molar (2 : 1 mmol ration) in methanol solvent. The structural features of ligand, Cu(II), and Fe(II) metal complexes were determined by standard spectroscopic methods (FT-IR, elemental analysis, proton and carbon NMR spectra, UV/VIS, and mass spectroscopy, magnetic susceptibility, thermal analysis, and powder X-ray diffraction). The synthesized compounds (Schiff base and its metal complexes) were screened in terms of their anti-proliferative activities in U118 and T98G human glioblastoma cell lines alone or in combination with electroporation (EP). Moreover, the human HDF (human dermal fibroblast) cell lines was used to check the bio-compatibility of the compounds. Anti-proliferative activities of all compounds were ascertained using an MTT assay. The complexes exhibited a good anti-proliferative effect on U118 and T98G glioblastoma cell lines. In addition, these compounds had a negligible cytotoxic effect on the fibroblast HDF cell lines. The use of compounds in combination with EP significantly decreased the IC50 values compared to the use of compounds alone (p<0.05). These results show that newly synthesized Cu(II) and Fe(II) complexes can be developed for use in the treatment of chemotherapy-resistant U118 and T98G glioblastoma cells and that treatment with lower doses can be provided when used in combination with EP.  相似文献   

11.
In this study, CdS quantum dots (QDs) capped with mercaptosuccinic acid (MSA) were prepared in one step. The size, shape, component and spectral properties of MSA‐capped CdS QDs were characterized by transmission electron microscopy (TEM), photoluminescence (PL) and infrared (IR) spectrometry. The results showed that the prepared QDs with an average diameter of 6 nm have favorable fluorescence, which is greatly influenced by the pH of the environment. The interaction of some heavy metal ions including Ag+, Hg2+, Cu2+, Ni2+ and Co2+ with MSA‐capped CdS QDs was investigated in different buffering pH media. Based on the fluorescence quenching of the QDs in the presence of each of the metal ions, the feasibility of their determinations was examined according to the Stern–Volmer equation. The investigations showed that Hg(II) ions can be determined in the presence of many co‐existing metal ions at a buffering pH of 5. This method was satisfactorily applied to the measurement of Hg(II) ions in some environmental samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The reactions of 4-(p-dimethylaminophenyl)-6-phenyl-2,2′-bipyridine (HL) with three metal salts of platinum(II), copper(I) and zinc(II) provide the new complexes [Pt(L)(PPh3)]ClO4 (1), [Cu(HL)2]BF4 (2), [Cu(HL)(PPh3)]BF4 (3) and [Zn(HL)2](ClO4)2 (4). All the structures of these four complexes have been characterized by single crystal X-ray diffraction, and their spectroscopic properties were investigated. Especially for complex 1, upon protonation, the excited state can be tuned from the intraligand charge transfer (ILCT) to the metal-to-ligand charge transfer (MLCT), and such switching in the excited state is acid/base reversible. The time-dependent density functional theory (TD-DFT) calculation was used to interpret the absorption spectra of complex 1, and the calculated result is consistent with those of experiments results. In contrast with 1, the lowest energy absorption at 410-650 nm of complexes 2 and 3 can be assigned to MLCT excited state. In solid state or solution complex 4 exhibits intense photoluminescence attributed to a ILCT transition in nature.  相似文献   

13.
The interactions between a new proline-threonine dipeptide ligand with two metallic cations were investigated in aqueous solution. The metallic cations studied were the copper(II) and the nickel(II), which are involved in many biological processes. The combination of potentiometry, UV-visible spectrophotometry, EPR, and mass spectrometry was used to determine the formation constants of the complexes and their structure in solution. The complexation sites were identified using electronic absorption and EPR spectroscopies. Copper complexes were obtained as square planar or square pyramidal mononuclear species, whereas nickel complexes were obtained as dinuclear species with an octahedral geometry.  相似文献   

14.
Three new Cu(II) complexes, [Cu2(C3H2O4)(phen)2(H2O)3](NO3)2(H2O)2 (1) (C3H2O4 = malonate, phen = 1,10-phenanthroline), [Cu2(C4H4O4)(phen)2(H2O)2](NO3)2 (2) (C4H4O4 = succinate), and {[Cu2(phen)2(H2O)(NO3)]2(C5H6O4)2}(NO3)2 (3) (C5H6O4 = glutarate) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. The X-ray analysis reveals that the structures of 1 and 2 are of dinuclear copper(II) complexes bridged by malonate and succinate dianions, respectively, and 3 is a tetranuclear species formed by two {[Cu2(phen)2(H2O)(NO3)](C5H6O4)} fragments. The copper ions in 1 and 3 show square-pyramidal coordination geometry, while the copper ions in 2 exhibit a square planar geometry. In each complex, the dicarboxylate ligand is coordinated to copper ions as a chelate and monodentate (1), bis-monodentate (2), and bis-bridging ligand toward the copper ions with syn-syn coordination mode (3).  相似文献   

15.
The complexes of Cu(I), Cu(II), Ni(II), Zn(II) and Co(II) with a new polypyridyl ligand, 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (L), have been synthesized and characterized. The crystal structures of these complexes have been elucidated by X-ray diffraction analyses and three types of coordination modes for L were found to exist in them. In the dinuclear complex [Cu(I)L(CH3CN)]2·(ClO4)2 (1), L acts as a tridentate ligand with two Cu(I) centers bridged by two L ligands to form a box-like dimeric structure, in which each Cu(I) ion is penta-coordinated with three nitrogen atoms and a methoxyl oxygen atom of two L ligands, and an acetonitrile. In [Cu(II)L(NO3)2]·CH3CN 2, the Cu(II) center is coordinated to the two nitrogen atoms of the two pyridine rings of L which acts as a bidentate ligand. The structures of [Ni(II)L(NO3)(H2O)2]·2CH3CN·NO3 (3), [Zn(II)L(NO3)2 (H2O)]·2CH3CN (4) and [Co(II)LCl2(H2O)] (5) are similar to each other in which L acts as a tridentate ligand by using its half side, and the metal centers are coordinated to a methoxyl oxygen atom and two bipyridine nitrogen atoms of L in the same side. The formation of infinite quasi-one-dimensional chains (1, 4 and 5) or a quasi-two-dimensional sheet (2) assisted by the intra- or intermolecular face-to-face aryl stacking interactions and hydrogen bonds may have stabilized the crystals of these complexes. Luminescence studies showed that 1 exhibits broad, structureless emissions at 420 nm in the solid state and at 450 nm in frozen alcohol frozen glasses at 77 K. Cyclic voltammetric studies of 1 show the presence of an irreversible metal-centered reduction wave at approximately −0.973 V versus Fc+/0 and a quasi-reversible ligand-centered reduction couple at approximately −1.996 V versus Fc+/0. The solution behaviors of these complexes have been further studied by UV-Vis and ESR techniques.  相似文献   

16.
The reaction of trans(N)-[Co(d-pen)2] (pen = penicillaminate) with HgCl2 or HgBr2 in the molar ratios of 1:1 gave the sulfur-bridged heterodinuclear complex, [HgX(OH2){Co(d-pen)2}] (X = Cl (1a) or Br (1b)). A similar reaction in the ratio of 2:1 produced the trinuclear complex, [Hg{Co(d-pen)2}2] (1c). The enantiomers of 1a and 1c, [HgCl(OH2){Co(l-pen)2}] (1a′) and [Hg{Co(l-pen)2}2] (1c′), were also obtained by using trans(N)-[Co(l-pen)2] instead of trans(N)-[Co(d-pen)2]. Further, the reaction of cis · cis · cis-[Co(d-pen)(l-pen)] with HgCl2 in the molar ratio of 1:1 resulted in the formation of [HgCl(OH2){Co(d-pen)(l-pen)}] (2a). During the formations of the above six complexes, 1a, 1b, 1c, 1a′, 1c′, and 2a, the octahedral Co(III) units retain their configurations. On the other hand, the reaction of cis · cis · cis-[Co(d-pen)(l-pen)] with HgCl2 in the molar ratio of 2:1 gave not [Hg{Co(d-pen)(l-pen}2] but [Hg{Co(d-pen)2}{Co(l-pen)2}] (2c), accompanied by the ligand-exchange on the terminal Co(III) units. The X-ray crystal structural analyses show that the central Hg(II) atom in 1c takes a considerably distorted tetrahedral geometry, whereas that in 2c is of an ideal tetrahedron. The interconversion between the complexes is also examined. The electronic absorption, CD, and NMR spectral behavior of the complexes is discussed in relation to the crystal structures of 1c and 2c.  相似文献   

17.
Copper(II), nickel(II) and palladium(II) complexes with aldehydo-D-arabinose-, L-arabinose-, D-galactose-, D-glucose- and D-mannose- S-methyl- and S-benzylhydrazonecarbodithioates were synthesized and characterized by elemental analyses, infrared and UV-Vis. In these complexes the aldehydo sugar hydrazone acts as a mononegative NS bidentate ligand. The reaction of Cu(II) chloride, however, proceeded with reduction, and copper(I) complexes were isolated. The hydrazone molecule in these Cu(I) complexes acts as neutral NS bidentate ligand. Dehydro-L-ascorbic acid bis(S-methylhydrazinecarbodithioate) and bis(hydrazinecarbothioamide), as well as their corresponding Cu(II), Ni(II), zinc(II) and Pd(II) complexes were prepared and characterized. Electrospray (ES) and field desorption (FD) mass spectra suggest that the Cu(II), Ni(II), and Pd(II) complexes are monomeric (square planar), whereas the Zn(II) are dimeric and pentacoordinate.  相似文献   

18.
We have studied the binding interactions of biologically important carbohydrates (d-glucose, d-xylose and d-mannose) with the newly synthesized five-coordinate dinuclear copper(II) complex, [Cu2(hpnbpda)(μ-OAc)] (1) and zinc(II) complex, [Zn2(hpnbpda)(μ-OAc)] (2) [H3hpnbpda = N,N′-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N′-diacetic acid] in aqueous alkaline solution. The complexes 1 and 2 are fully characterized both in solid and solution using different analytical techniques. A geometrical optimization was made of the ligand H3hpnbpda and the complexes 1 and 2 by molecular mechanics (MM+) method in order to establish the stable conformations. All carbohydrates bind to the metal complexes in a 1:1 molar ratio. The binding events have been investigated by a combined approach of FTIR, UV–vis and 13C NMR spectroscopic techniques. UV–vis spectra indicate a significant blue shift of the absorption maximum of complex 1 during carbohydrate coordination highlighting the sugar binding ability of complex 1. The apparent binding constants of the substrate-bound copper(II) complexes have been determined from the UV–vis titration experiments. The binding ability and mode of binding of these sugar substrates with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in 13C NMR spectra for carbon atoms C1, C2, and C3 of sugar substrates.  相似文献   

19.
Condensation of 2-pyridinecarboxaldehyde and 1,9-bis-(2′-pyridyl)-2,5,8-triazanonane, L1, yields 1-[3-aza-4-(2-pyridyl)butyl]-2-(2-pyridyl)-3-[(2-pyridyl)methyl]imidazolidine, L2, as proven by NMR solution spectra. When L2 is reacted with Fe(III) in different alcohols, an imidazolidine ring opening and an oxidative dehydrogenation reaction occur resulting in new complexes of the type: [FeIILn]2+. Compound 1 with a coordinated L3′ ligand was obtained in n-propanol as a solvent. Compounds 2, 3 and 4 were obtained with L4′, L5′ and L6′ when iso-propanol, n-butanol and iso-butanol were used as solvent, respectively. The structures for 1, 2, 3 and 4 were determined by NMR solution spectra and additionally by X-ray crystallography in the case of the n-butoxy derivative 3. When Cu(II) was used, the hexadentate ligand L2 undergoes also an imidazolidine ring opening reaction on complex formation, however, now generating the well-known pentadentate ligand L1 that is coordinated to the metal ion, 7. Evidence is again provided by the corresponding X-ray structure. With Zn(II) the initial structure of L2 is maintained and in this case L2 functions as a tetradentate, 5, or bis-tridentate ligand, 6, depending on whether the stoichiometric ratio M:L was 1:1 or 2:1, respectively. This has been proven by a solid-state X-ray structure analysis as well as by NMR solution spectra. The ring opening reaction in the presence of Fe(III) can be explained as a result of a higher Lewis acidity of this metal centre, which decreases the electronic density on the nitrogen atom of the imidazolidinic cycle, thus weakening the nitrogen-carbon bond, favouring the nucleophilic attack on the carbon atom by alcohols and producing a more stable hexacoordinated species. Electrochemical evidence is provided in order to support this reaction mechanism.  相似文献   

20.
A series of Pt(II) complexes containing 1,2-diphenylethylenediamine (stien) isomers were synthesized and tested for their antitumor activity against leukemia L1210. Among the Pt(II) complexes examined water-soluble Pt(II) complexes with sulfate, nitrate and D-glucuronate ions as leaving groups exhibited relatively high antitumor activity. Furthermore, the interactions between calf-thymus DNA and Pt(SO4) (stein) complexes were investigated by means of circular dichroism spectrometry. Dichroism enhancements observed in the interaction between DNA and Pt(SO4) (stien) complexes were analysed to be contributable to two factors: (1) vicinal effects of DNA on the d-d transitions of Pt(II) ions and (2) conformational changes of DNA caused by the coordination of cis-configurational Pt(II) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号