首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Antitumor effects of a known bis(imino-quinolyl)palladium(II) complex 1 and its newly synthesized platinum(II) analogue 2 were evaluated against human breast (MCF-7) and human colon (HT-29) cancer cell lines. The complexes gave cytotoxicity profiles that were better than the reference drug cisplatin. The highest cytotoxic activities were pronounced in complex 2 across the two examined cancer cell lines. Both compounds represent potential active drugs based on bimetallic complexes.  相似文献   

2.
The reaction of H2[PtCl6] · 6H2O and (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O (18C6 = 18-crown-6) with 9-methylguanine (MeGua) proceeded with the protonation of MeGua forming 9-methylguaninium hexachloroplatinate(IV) dihydrate (MeGuaH)2[PtCl6] · 2H2O (1).The same compound was obtained from the reaction of Na2[PtCl6] with (MeGuaH)Cl.On the other hand, the reaction of guanosine (Guo) with (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O in methanol at 60 °C proceeded with the cleavage of the glycosidic linkage and with ligand substitution to give a guaninium complex of platinum(IV), [PtCl5(GuaH)] · 1.5(18C6) · H2O (2).Within several weeks in aqueous solution a slow reduction took place yielding the analogous guaninium platinum(II) complex, [PtCl3(GuaH)] · (18C6) · 2Me2CO (3).H2[PtCl6] · 6H2O and guanosine was found to react in water, yielding (GuoH)2[PtCl6] (4) and in ethanol at 50 °C, yielding [PtCl5(GuoH)] · 3H2O (5).Dissolution of complexes 2 and 5 in DMSO resulted in the substitution of the guaninium and guanosinium ligands, respectively, by DMSO forming [PtCl5(DMSO)].Reactions of 1-methylcytosine (MeCyt) and cytidine (Cyd) with H2[PtCl6] · 6H2O and(H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O resulted in the formation of hexachloroplatinates with N3 protonated pyrimidine bases as cation (MeCytH)2[PtCl6] · 2H2O (6) and (CydH)2[PtCl6] (7), respectively. Identities of all complexes were confirmed by 1H, 13C and 195Pt NMR spectroscopic investigations, revealing coordination of GuoH+ in complex 5 through N7 whereas GuaH+ in complex 3 may be coordinated through N7 or through N9. Solid state structure of hexachloroplatinate 1 exhibited base pairing of the cations yielding (MeGuaH+)2, whereas in complex 6 non-base-paired MeCytH+ cations were found. In both complexes, a network of hydrogen bonds including the water molecules was found. X-ray diffraction analysis of complex 3 exhibited a guaninium ligand that is coordinated through N9 to platinum and protonated at N1, N3 and N7. In the crystal, these NH groups form hydrogen bonds N–HO to oxygen atoms of crown ether molecules.  相似文献   

3.
Reaction of H2PtCl4 and K2PdCl4 with 2-hydroxyacetophenone N(4)-ethylthiosemicarbazone, H2Ap4Et, afforded [Pt(Ap4Et)(H2Ap4Et)] and [Pd(Ap4Et)(H2Ap4Et)]. Their crystal and molecular structures are reported and represent the first 1:2 thiosemicarbazone complexes with ligands having both different formal charge and denticity. The dianion, Ap4Et2−, coordinates in a planar conformation to palladium(II) or platinum(II) via the phenolato O, imine N and thiolato S atoms, while the neutral molecule exhibits monodentate coordination by the thione S atom. Intra-, intermolecular hydrogen bonds and C-H?π contacts lead to aggregation and a supramolecular assembly. Electronic, IR, and NMR spectral data, as well as electrochemical measurements, are included. The pKa values of the poorly water soluble H2Ap4Et were obtained spectrophotometrically in aqueous solutions of constant ionic strength.  相似文献   

4.
From the reaction between dihydroxoplatinum(II) and l-ascorbic acid, two types of platinum(II) ascorbate complexes were obtained and structurally characterized with ethylenediamine (en), N,N-dimethylethylenediamine (dmen) and N,N,N′-trimethylethylenediamine (trimen) as stabilizing ligands. In [Pt(en)(asc-C,O)] (1), [Pt(dmen)(asc-C,O)] (2) and [Pt(trimen)(asc-C,O)] (4), the ascorbate dianion forms a five-membered chelate ring, coordinating to the Pt(II) ion at the 2-carbon and the 5-oxygen atoms (C,O-chelate). From the same mother solution, crystals of [Pt(trimen)(asc-O,O′)] (3) were obtained during the precipitation of 4; in 3 the ascorbate is bound to the Pt at the 2- and 3-oxygen atoms (O,O′-chelate). Compounds 3 and 4 are the first well-characterized linkage isomers among the transition-metal ascorbate complexes. The O,O′-chelated 3 slowly changes to the C,O-chelated 4 in an aqueous solution. Bulkiness of the stabilizing ligand, i.e. en, dmen and trimen has an influence on the formation of the C,O-chelated species, 1, 2 and 4.  相似文献   

5.
Two unique bimetalic Pt(II) coordination polymers of composition [Ni(hydeten)2Pt(CN)4] (Ni-Pt) and [Cu(hydeten)2Pt(CN)4] (Cu-Pt) [hydeten = N-(2-hydroxyethyl-ethylenediamine) or 2-(2-aminoethylamino)ethanol] have been synthesized and structurally characterized by various methods in this study. The crystal structure of Cu-Pt was determined by single-crystal X-ray diffraction analysis. The structure of Cu-Pt forms of infinite 2,2-TT type [-Cu(hydeten)2-NC-Pt(CN)2-CN-] chains containing paramagnetic copper atoms bridged by tetracyanoplatinate species. In this complex, Cu(II) centers display an axially elongated octahedron with two chelating hydeten molecules in the equatorial positions and N-bonded bridging cyano groups in the axial positions, whereas Pt(II) centers are four coordinate with four cyanide-carbon atoms in a square-planar arrangement. The decrease of the moments of these complexes in temperature range of 50 305 K can assigned to the antiferromagnetic interactions in the structures. The thermal decomposition of Cu-Pt comprise of five distinguished stages, while the thermal decomposition of Ni-Pt take place four different stages.  相似文献   

6.
Four palladium(II) and platinum(II) complexes of 2,2′-dipyridylamine (dpya) with saccharinate (sac), cis-[Pd(dpya)(sac)2]·H2O (1), cis-[Pt(dpya)(sac)2]·H2O (2), [Pd(dpya)2](sac)2·2H2O (3) and [Pt(dpya)2](sac)2·2H2O (4), have been synthesized and characterized by elemental analysis, IR, NMR, TG-DTA and X-ray diffraction. In 1 and 2, the metal ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of dpya, resulting in a neutral square-planar coordination sphere, while in 3 and 4, the metal ions are coordinated by two dpya ligands to generate square-planar cationic species, which are stabilized by two sac counter-ions. The mononuclear species of 1 and 2 interact each other through weak intermolecular N-H?O, C-H?O and π?π interactions to form a three-dimensional network, while the ions of 3 and 4 are connected by N-H?N and OW-H?O hydrogen bonds into one-dimensional chains. On heating at 250 °C, the solid cationic complexes of 3 and 4 convert to corresponding anhydrous neutral complexes of 1 and 2 after elimination of a dpya ligand. In addition, all complexes 1-4 are luminescent at room temperature and their emissions seem to be attributed to the MLCT fluorescence.  相似文献   

7.
In vitro antitumour activity of the [Pt(ox)(Ln)2] (1-7) and [Pd(ox)(Ln)2] (8-14) oxalato (ox) complexes involving N6-benzyl-9-isopropyladenine-based N-donor carrier ligands (Ln) against ovarian carcinoma (A2780), cisplatin resistant ovarian carcinoma (A2780cis), malignant melanoma (G-361), lung carcinoma (A549), cervix epitheloid carcinoma (HeLa), breast adenocarcinoma (MCF7) and osteosarcoma (HOS) human cancer cell lines was studied. Some of the tested complexes were even several times more cytotoxic as compared with cisplatin employed as a positive control. The improved cytotoxic effect was demonstrated for the platinum(II) complexes 3 (IC50 = 3.2 ± 1.0 μM and 3.2 ± 0.6 μM) and 5 (IC50 = 4.0 ± 1.0 μM and 4.1 ± 1.4 μM) against A2780 and A2780cis, as compared with 11.5 ± 1.6 μM, and 30.3 ± 6.1 μM determined for cisplatin, respectively. The significant in vitro cytotoxicity against MCF7 (IC50 = 8.2 ± 3.8 μM for 12) and A2780 (IC50 = 5.4 ± 1.2 μM for 14) was evaluated for the palladium(II) oxalato complexes, which again exceeded cisplatin, whose IC50 equalled 19.6 ± 4.3 μM against the MCF7 cells. Selected complexes were also screened for their in vitro cytotoxic effect in primary cultures of human hepatocytes and they were found to be non-hepatotoxic.  相似文献   

8.
A series of platinum(II) amidine complexes were previously prepared with the aim of obtaining a new class of platinum-based antitumour drugs. This series includes compounds of the type cis--[PtCl2{Z-HN=C(NHMe)Me}2] and trans-[PtCl2{Z-HN=C(NHMe)Me}2] (1, 2), cis-[PtCl2{E-HN=C(NMe2)Me}2] and trans-[PtCl2{E-HN=C(NMe2)Me}2] (3, 4), cis-[PtCl2{Z-HN=C(NHMe)Ph}2] and trans-[PtCl2{Z-HN=C(NHMe)Ph}2] (5, 6), and cis-[PtCl2{HN=C(NMe2)Ph}2] and trans-[PtCl2{HN=C(NMe2)Ph}2] (7, 8). The reactions with dimethyl sulfoxide were studied for complexes 5-8; the formation of cationic species containing coordinated dimethyl sulfoxide was demonstrated by NMR experiments and electrospray ionization mass spectrometry. In this work, the amidine platinum(II) complexes were tested for their in vitro cytotoxicity on a panel of various human cancer cell lines. The results indicate that the benzamidine complex 8 was the most effective derivative also circumventing acquired cisplatin resistance as demonstrated by chemosensitivity tests performed on cisplatin-sensitive and cisplatin-resistant cell lines. The studies concerning the cellular DNA damage on both parental chemosensitive and resistant sublines suggest for the new trans-amidine complex a different mechanism of action compared with that exhibited by cisplatin.  相似文献   

9.
The reactions of N,N-dimethylaminopropyl chalcogenolates with platinum(II) compounds have been carried out and complexes of the types [PtCl(ECH2CH2CH2NMe2)]2 (1) (E = S (1a) and Se (1b)), [Pt(ECH2CH2CH2NMe2)2]n (2) (E = S (2a) and Se (2b)), [(PtCl2)2{(Me2NCH2CH2CH2E)2}]n (3), [PtX(SeCH2CH2CH2NMe2)]2 (4) (X = SePh (4a) and OAc (4b)) and [PtCl(ECH2CH2CH2NMe2)(PR3)]n (5) (E = S, Se, Te) have been isolated. These complexes have been characterized by elemental analysis, IR, UV-Vis, NMR (1H, 13C, 31P, 77Se, 195Pt) spectroscopy and FAB mass spectral data. The structures of [PtCl(SeCH2CH2CH2NMe2)]2 (1b) and [PtCl(SCH2CH2CH2NMe2)(PPr3)]2 (5a) have been established by single crystal X-ray diffraction data. Both the molecules have dimeric structures. In 1b, two platinum atoms are held together by symmetrically bridging Se atoms of the chelating selenolate groups. In 5a, two thiolates form a four-membered Pt2S2 bridge with dangling NMe2 groups.  相似文献   

10.
The heteroditopic ligand 4′-(4,7,10-trioxadec-1-yn-10-yl)-2,2′:6′,2″-terpyridine, 2, contains an N,N′,N″-donor metal-binding domain that recognizes iron(II), and a terminal alkyne site that selectively couples to platinum(II). This selectivity has been used to investigate routes to the formation of heterometallic systems. The single crystal structures of ligand 2 and the complex [Fe(2)2][PF6]2 are reported.  相似文献   

11.
The aim of this study was to synthesize and evaluate plasmid DNA interaction of new platinum(II) complexes with some 2-substituted benzimidazole derivatives as carrier ligands which may have potent anticancer activity and low toxicity. Twelve benzimidazole derivatives carrying indole, 2-/or 3-/or 4-methoxyphenyl, 4-methylphenyl, 3,4-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 3,4,5-trimethoxystyryl, 3,4,5-trimethoxybenzylthio or dimethylamino ethyl groups in their position 2 and twelve platinum(II) complexes with these carrier ligands were synthesized. The chemical structure of the platinum complexes have been characterized by their elemental analysis and FIR, 1H NMR and mass spectra and their 1H NMR and FIR spectra were interpreted by comparison with those of the ligands. The interaction of all the ligands and their complexes with plasmid DNA and their restriction endonuclease reactions by BamHI and HindIII enzymes were studied by agarose gel electrophoresis. It was determined that complex 1 [dichloro-di(2-(1H-indole-3-yl)benzimidazole)platinum(II)·2H2O] has stronger interaction than carboplatin and complex 10 [dichloro-di(2-(3,4,5-trimethoxystyryl)benzimidazole)platinum(II)·2H2O] has stronger interaction than both carboplatin and cisplatin with plasmid DNA.  相似文献   

12.
Synthesis of the heterobimetallic platinum(II)-palladium(II) complexes with poly fluorinated benzenethiolates as intermetallic bridges, [(dppe)Pd(μ-SRF)2Pt(dppe)](SO3CF3)2 with SRp-SC6F4(CF3) (1), SC6F5 (2), p-SC6HF4 (3) and o-SC6H4(CF3) (4), have been accomplished either by a redistribution reaction in mixtures of the homonuclear bimetallic species, [(dppe)Pd(μ-SRF)2Pd(dppe)]2+/[(dppe)Pt(μ-SRF)2Pt(dppe)]2+ or by assembling the monometallic building blocks [(dppe)M(μ-SRF)2]/[(dppe)M′(solvent)2]2+, M, M′ = Pd or Pt. Both experimental systems reach an equilibrium state which is independent of the temperature within the probed range, −90 °C to +50 °C. A single crystal of the heterobimetallic compound [(dppe)Pd(μ-SC6F5)2Pt(dppe)](SO3CF3)2(acetone)2 (2) was isolated and analyzed by X-ray diffraction. Comparison with the corresponding structures exhibited by the homobimetallic analogous, [Pd2(μ-SC6F5)2(dppe)2](SO3CF3)2(acetone)2 (5) and [Pt2(μ-SC6F5)2(dppe)2](SO3CF3)2(acetone)2 (6) shows that all three structures are isostructural in space group . All three compounds exhibit a centrosymmetric planar [M2(μ-S)2] ring in which the sulfur substituents are arranged in an anti configuration.  相似文献   

13.
The ligands 1,3-bis(3-pyridyl)benzene (1), 1,3-bis(4-pyridyl)benzene (2) and 1,3,5-tris(4-pyridyl)benzene (3) have been prepared by Stille coupling of 3- or 4-trimethylstannylpyridine with the appropriate bromoarene. Ligands 1 and 2 react with [M(OTf)2(dppp)] (M=Pd, Pt) to produce the dipalladium- or diplatinum-containing macrocycles [M2(μ-1)2(dppp)2](OTf)4 or [M2(μ-2)2(dppp)2](OTf)4. These have been characterized by NMR spectroscopy and mass spectrometry and, in the case of [Pd2(μ-1)2(dppp)2](OTf)4, by X-ray crystallography. The molecular structure of the [Pd2(μ-1)2(dppp)2]4+ cation reveals a shallow arrangement of the aromatic rings, with the palladium atoms lying above and below. The tridentate ligand 3 reacts with [Pd(OTf)2(dppp)] to produce a trimetallic species of the form [Pd33-3)2(dppp)3](OTf)6.  相似文献   

14.
[Pd(sac)(terpy)](sac)·4H2O (1), [Pt(sac)(terpy)](sac)·5H2O (2), [PdCl(terpy)](sac)·2H2O (3) and [PtCl(terpy)](sac)·2H2O (4) (sac = saccharinate, and terpy = 2,2′:6′,2″-terpyridine) have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR. In 1 and 2, a tridentate terpy ligand together with an N-coordinated sac ligand form the square-planar geometry around the palladium(II) or platinum(II) ions, while one sac anion remains outside the coordination sphere as a counter-ion. X-ray single crystal studies show that the [M(sac)(terpy)]+ ions in 1 and 2 reside in the centers of a hydrogen bonded honeycomb network formed by the uncoordinated sac ions and the lattice water molecules. Complexes 3 and 4 are isostructural and consist of a [M(Cl)(terpy)]+ cation, a sac anion and two lattice water molecules. The [M(Cl)(terpy)]+ ions interact with each other via M-M and π-π stacking interactions and these π interacted units are assembled to a 2D network by water bridges involving the sac ions and lattice water molecules. Convenient synthetic paths for 1-4 are also presented, and spectral, luminescence and thermal properties were discussed.  相似文献   

15.
The synthesis of two new highly potent 17beta-estradiol-linked platinum(II) complexes is described. The new molecules are linked at position 16 of the steroid nucleus with an alkyl chain. They are made from estrone in nine chemical steps with an overall yield exceeding 10%. The biological activity of these compounds was evaluated in vitro on estrogen dependent and independent (ER(+) and ER(-)) human breast tumor cell lines: MCF-7 and MDA-MB-231. The novel compounds prove to be highly cytotoxic against breast cancer cell lines. The most cytotoxic derivative shows high affinity for the estrogen receptor alpha.  相似文献   

16.
Three platinum complexes in which substituted (7-OMe, 9-NH2; 7-F, 9-NH2; and 7-H, 9-NH(CH2)2OH) 9-aminoacridine-4-carboxamides were tethered to a platinum(II)diamine moiety were synthesised and characterised at the chemical and biological level. These variants showed a decrease in cytotoxicity, as measured by IC50 values in HeLa cells, when compared with the parent 7-H, 9-NH2 compound. The 7-F and 9-NH(CH2)2OH substituents gave rise to a small decrease in cytotoxicity, and the 7-OMe substituent resulted in a larger decrease in cytotoxicity. Their binding to purified pUC19 plasmid DNA was investigated and it was found that the addition of 7-F, 9-NH(CH2)2OH and especially the 7-OMe substituents, resulted in reduced DNA binding. This correlated well with the IC50 cytotoxicity values. However, the DNA sequence selectivity was unaffected by the addition of these moieties.  相似文献   

17.
The new pyrazole ligand 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-carboxylic acid methyl ester (2) and the corresponding Pt(II), Pd(II) and Cu(II) complexes 3-5 have been synthesized as potential anticancer compounds, and characterized using IR, and (1)H NMR as well as mass spectrometry. The 3-D structures of the Cu(II) complexes were determined by quantum mechanic calculation DFT methodology (density functional theory). The cytotoxicity assay of the ligand and complexes has been performed on leukemia cell lines. In general, the complexes showed lower cytotoxicity than cisplatin, and the Pt(II) and Cu(II) complexes were found to be more efficient in the induction of leukemia cell death than the Pd(II) complex. Our investigations indicate that the antiproliferating activity of the Pt(II) and Cu(II) complexes was partly due to the modulation of cellular differentiation.  相似文献   

18.
Based on their MP2 optimized structures in the ground states, we obtained solution absorption spectra for trans-[PtII(CCR)2(PH3)2] (R = H (1) and Ph (2)) and trans-[PtII(CCH)2(PH2CH2PH2)]2 (3) under the time-dependent density functional theory calculations. These absorptions agree with experimental observations. The unrestricted MP2 optimization performed for 3 in the lowest-energy triplet excited state shows that upon excitation the PtPt distance shortens about 0.347 Å with respect to the 3.188 Å one in the ground state. The UMP2 calculations estimated that its 3(dz2)σ(pz)] excited state produces the 531 nm emission, corresponding to the 580 nm one of trans-[PtII(CCPh)2(PPh2CH2PPh2)]2 in the solid state at 298 K.  相似文献   

19.
The reaction of the monoalkyl complex trans-[Pt(DMSO)2Cl(CH3)] with a large variety of heterocyclic nitrogen bases L, in chloroform solution, leads to the formation of uncharged complexes of the type [Pt(DMSO)(L)Cl(CH3)], containing four different groups coordinated to the metal center. Only two out of the three different possible isomers were detected in solution. These two trans(C,N) and cis(C,N) species can be unambiguously identified through 1H NMR spectroscopy. For the trans(C,N) isomers, average values of 2JPtH=75±4 Hz and 3JPtH=36±4 Hz have been observed for the coordinated methyl and DMSO ligands, respectively. In the case of the cis(C,N) isomers, these values increase to 2JPtH=83±2 Hz, and decrease to 3JPtH=26±3 Hz due to the mutual exchange of ligands in trans position to CH3 and DMSO. In the case of bulky asymmetric ligands, such as quinoline, 2-quinolinecarboxaldehyde, 2-methylquinoline, 5-aminoquinoline, 2-phenylpyridine and 2-chloropyridine, slow rotation of the hindered group around the Pt---N bond makes the coordinated DMSO ligand prochiral. NMR experiments have shown that the first reaction product is the trans(C,N) isomer as a consequence of the very fast removal of one DMSO ligand by the nitrogen bases from the starting complex trans-[Pt(DMSO)2Cl(CH3)]. This trans kinetic product undergoes a geometrical conversion into the more stable cis(C,N) isomer through the intermediacy of fast exchanging aqua-species. The rate of isomerization and the relative stability of the two isomers depends essentially on the rate of aquation and on the steric congestion imposed by the new L ligand on the metal.  相似文献   

20.
[Cu(bapp)ClO4]+ (1) and [Cu(bapp)Cl]+ (2) were prepared by the reaction of 1,4-bis(3-aminopropyl)piperazine (bapp) with copper acetate and copper chloride in the presence of sodium perchlorate, respectively, and structurally characterized. Complex 1 has a square-pyramidal geometry, whereas [Cu(3,2,3-tet)(ClO4)]+ (A) has a polymeric octahedral geometry in its X-ray crystal structure. Complex 1 is stable against disproportionation, whereas complex A is unstable in the mono-valent Cu(I) state. An aqua ligand on complex 1 in aqueous solution is substituted by NO with kinetic constants of kf=43±2 M−1 s−1 and kb=(8.8±0.2)×10−2 s−1 at 25 °C, whereas there were no spectral changes observed for complex A in saturated NO solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号