首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Several mononuclear copper complexes 1(a-b) and 2(a-b) supported over sterically demanding [NNO] ligands namely, N-(aryl)-2-[(pyridin-2-ylmethyl)amino]acetamide [aryl = 2,6-diethylphenyl (1) and mesityl (2)], exhibit catecholase-like activity in performing the aerial oxidation of 3,5-di-t-butylcatehol (3,5-DTBC) to 3,5-di-t-butyl-catequinone (3,5-DTBQ) under ambient conditions. The 1(a-b) and 2(a-b) complexes were directly synthesized from the reaction of the respective ligands 1-2 with CuX2·nH2O (X = Cl, NO3, n = 2, 3) in 55-85% yield. Mechanistic insights on the catalytic cycle as obtained by density functional theory studies for a representative complex 1a suggest that an intramolecular hydrogen transfer, from a catechol-OH moiety to a copper bound superoxo moiety, form the rate-determining step of the oxidation process, displaying an activation barrier of 18.3 kcal/mol (ΔG) [6.9 kcal/mol in Δ(PE + ZPE) scale].  相似文献   

2.
Reaction of [(p-cymene)RuCl2(PPh3)] (1) or [CpMCl2(PPh3)] (Cp = C5Me5) (3a: M = Rh; 4a: M = Ir) with 1-alkynes and PPh3 were carried out in the presence of KPF6, generating the corresponding alkenyl-phosphonio complexes, [(p-cymene)RuCl(PPh3){CHCR(PPh3)}](PF6) (2a: R = Ph; 2b: R = p-tolyl) or [CpMCl(PPh3){CHCPh(PPh3)}](PF6) (5: M = Rh; 6: M = Ir). Similar reactions of complexes [CpRhCl2(L1)] (3a: L1 = PPh3; 3c: L1 = P(OMe)3) with L2 (L2 = PPh3, PMePh2, P(OMe)3) gave [CpRhCl(L1)(L2)](PF6) (7bb: L1 = L2 = PMePh2; 7ca: L1 = P(OMe)3, L2 = PPh3; 7cc: L1 = L2 = P(OMe)3). Alkenyl-phosphonio complex 5 was treated with P(OMe)3 or 2,6-xylyl isocyanide, affording [CpRhCl(L){CHCPh(PPh3)}](PF6) (8a: L = P(OMe)3; 8b: L = 2,6-xylNC). X-ray structural analyses of 2a, 6 and 8a revealed that the phosphonium moiety bonded to the Cβ atom of the alkenyl group are E configuration.  相似文献   

3.
Dioxo-MoVI complexes of general formula TpMoO2(p-SC6H4Dn) (6a-6c) (where Tp = hydrotris(3,5-dimethyl-pyrazol-1-yl)borate and Dn = dendritic unit) have been synthesized and characterized by spectroscopy and mass spectrometry. 1H NMR spectra of the metal complexes indicate that the Cs local symmetry about the metal core does not change by the incorporation of dendritic functionality at the thiophenolato ring. Electrochemical data show a ∼20 mV change in the redox potential in the complexes with dendritic ligands suggesting a very small perturbation in the redox orbital, which is also supported by small changes in the electronic spectra. The peak-to peak separation (ΔEp) increases from 125 mV in 6(a) to 240 mV in 6(c), suggesting sluggish electron transfer in molecules with larger dendritic ligands.  相似文献   

4.
The reactions of the Fe(II) and Ru(II) halogenide complexes [Fe(PPh3)2Br2], [Fe(NCCH3)2Br2], [Ru(PPh3)3Cl2], and [Ru(dmso)4Cl2] with GaCp and AlCp, respectively, are investigated. The reactions of [FeBr2L2] with ECp exclusively proceed via Cp transfer, leading to [FeCp(GaCp)(GaBr2)(PPh3)] (1) (L = PPh3, E = Ga), [FeCp(GaCp)2 (GaBr2)] (2) (L = NCCH3, E = Ga) and [FeCp(μ3-H)(κ2-(C6H4)PPh2)(AlCp)(AlBr2)] (3) (L = PPh3, E = Al), the latter of which is formed via orthometallation of one PPh3 ligand. The reaction of [Ru(dmso)4Cl2] leads to the homoleptic complex [Ru(GaCp)6Cl2] (4) in high yields, while [Ru(PPh3)3Cl2] gives 4 in rather low yields. The reason for this difference in reactivity is investigated and it is shown that Cp transfer and orthometallation are the limiting side reactions of the reaction of [Ru(PPh3)3Cl2] with GaCp. All compounds were characterized by NMR spectroscopy, and single crystal X-ray diffraction studies were performed for 1, 3, and 4.  相似文献   

5.
The reaction of [Ti(cp)2(BTMSA)] (1) (cp = η5-C5Me5, BTMSA = bis(trimethylsilyl)acetylene) with malonic acids ((HOOC)2CR2, R = H, Me) and N,N-dimethylglycine resulted in the formation of titanium(IV) dicarboxylato complexes [Ti(cp)2{(OOC)2CR2}] (R = H, 2; R = Me, 3) and an α-amino acid titanium(III) complex [Ti(cp)2(OOCCH2NMe2)] (4). The identities of complexes 2-4 were confirmed by microanalysis, 1H and 13C NMR spectroscopy (2, 3), ESI-MS and CID experiments (2, 3) as well as by ESR and magnetic measurements (μeff = 1.81, 298 K) for 4. Single X-ray diffraction analyses of 2 and 4 exhibited monomolecular complexes in which the titanium atom is distorted tetrahedrally coordinated by two η5-C5Me5 rings and by the chelating bound malonato-κ2O,O′ (2) and N,N-dimethylglycinato-κ2O,O′ ligand (4).  相似文献   

6.
Four new mononuclear iron(III) complexes with the substituted-salicylaldimine ligands, [Fe(L1)(TCC)] (1), [Fe(L2)(TBC)] (2), [Fe(L3)(TBC)] (3) and [Fe(L4)(TCC)](CH3CN) (4) (HL1 = N′-(5-OH-salicylaldimine)-diethylenetriamine, HL2 = (N′-(5-Cl-salicylaldimine)-diethylenetriamine, HL3 N′-(5-Br-salicyl-aldimine)-dipropylenetriamine, HL4 = (N′-3,5-Br-salicylaldimine)-dipropylenetriamine, H2TCC = tetrachlorocatechol, and H2TBC = tetrabromocatechol), were prepared and characterized by XRD, EPR, and Mössbauer spectroscopy. The coordination sphere of the Fe(III) in complexes 1-4 is a distorted octahedral with N3O3 donors set which constructed by the Schiff-base ligands and the catecholate substrates of TBC or TCC. The in situ prepared Fe(III) complexes [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)(Cl2)], and [Fe(L4)Cl2] in absence of TBC or TCC show a high catecholase-like activity for the oxidation of 3,5-DTBC to the corresponding quinone 3,5-DTBQ.  相似文献   

7.
A series of oxo-vanadium(IV) complexes: TpVO(pzH)(CH3COO) (1), TpVO(pzH)(CCl3COO) (2), TpVO(pzH)(C6H5COO) (3), TpVO(pzH)(m-NO2-C6H4COO)·CH3CN (4) and [TpVO(pzH)(H2O)]+[m-NO2-C6H4-SO3]·CH3OH (5) (Tp = hydrotris(3,5-dimethylpyrazolyl)borate; pzH = 3,5-dimethylpyrazole) are synthesized in methanol solution under physiological conditions. They are characterized by elemental analysis, IR, UV-Vis and X-ray crystallography. Structural analyses show that the vanadium atoms in complexes 1-5 are all in a distorted-octahedral environment with the N4O2 donor set, and intra- or inter-hydrogen bonding linkages have been also observed in each complex. Bromination reaction activity of the complexes has been evaluated by the method with phenol red as organic substrate in the presence of H2O2, Br and phosphate buffer, indicating that they can be considered as potential functional model vanadium-dependent haloperoxidases. In addition, thermal analysis and quantum chemistry calculations were also performed and discussed in detail.  相似文献   

8.
Complexes of the type (η4-BuC5H5)Fe(CO)2(P) (P = PPh2Py 3, PPhPy24, PPy35; Py = 2-pyridyl) were satisfactorily prepared. Upon treatment of 3 with M(CO)3(EtCN)3 (M = Mo, 6a; W, 6b), the pyridyl N-atom could be coordinated to the metal M, which then eliminates a CO ligand from the Fe-centre and induced an oxidative addition of the endo-C-H of (η4-BuC5H5). This results in a bridged hydrido heterodimetallic complex [(η5-BuC5H4)Fe(CO)(μ-P,N-PPh2Py)(μ-H)M(CO)4] (M = Mo, 7a, 81%; W, 7b, 76%). The reaction of 4 or 5 with 6a,b did not give the induced oxidative addition, although these complexes contain more than one pyridyl N-atom. The reaction of 4 with M(CO)4(EtCN)2 (M = Mo, 9a; W, 9b) produced heterodimetallic complexes [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′-PPhPy2)M(CO)4] (M = Mo, 10a, 81%; W, 10b, 83%). Treatment of 5 with 6a,b gave [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′,N″-PPy3)M(CO)3] (M = Mo, 12a, 96%; W, 12b, 78%).  相似文献   

9.
Compounds of general formula [(Bn2Cyclam)ZrCl2] (Bn = 4-tBuC6H4CH2, (4) and 4-CF3C6H4CH2, (5)) were synthesised using Zr(CH2SiMe3)2Cl2(Et2O)2 and the corresponding ligand precursors 1,8-(4-tbutylbenzyl)-1,4,8,11-tetraazacyclotetradecane (H2(4-tBuBn)2Cyclam), (4a), and 1,8-(4-trifluoromethylbenzyl)-1,4,8,11-tetraazacyclotetradecane (H2(4-CF3Bn)2Cyclam), (5a). Complexes 4 and 5, in addition to other [(Bn2Cyclam)ZrCl2] compounds previously described by some of us (Bn = PhCH2, (1), 3,5-Me2C6H3CH2, (2) and 3,5-tBu2C6H3CH2, (3)) were tested in the polymerization of ethylene in the presence of MAO. System 4/MAO presents the highest activity (2790 g PE molZr−1 h−1 atm−1). The polymers formed are slight to moderately branched polyethylenes with a percentage of branching ranging between 1.2% and 3.3%. The melting points obtained by differential scanning calorimetry (DSC) ranging from 128 to 140 °C, are consistent with rather high average molecular weight polymers with crystallinity close to 50%.  相似文献   

10.
A full account of half-sandwich complexes of ruthenium(II) having three-legged “piano-stool” geometry supported by tridentate (2-pyridyl)alkylamine ligands is presented. Reaction of the dimer [{(η6-C6H6)RuCl(μ-Cl)}2] with N-methyl-N,N-bis(2-pyridylmethyl)amine (MeL) in CH3OH in the presence of NH4PF6 affords the complex [(η6-C6H6)Ru(MeL)][PF6]2 (1). A similar reaction with N-methyl-N,N-bis(2-pyridylethyl)amine (MeL∗∗), however, affords a non-organometallic Ru(III)-dimeric complex (5) (the composition of this complex has been established by physicochemical method). Nucleophilic addition reaction on 1 with NaBH4 leads to the isolation of a cyclohexadienyl complex [(η5-C6H7)Ru(MeL)][PF6] (3). The molecular structure of 1 · 2CH3CN, 3, and previously reported cyclohexadienyl complex [(η5-C6H7)Ru(MeL)][PF6] (4) [MeL = N-methyl-[(2-pyridyl)ethyl(2-pyridyl)-methyl]amine], obtained from the reaction between NaBH4 and previously reported “piano-stool” complex [(η6-C6H6)Ru(MeL)][PF6]2 (2), has been confirmed by X-ray crystallography. Solution-state structure of new complexes 1 and 3 has been elucidated by their 1H NMR spectra in CD3CN. The behavior of complex 3 has been investigated with the aid of two-dimensional 1H NMR spectroscopy, as well. An attempt has been made to provide a rationale for the effect of supporting tridentate N-donor ligand [MeL, MeL, and MeL∗∗], varying in the chelate ring-size on (i) the relative stability of half-sandwich η6-benzene Ru(II) complexes and (ii) the electrophilicity of Ru(II)-coordinated benzene ring on the nucleophilic addition reactions.  相似文献   

11.
Compounds of the type [(AuPPh3)2(xspa)]; H2xspa [x:p = 3-phenyl-, f = 3-(2-furyl)-, t = 3-(2-thienyl)-, -o-py = 3-(2-pyridyl)-, Clp = 3-(2-chlorophenyl)-, -o-mp = 3-(2-methoxyphenyl)-, -p-mp = 3-(4-methoxyphenyl)-, -o-hp = 3-(2-hydroxyphenyl)-, -p-hp = 3-(4-hydroxyphenyl)-, -diBr-o-hp = 3-(3,5-dibromo-2-hydroxyphenyl)-; spa = 2-sulfanyl propenoato] were synthesized and characterized by IR and NMR (1H, 13C and 31P) spectroscopy and by FAB mass spectrometry. The structures of [(AuPPh3)2(Clpspa)], [(AuPPh3)2(o-hpspa)], [(AuPPh3)2(p-hpspa)]·MeOH and [(AuPPh3)2(diBr-o-hpspa)]·2Me2CO show the dinuclear nature of the complexes with the two gold atoms, one of which is also O-bonded to an O atom of the carboxylate group, bonded to the S atom. The in vitro antitumor activities against the HeLa-229, A2780 and A2780cis cell lines were determined and the compounds were found to be highly effective, in particular against the A2780cis cell line, with eight of the nine compounds having IC50 values better than that of cisplatin. This behavior is indicative of a high ability to circumvent the cellular resistance to this drug.  相似文献   

12.
The syntheses and structural characterization of four cobalt(II)-salicylate complexes, [(TPA)CoII(HSA)](ClO4) (1), [(isoBPMEN)CoII(HSA)](BPh4) (2), [(TPzA)CoII(HSA)](ClO4) (3) and [(6Me3TPA)CoII(HSA)](BPh4) (4) [TPA = tris(2-pyridylmethyl)amine, isoBPMEN = N1,N1-dimethyl-N2,N2-bis(2-pyridylmethyl)ethane-1,2-diamine, TPzA = tris((3,5-dimethyl-1H-pyrazole-1-yl)methyl)amine and 6Me3TPA = tris(6-methyl-2-pyridylmethyl)amine] are described. While 2, 3 and 4 are unreactive towards dioxygen, 1 reacts slowly with molecular oxygen to a cobalt(III)-salicylate complex, [(TPA)CoIII(SA)](ClO4) (1a). Two different crystalline forms, 1a and 1a·4H2O were isolated depending upon the condition of oxidation and crystallization. The solid-state structures of cobalt(III)-salicylate unit in both 1a and 1a·4H2O show a six-coordinate distorted octahedral coordination geometry at the cobalt(III) center ligated by the tetradentate ligand (TPA) where the dianionic salicylate (SA) binds in a bidentate fashion through one carboxylate and one phenolate oxygen. The hydrated form 1a·4H2O reveals a hexameric water cluster formation in the inorganic lattice host. The complex cation and the perchlorate counterion are involved in stabilizing the (H2O)6 cluster in a rare ‘pentamer planar+1’ conformation. A one-dimensional water tape consisting of edge-shared water hexamers is observed. The water tape represents a subunit of ice structure.  相似文献   

13.
Pyrazole-3,5-dicarboxylate-bridged dinuclear ruthenium(II) and osmium(II) complexes of 2,2-bipyridine of composition [(bpy)2Ru(pzdc)Ru(bpy)2](ClO4) · H2O (1) and [(bpy)2Os(pzdc)Os(bpy)2](ClO4) · H2O (2) have been obtained in high yield and have been separated to their homochiral (ΛΛ/ΔΔ) rac (1a, 2a) and heterochiral (ΛΔ/ΔΛ) meso (1b, 2b) diastereoisomers. The distinctive structural features of these diastereoisomers have been characterized by 1-D and 2-D 1H NMR spectroscopy. The X-ray crystal structure of rac-[(bpy)2Os(pzdc)Os(bpy)2](ClO4) · H2O (2a) has been determined. The electrochemical and electronic spectral studies have established that there remain difference in properties and hence difference in intermetallic communication between the diastereoisomeric forms in each case.  相似文献   

14.
Reaction of CdCl2 with N-alkylaminopyrazole ligands 1-[(2-ethylamino)ethyl]-3,5-dimethylpyrazole (deae), 1-[(2-(tert-butylamino)ethyl)]-3,5-dimethylpyrazole (deat), bis-[(3,5-dimethylpyrazolyl)methyl]ethylamine (bdmae), and bis-[(3,5-dimethylpyrazolyl)ethyl]ethylamine (ddae) in absolute ethanol yields [CdCl2(NN′)] (NN′ = deae (1), deat (2)), [CdCl2(bdmae)] (3), and [CdCl(ddae)]2[CdCl4] (4). The Cd(II) complexes have been characterised by elemental analyses, conductivity measurements, IR, 1H, 13C{1H} and 113Cd NMR spectroscopies, and X-ray diffraction methods. 1H and 113Cd NMR experiments at variable temperature for 3 and 4 show that dynamic processes are taking place in solution. We report the measurements of 113Cd NMR chemical shift data for complexes 1-4 in solution. X-ray crystal structures for complexes 2 and 3 have been determined. The Cd(II) is coordinated to the deat ligand, in 2, by one nitrogen atom of the pyrazolyl group and one nitrogen atom of the amine. It finishes a tetrahedral geometry with two chlorine atoms. The bdmae ligand is linked to Cd(II), in 3, by two nitrogens atoms of the pyrazolyl groups and one amine nitrogen, along with two chlorine atoms, in a distorted trigonal bipyramidal geometry.  相似文献   

15.
Using a phosphorus based Mannich condensation reaction the new pyridylphosphines {5-Ph2PCH2N(H)}C5H3(2-Cl)N (1-Cl) and {2-Ph2PCH2N(H)}C5H3(5-Br)N (1-Br) have been synthesised in good yields (60% and 88%, respectively) from Ph2PCH2OH and the appropriate aminopyridine. The ligands 1-Cl and 1-Br display variable coordination modes depending on the choice of late transition-metal complex used. Hence P-monodentate coordination has been observed for the mononuclear complexes AuCl(1-Cl) (2), AuCl(1-Br) (3), RuCl2(p-cymene)(1-Cl) (4), RuCl2(p-cymene)(1-Br) (5), RhCl2(Cp)(1-Cl) (6), RhCl2(Cp)(1-Br) (7), IrCl2(Cp)(1-Cl) (8), IrCl2(Cp)(1′-Cl) (8′), IrCl2(Cp)(1-Br) (9), cis-/trans-PdCl2(1-Cl)2 (10), cis-/trans-PdCl2(1-Br)2 (11), cis-PtCl2(1-Cl)2 (12) and cis-PtCl2(1-Br)2 (13). Reaction of Pd(Me)Cl(cod) (cod = cycloocta-1,5-diene) with either 1 equiv. of 1-Br or the known pyridylphosphines 1′-Cl, 1-OH or 1-H gave the P/N-chelate complexes Pd(Me)Cl(1-Br-1-H) (14)-(17). All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 4, 5, 10 and 16 · (CH3)2SO have been elucidated by single crystal X-ray crystallography. A crystal structure of the dinuclear metallocycle trans,trans-[PdCl2{μ-P/N-{Ph2PCH2N(H)}C5H4N}]2 · CHCl3, 18 · CHCl3, has also been determined. Here 1-H bridges, using both P and pyridyl N donors, two dichloropalladium centres affording a 12-membered ring with the PdCl2 units adopting a head-to-tail arrangement.  相似文献   

16.
The electrochemical behavior of the S,S-bridged adducts of square planar metalladithiolene complexes was investigated by using cyclic voltammetry and electrochemical spectroscopies (visible, near-IR, and ESR). The norbornene-bridged S,S-adduct [Ni(S2C2Ph2)2(C7H8)] (2a; C7H8=norbornene) formed by [Ni(S2C2Ph2)2] (1a) and quadricyclane (Q) was dissociated by an electrochemical reduction, and anion 1a and norbornadiene (NBD) were formed. Q was isomerized to NBD in the overall reaction. The o-xylyl-bridged S,S-adduct [Ni(S2C2Ph2)2(CH2)2(C6H4)] (3a; (CH2)2(C6H4)=o-xylyl) was also dissociated by an electrochemical reduction, and this reaction gave the o-xylyl radical (o-quinodimethane). The reduction of complex 3a in the presence of excess o-xylylene dibromide underwent the catalytic formation of o-quinodimethane. The butylene-bridged S,S-adduct [Ni(S2C2Ph2)2(CH2)4] (4a; (CH2)4=butylene) was stable on an electrochemical reduction. The lifetimes of reduced species of these adducts 2a-4a were influenced by the stability of the eliminated group (stability: NBD > o-xylyl radical (o-quinodimethane) > butylene radical). Therefore, the reduced species are stable in the sequence 4a > 3a > 2a. Although the palladium complex [Pd(S2C2Ph2)2] (1b) was easier to reduce than the nickel complex 1a or the platinum complex [Pt(S2C2Ph2)2] (1c), their S,S-adducts were easier to reduce in the order of Ni adduct > Pd adduct > Pt adduct.  相似文献   

17.
Six complexes (1-6) with the type of [Ru(bpy)2L]X2 (1-3: L = L1-L3, X = Cl; 4-6: L = L1-L3, X = PF6) were synthesized based on 2,2′-bipyridine and three 2,2′-bipyridine derivatives L1, L2 and L3 (L1 = 5,5′-dibromo-2,2′-bipyridine, L2 = 5-bromo-5′-carbazolyl-2,2′-bipyridine, L3 = 5,5′-dicarbazolyl-2,2′-bipyridine). The complexes 1-6 were characterized by 1H NMR, MS(ESI) and IR spectra, along with the X-ray crystal structure analysis for 1, 5 and 6. Their photophysical properties and electrochemiluminescence (ECL) properties were investigated in detail. In the UV-Vis absorption spectra, all complexes 1-6 show strong intraligand (π → π) transitions and metal-ligand charge transfer (MLCT, dπ (Ru) → π) bands. Upon the excitation wavelengths at ∼508 nm, all complexes 1-6 exhibit typical MLCT emission of ruthenium(II) polypyridyl complexes. The introduction of carbazole moieties improves the MLCT absorption and emission intensity. The ruthenium(II) complexes 1-6 exhibit good electrochemiluminescence (ECL) properties in [Ru(bpy)2L]2+/tri-n-propylamine (TPrA) acetonitrile solution and the complexes with PF6 showed higher ECL emission intensity than that of the complexes with Cl based on the same ligands.  相似文献   

18.
The reactivity of hybrid scorpionate/cyclopentadienyl ligand-containing trichloride zirconium complexes [ZrCl3(bpzcp)] (1) [bpzcp = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethylcyclopentadienyl] and [ZrCl3(bpztcp)] (2) [bpztcp = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-tert-butylethylcyclopentadienyl] toward several lithium alkoxides has been carried out. Thus, alkoxide-containing complexes [ZrCl2(OR)(bpzcp)] (R = Me, 3; Et, 4; iPr, 5; (R)-2-Bu, 6), [ZrCl2(OR)(bpztcp)] (R = Me, 7; Et, 8; iPr, 9; (R)-2-Bu, 10) and [Zr(OR)3(bpztcp)] (R = Et, 11; iPr, 12) were prepared by deprotonation of the appropriate alcohol group with BunLi followed by reaction with 1 or 2. In addition, the imido-complex [Ti(NtBu)Cl(bpztcp)(py)] (13) were also prepared. The structures of these complexes have been proposed on basis of spectroscopic and DFT methods.  相似文献   

19.
A series of pyrazole-bridged heterometallic 3d-4f complexes, [CuDy(ipdc)2(H2O)4] · (2H2O)(H3O+) (1) and [CuLn(pdc)(ipdc)(H2O)4] · H3O+ (Ln = Ho (2), Er (3), Yb (4); H3ipdc = 4-iodo-3,5-pyrazoledicarboxylic acid; H3pdc = 3,5-pyrazoledicarboxylic acid), {[Cu3Ln4(ipdc)6(H2O)16] · xH2O}n (Ln = Sm (5), x = 8.5; Ln = Eu (6), x = 7; Ln = Gd (7), Tb (8), x = 9), have been synthesized and structurally characterized. Ligand H3ipdc was in situ obtained by iodination of ligand H3pdc. Complexes 1-4 are pyrazole-bridged heterometallic dinuclear complexes, and 2-4 are isostructural. Complexes 5-8 are isostructural and comprised of an unusual infinite one-dimensional tape-like chain based on pyrazole-bridged heterometallic dinuclear units. The magnetic properties of compounds 1-4, 7 and 8 have been investigated through the magnetic measurement over the temperature range of 1.8-300 K.  相似文献   

20.
A series of new iridium(III) complexes containing pentamethylcyclopentadienyl (Cp = η5-C5Me5) and 1,8-naphthyridine (napy) have been prepared. X-ray crystallography revealed that napy acted as a monodentate, a didentate chelating, and a bridging ligand in complexes of [CpIrCl2(napy)] (1), [CpIrCl(napy)]PF6 (2), and [(CpIrCl)2(H)(napy)]PF6 (4), respectively. The crystal structure of [CpIr(napy)2](PF6)2 (3) has also been determined; the dicationic complex bore both monodentate and chelating napy ligands. Dinuclear CpIrIII complex bridged by napy was only isolable if two IrIII centers were supported by a hydride (H) bridge. In complexes 2 and 3, the four-membered chelate rings formed by napy exhibited a large steric strain; in the rings the NIrN bond angles were only 60.5(2)-61.0(4)° and the IrNC angles were 94.7(8)-96.7(8)°. The bridging coordination of napy in complex 4 also afforded a large strain, i.e., the IrIII centers were displaced by 0.84(3) Å from the napy plane, due to the steric interaction between two CpIrCl moieties. The monodentate napy complex 1 in CDCl3 or CD2Cl2 at ambient temperature showed a rapid coordination-site exchange reaction, which gave two N sites of napy equivalent; at temperatures below −40 °C, the 1H NMR spectra corresponded to the molecular structure of [CpIrCl2(napy-κN)]. The analogous diazido complex of [CpIr(N3)2(napy)] (5) has also been prepared, and the crystal structure has been determined. In contrast to the dichloro complex 1, the diazido complex 5 exhibited a dissociation equilibrium of coordinated napy in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号