首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
The organotin complex [Ph3SnS(CH2)3SSnPh3] (1) was synthesized by PdCl2 catalyzed reaction between Ph3SnCl and disodium-1,3-propanedithiolate which in turn was prepared from 1,2-propanedithiol and sodium in refluxing THF. Reaction of 1 with Ru3(CO)12 in refluxing THF affords the mononuclear complex trans-[Ru(CO)4(SnPh3)2] (2) and the dinuclear complex [Ru2(CO)6(μ-κ2-SCH2CH2CH2S)] (3) in 20 and 11% yields, respectively, formed by cleavage of Sn-S bond of the ligand and Ru-Ru bonds of the cluster. Treatment of pymSSnPPh3 (pymS = pyrimidine-2-thiolate) with Ru3(CO)12 at 55-60 °C also gives 2 in 38% yield. Both 1 and 2 have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

2.
New scandium and yttrium complexes ScL2(bpzmp)(THF) {L = Cl (1); L = CH2Si(CH3)3 (3)}, YL2(bpzmp) {L = Cl (2); L = OTf (5)} and Y(CH2SiMe3)2(bpzmp)(THF) (4) bearing the heteroscorpionate bpzmp ligand {bpzmp = (3,5-tBu2-2-phenoxo)bis(3,5-Me2-pyrazol-1-yl)methane} have been synthesized and characterized by means of NMR and Mass spectroscopy. The tridentate monoanionic ligand resulted κ3-coordinated to the metal via the oxygen and both the sp2 nitrogen atoms of the heterocycles, producing complexes in CS symmetry.The behavior of 1-4 in ethylene polymerization was investigated after proper activation with different activating agents. Complex 4, in combination with the Brönsted or Lewis acids [PhNMe2H][B(C6F5)4] or [Ph3C][B(C6F5)4], produced linear high molecular weight polyethylene in good yield.  相似文献   

3.
Reaction of [Mo(O)Cl(CNMe)4]+ with the linear tetraphos ligand meso and rac prP4 leads to a mixture of [Mo(O)Cl(κ4-meso-prP4)]+ and [Mo(O)Cl(CNMe)(κ3-rac-prP4)]+ which are identified by X-ray structural analysis and/or 31P NMR spectroscopy. In the meso κ4-product both of the phenyl groups of the central phosphorus atoms are oriented towards the oxo ligand whereas in the rac κ3-product one of these phenyl groups is oriented to the oxo and the other to the chloro ligand. The origin of the different coordination modes lies in the different steric demands of the oxo and chloro ligands. The influences of the steric interactions are enhanced by the fact that exchange of the fourth isonitrile is difficult. This hypothesis is supported by the preparation of the complex [Mo(O)Cl(CNMe)(dpepp)]PF6 whose isonitrile ligand is inert towards exchange by monophosphines, even under drastic conditions.  相似文献   

4.
Nickel and palladium paddlewheel complexes that feature 2-mercapto-1-t-butylimidazolyl (mimBut) bridging ligands, namely Ni2[mimBut]4 and Pd2[mimBut]4, have been synthesized and structurally characterized by X-ray diffraction. Since the mimBut ligand bridges in an asymmetric manner via a sulfur and nitrogen donor, paddlewheel compounds of the type M2[mimBut]4 may exist as isomers that are distinguished by the relative orientations of the ligands. In this regard, the (4,0)-Ni2[mimBut]4 and trans-(2,2)-Ni2[mimBut]4 isomers have been isolated for the nickel system, while the (4,0)-Pd2[mimBut]4 and (3,1)-Pd2[mimBut]4 isomers have been isolated for the palladium system.  相似文献   

5.
Copper(I) complexes have been synthesized from the reaction of CuCl, monodentate tertiary phosphines PR3 (PR3 = P(C6H5)3; P(C6H5)2(4-C6H4COOH); P(C6H5)2(2-C6H4COOH); PTA, 1,3,5-triaza-7-phosphaadamantane; P(CH2OH)3, tris(hydroxymethyl)phosphine) and lithium bis(3,5-dimethylpyrazolyl)dithioacetate, Li[LCS2]. Mono-nuclear complexes of the type [LCS2]Cu[PR3] have been obtained and characterized by elemental analyses, FT-IR, ESI-MS and multinuclear (1H, 13C and 31P) NMR spectral data; in these complexes the ligand behaves as a κ3-N,N,S scorpionate system. One exception to this stoichiometry was observed in the complex [LCS2]Cu[P(CH2OH)3]2, where two phosphine co-ligands are coordinated to the copper(I) centre. The solid-state X-ray crystal structure of [LCS2]Cu[P(C6H5)3] has been determined. The [LCS2]Cu[P(C6H5)3] complex has a pseudo tetrahedral copper site where the bis(3,5-dimethylpyrazolyl)dithioacetate ligand acts as a κ3-N,N,S donor.  相似文献   

6.
Reaction of the potassium salts of (EtO)2P(O)CH2C6H4-4-(NHC(S)NHP(S)(OiPr)2) (HLI), (CH2NHC(S)NHP(S)(OiPr)2)2 (H2LII) or cyclam(C(S)NHP(S)(OiPr)2)4 (H4LIII) with [Cu(PPh3)3I] or a mixture of CuI and Ph2P(CH2)1-3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Cu(PPh3)LI] (1), [Cu2(Ph2PCH2PPh2)2LII] (2), [Cu{Ph2P(CH2)2PPh2}LI] (3), [Cu{Ph2P(CH2)3PPh2}LI] (4), [Cu{Ph2P(C5H4FeC5H4)PPh2}LI] (5), [Cu2(PPh3)2LII] (6), [Cu2(Ph2PCH2PPh2)LII] (7), [Cu2{Ph2P(CH2)2PPh2}2LII] (8), [Cu2{Ph2P(CH2)3PPh2}2LII] (9), [Cu2{Ph2P(C5H4FeC5H4)PPh2}2LII] (10), [Cu8(Ph2PCH2PPh2)8LIIII4] (11), [Cu4{Ph2P(CH2)2PPh2}4LIII] (12), [Cu4{Ph2P(CH2)3PPh2}4LIII] (13) or [Cu4{Ph2P(C5H4FeC5H4)PPh2}4LIII] (14) complexes. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy; their compositions were examined by microanalysis. The luminescent properties of the complexes 1-14 in the solid state are reported.  相似文献   

7.
Cobalt, nickel, copper and zinc coordination compounds of two thiosemicarbazones with general composition ML2 (L: monodeprotonated ligand corresponding to 2-acetyl-γ-butyrolactone thiosemicarbazone, HL1, and 2-furancarbaldehyde thiosemicarbazone, HL2) and also complexes with general composition MCl2(HL2) were synthesized (except [NiCl2(HL2)] and [Co(L2)2]). The interaction of CuCl2 with HL2 gave [CuCl(HL2)], a copper(I) complex. The ligands and metal complexes were characterized by IR, 1H and 13C NMR spectroscopy, and magnetic susceptibility measurements. The crystal structure of [Ni(L2)2] · 2dmso was determined and a trans-square planar coordination of the two κ2-N,S chelate rings forming polymeric strips through H-bonds with dmso was observed. Actually, in all the reported complexes both ligands behaved as κ2-N,S chelates, except in the case of [Co(L1)2] in which HL1 is tridentate κ3-N,S,O. The antimicrobial properties of all compounds were studied using a wide spectrum of bacterial and fungal strains. The copper complexes of HL2 were the most active against all strains, including dermatophytes and phytopathogenic fungi. Most of the studied compounds, especially [Cu(L1)2], presented good activity against Haemophilus influenzae, a very harmful bacterium to humans.  相似文献   

8.
Complexes of Ru(II) containing the pincer ligand [N(2-PPh2-4-Me-C6H3)2] (PNPPh) were prepared. The complex (PNPPhH)RuCl2 (1) was treated with 2 equiv AgOTf to produce the triflate complex (PNPPhH)Ru(OTf)2 (2). Complex 1 was also treated with an excess of NaBH4 to give a bimetallic complex [(PNPPh)RuH3]2 (3). A number of methods, including X-ray crystallography, NMR spectroscopy, and computational studies, were used to probe the structure of 3. Addition of Lewis bases to 3 resulted in octahedral complexes containing a hydride ligand trans to a dihydrogen ligand.  相似文献   

9.
Reaction of [Mn(NCMe)3(CO)3][PF6] with Li3[7-NHBut-nido-7-CB10H10] in THF (THF = tetrahydrofuran) affords the twelve-vertex manganacarborane dianion [1-NHBut-2,2,2-(CO)3-closo-2,1-MnCB10H10]2−, isolated as the bis-[N(PPh3)2]+ salt (5a). This species reacts with {Pt(dppe)}2+ (dppe = Ph2PCH2CH2PPh2) to afford the bimetallic complex [1-NH2But-2,3-{Pt(dppe)}-2,2,2-(CO)3-closo-2,1-MnCB10H9] (7) which has an Mn-Pt bond. In contrast, with {Cu(PPh3)}+ the anion of 5a yields a CuMnCu trimetallic compound [1-{NH(But)Cu(PPh3)}-2,3,7-{Cu(PPh3)}-3,7-(μ-H)2-2,2,2-(CO)3-closo-2,1-MnCB10H8] (8) in which one of the Cu centers is bonded to Mn, whilst the other is attached to the pendant NHBut group. Upon treatment with Ag+, compound 5a is oxidized giving the very unusual Mn(III)-carbonyl complex [1,2-μ-NHBut-2,2,2-(CO)3-closo-2,1-MnCB10H10] (9a) in which the carborane ligand formally acts as an eight-electron donor to manganese. The novel structural features of compounds 7, 8, and 9a have been confirmed by X-ray diffraction studies.  相似文献   

10.
The new trans-hyponitrite derivative complex [Ru2(CO)4(μ-PtBu2)(μ-dppm)(μ-η2-ONNOMe)] (2, dppm = Ph2PCH2PPh2) was prepared by deprotonation of [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)(μ-η2-ONNOMe)][BF4] (1) with the base DBU (1.8-diazabicyclo[5.4.0]undec-7-ene). The latter complex salt has been obtained in an improved synthesis starting from the trans-hyponitrite complex [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)(μ-η2-ONNO)]. Compound 2 has been characterized by spectroscopic methods as well as by X-ray diffraction and represents the first neutral complex bearing a deprotonated monoester of the hyponitrous acid as the bridging ligand.  相似文献   

11.
Silver(I) derivatives [Ag(L)(PiBu3)] (L = H2B(tz)2 (dihydrobis(1H-1,2,4-triazol-1-yl)borate), HB(tz)3 (hydrotris(1H-1,2,4-triazol-1-yl)borate), Tp (hydrotris(1H-pyrazol-1-yl)borate), Tp∗ (hydrotris(3,5-dimethyl-1H-pyrazol-1-yl)borate), TpMe (hydrotris(3-methyl-1H-pyrazol-1-yl)borate), TpCF3 (hydrotris(3-trifluoromethyl-1H-pyrazol-1-yl)borate), Tp4Br (hydrotris(4-bromo-1H-pyrazol-1-yl)borate), HB(btz)3 (hydrotris(1H-1,2,4-benzotriazol-1-yl)borate), Tm (hydrotris(3-methy-1-imidazolyl-2-thione)borate), pzTp (tetrakis(1H-pyrazol-1-yl)borate), pz0TpMe (tetrakis(3-methyl-1H-pyrazol-1-yl)borate) have been synthesized from the reaction of [Ag(NO3)(PiBu3)2] with ML (M = Na or K) and characterized both in solution (1H- and 31P{1H} NMR, ESI MS spectroscopy, conductivity) and in the solid state (IR, single crystal X-ray structure analysis). These complexes are air-stable and light-sensitive and non-electrolytes in CH2Cl2 and acetone in which they slowly decompose, even with the strict exclusion of oxygen and light, yielding metallic silver and/or azolate (Az) species of formula [Ag(Az)(PiBu3)x] upon breaking of the bridging B-N(azole) bond. The solid state structures of [Ag(Tp)(PiBu3)], [Ag(TpMe)(PiBu3)], [Ag(TpCF3)(PiBu3)], [Ag{HB(btz)3}(PiBu3)], and [Ag(Tm)(PiBu3)] show that the silver atom adopts a distorted tetrahedral coordination geometry. [Ag(L)(PPh3)] can be easily obtained from the reaction of [Ag(L)(PiBu3)] with excess PPh3, whereas from the reverse reaction of [Ag(L)(PPh3)] with PiBu3a mixture of [Ag(L)(PiBu3)] and [Ag(L)]2 and [Ag(L)(PPh3)] was recovered. 31P{1H} NMR variable temperature NMR studies showed that in the pz0Tpx derivatives the scorpionate ligand acts as a bidentate donor, whereas tridentate coordination is found for all tris(azolyl)borate derivatives, both in solution and in the solid state. ESI MS data suggest the existence in solution of species such as [Ag(PiBu3)2]+ upon dissociation of the L ligand, and also the formation of dimeric species of the form [Ag2(L)(PiBu3)2]+.  相似文献   

12.
Bis(diphosphanylamido) complexes of calcium and ytterbium, [{(Ph2P)2N}2M(THF)3] (M = Ca (1), Yb (2)), have been prepared by reaction of [K(THF)nN(PPh2)2] (n = 1.25, 1.5) and MI2. The single crystal X-ray structures of compounds 1 and 2 always show a η2-coordination of the ligand via the nitrogen and one phosphorus atom. In solution a dynamic behavior of the ligand is observed, which is caused by the rapid exchange of the two different phosphorus atoms.  相似文献   

13.
Reaction of chlorotrisulfidomolybdate [PPh4][MoClS3] (1) with one equivalent of tridentate ligand PyCH2NHC2H4SNa (PyNSNa) in THF generated both a mononuclear and a dinuclear complexes, [PPh4][(PyNS)MoO(η2-S2)2] (2) and [PPh4][(PyNS)Mo(O)(μ-S)2Mo(S)(η2-S2)]·0.5MeCN (3·0.5MeCN). These two complexes were separated mechanically and fully characterized using IR, UV/Vis spectra, 1H NMR spectra and X-ray single crystal diffraction analysis. In both complexes, one terminal sulfido ligand was substituted by one oxo group. In complex 3, two types of intermolecular hydrogen bonding in its solid state led to a 1-D structure in which each unit was a dimmer formed via hydrogen bonding.  相似文献   

14.
Dirhodium carbonyl complex with the 3,5-bis(diphenylphosphinoethyl)pyrazolato ligand (PNNPC2), [(μ-κ22-PNNPC2)Rh2(CO)3]BF4, is prepared and its reactivity is studied as compared with the previously reported 3,5-bis(diphenylphosphinomethyl)pyrazolate (PNNP), [(μ-κ22-PNNP){Rh(CO)2}2]BF4, and 1,4-bis(diphenylphosphinomethyl)phthalazine (PNNPPh) derivatives, [(μ-κ22-PNNPPh){Rh(CO)2}2](BF4)2. The three quadridentate ligands are different in the size of the central ring and the charge; six-membered ring/neutral (PNNPC2) vs. five-membered ring/mono-negative (PNNP) vs. six-membered ring/neutral (PNNPPh). The number of the carbonyl ligands (n) in the dirhodium carbonyl complexes, [(μ-PNNP)Rh2(CO)n](BF4)x, is dependent on the dinucleating ligand: n = 2 (PNNPPh), 3 (PNNPC2) and 4 (PNNPPy). The three dirhodium carbonyl complexes serve as 4e-acceptors, and their reactivities turn out to be very similar as can be seen from formation of the analogous, unique tetranuclear μ4-acetylide ([(μ-PNNP)2{Rh(CO)}44-CC-R)](BF4)x) and μ4-dicarbide complexes ([(μ-PNNP)2{Rh(CO)}44-C2)](BF4)x).  相似文献   

15.
A series of organotin(IV) carboxylates, [Bu2SnL2] (1), [Et2SnL2] (2), [Me2SnL2] (3), [Bu3SnL]n(4), [Me6Sn2L2]n(5), [Ph3SnL]n(6) and [Oct2SnL2] (7), where L = O2CCH2C6H4OCH3-4, have been synthesized. These complexes have been characterized by elemental analysis, FT-IR and multinuclear NMR (1H, 13C and 119Sn). Based on spectroscopic results, the ligand appeared to coordinate to the Sn atom through COO moiety. Single crystal analysis has shown a bridging behavior of ligand in tributyl- and trimethyltin(IV) derivatives, and a chelating bidentate mode in diethyltin(IV) complex. Bioassay results have shown that these compounds have good antibacterial, antifungal and antitumor activity. The activity against prostate cancer cell lines (PC-3) decreased in the order 1 > 5 > 2 > 3 > 7.  相似文献   

16.
The reaction of the rhenium(V) nitrido complex [Re(N)Cl2(PPh3)2] with the tripodal ligand N(CH2CH2PPh2)3 (NP3) in THF gave [Re(N)Cl22-P,P-NP3)] (1) in which NP3 acts as a tridentate ligand using the nitrogen and two phosphorus donors for coordination. Refluxing 1 in a polar solvent such as ethanol produced [(η4-NP3)Re(N)Cl]Cl (2) in which NP3 acts as a tetradentate ligand. Treatment of complex [Re(O)Cl3(AsPh3)2] containing the [ReO]3+ core with NP3 in THF yielded [ReCl33-N,P,P-(N{CH2CH2Ph2}2{CH2CH2P(O)Ph2})}] (3). Complexes 1 and 3 have been characterized by single-crystal X-ray analyses.  相似文献   

17.
[M(P3C2tBu2)(CO)3I] (M = Mo, 1, W, 2) have been synthesised and reacted with PCl5 for oxidation study purposes. Compounds Ti(P3C2tBu2)(Ind)Cl2], 3, and [Zr(P3C2tBu2)(Cp)Cl2], 4, were detected spectroscopically, but showed to be too unstable to be isolated. A Ti(IV) complex, [Ti(P3C2tBu2)Cl3], 5, has been formed from the reaction of [TiCl4] with the base-free ligand K(P3C2tBu2), while the Ti(III) species, [Ti(P3C2tBu2) Cl2(THF)], 6, was prepared from [TiCl3(THF)3]. Compounds 5 and 6 were studied as ethylene catalyst precursors after activation with MAO. In the studied conditions, complex 5 is the most active one with an activity of 2.2 × 105 g(molTi [E] h)−1, one order of magnitude higher than compound 6. The produced polymer is linear polyethylene.  相似文献   

18.
The tetra-chelating ligands 1,2-bis[(5H-dibenzo[a,d]cyclohepten-5-yl)phenylphosphanyl]-ethane, bis(troppPh)ethane, and 1,3-bis[(5H-dibenzo[a,d]cyclohepten-5-yl)phenylphosphanyl]-propane, bis(troppPh)propane, were synthesised. For the binding of transition metals, these ligands offer two olefin moieties and two phosphorus centres and form mixtures of diastereomers with a R,S-configuration at the phosphorus centres (meso), or a R,R(S,S)-configuration (rac), respectively. meso/rac-bis(troppPh)ethane was separated by fractional crystallisation and reacted with [Ir(cod)2]OTf (cod=cylcooctadiene, OTf=CF3SO3 −) to give the penta-coordinated complex-cations meso/rac-[Ir(bis(troppPh)ethane)(cod)]+, where the bis(troppPh)ethane serves as tridentate ligand merely. One olefin unit remains non-bonded, however, a slow intra-molecular exchange between this olefin and the coordinated olefin unit was established (meso-[Ir(bis(troppPh)ethane)(cod)]+: k<0.5 s−1; rac-[Ir(bis(troppPh)ethane)(cod)]+: k≈35 s−1). The ligand meso/rac-bis(troppPh)propane reacts with [Ir(cod)2]OTf to give the corresponding complexes containing the tetra-coordinated 16-electron complex-cations meso/rac-[Ir(bis(troppPh)propane)]+. The diastereomers were separated by fractional crystallisation. The complex rac-[Ir(bis(troppPh)propane)]+ is reduced at relatively low potentials (E11/2=−0.95 V, E21/2=−1.33 V versus Ag/AgCl) to give the neutral 17-electron complex [Ir(bis(troppPh)propane)]0 and the 18-electron anionic iridate [Ir(bis(troppPh)propane)], respectively. With acetonitrile, [Ir(bis(troppPh)propane)]+ reacts to give the penta-coordinated complex rac-[Ir(MeCN)(bis(troppPh)propane)]+ (K=45 M−1, kf=6×103 M−1 s−1, kd=1×102 s−1) and with chloride to yield the relatively stable complex rac-[Ir(Cl)(bis(troppPh)propane)] (kd<0.5 s−1). Compared to the rac-isomer, the meso-[Ir(bis(troppPh)propane)]+ shows significantly cathodically shifted reduction potentials (E11/2=−1.25 V, E21/2=−1.64 V versus Ag/AgCl), an acetonitrile complex could not be detected, and the chloro-complex, meso-[Ir(Cl)(bis(troppPh)propane)], is much more labile (kd≈20′000 s−1). meso-[Ir(bis(troppPh)propane)]+ reacts with one equivalent H2 to give the trans-dihydride complex-cation, meso-[Ir(H)2(bis(troppPh)propane)]+, while the rac-isomer, rac-[Ir(bis(troppPh)propane)]+, reacts with two equivalents H2 to give rac-{Ir(H)2(OTf)[(troppPh)(H2troppPh)propane]}, a cis-dihydride complex containing a hydrogenated 10,11-dihydro-5H-dibenzo[a,d]cycloheptene unit, H2troppPh. The triflate anion in this complex is rather firmly bound and dissociates only slowly (k=29 s−1). All differences between the different stereoisomers are attributed to the fact that the ligand backbone in the meso-isomer, meso-[Ir(bis(troppPh)propane)]+, enforces a planar coordination sphere at the metal. On the contrary, already in the tetra-coordinated rac-[Ir(bis(troppPh)propane)]+, the metal has a tetrahedrally distorted coordination sphere which does not impede the reduction to the d9-Ir(0) and d10-Ir(−1) complexes and allows more easily a distortion towards a trigonal bipyramidal (tbp) or octahedral structure for penta- or hexa-coordinated complexes, respectively. A comparison of the NMR data for iridium bonded olefins in equatorial or axial positions in tbp structures shows that the latter experience only modest metal-to-ligand back-donation, while the olefins in the equatorial positions have a high degree of metallacyclopropane character.  相似文献   

19.
[Rh2(μ-Cl)2(cod)2] reacts with Ph2PCH2CH2OMe (PC2O), Ph2P(CH2)3NMe2 (PC3N), PBunPh2 or PPh3 to give [Rh(cod)L2]Cl (L = PC2O, PC3N, PBunPh2, PPh3). In the presence of hydrogen, [Rh(cod)L2]Cl is converted to [RhClH2L3]. In contrast, [Rh(cod)(PC2O)2]BPh4 reacts with H2 to give [RhH2(PC2O)2S2]BPh4 (S = solvent). With Ph2PCH2CH2NMe2 (PC2N) or Ph2PCH2CH2SMe (PC2S), [Rh2(μ-Cl)2(cod)2] reacts to form the chelate complexes cis- [Rh(PC2N)2]+ or cis-[Rh(PC2S)2]+, neither of which reacts with hydrogen under ambient conditions. The products of the reactions are characterized in situ by 31P1H NMR spectroscopy.  相似文献   

20.
《Inorganica chimica acta》2006,359(9):2819-2825
The synthesis and structures of isomeric lithium diamine-bis(phenolate) complexes are reported. Deprotonation of the ligands, H2O2NN′tBu [Me2NCH2CH2N(CH2ArOH)2, Ar = 3,5-C6H2-tBu2] and H2O2N2tBu [HOArCH2NMeCH2CH2NMeCH2ArOH, Ar = 3,5-C6H2-tBu2], in diethyl ether affords base-free lithium complexes Li2O2NN′tBu (1) and Li2O2N2tBu (2) upon solvent removal. The dioxane adduct of (1) exhibits a polymeric structure in the solid-state, whereas the dioxane adduct of (2) possesses a dimeric structure. The syntheses of K2O2NN′tBu (3), K2O2N2tBu (4), Zr(O2NN′tBu)Cl2 (5) and Y(O2NN′tBu)Cl(THF), (6), are also reported. The transition metal complexes were isolated in good yields via salt metathesis reactions using 1 or 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号