首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new nickel(II) complexes of the composition [Ni(cyclam)(Hdipic)2] · 2H2O (1) and [Ni(cyclam)(H2O)2][Ni(dipic)2] · 2.5H2O (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane) have been prepared and structurally characterized by a combination of analytical, spectroscopic, thermogravimetric, and crystallographic methods. The structure of 1 shows that the central nickel(II) ion is coordinated axially by two monodentate Hdipic ligands. The discrete neutral complex 1 further extends its structure by hydrogen bonding interactions to form a one-dimensional supramolecule. The structure of 2 consists of two independent nickel(II) centers. Water molecules instead of dipic ligands prefer to coordinate to the Ni1 ion forming a divalent cation [Ni(cyclam)(H2O)2]2+. Two dipic ligands coordinate to the second Ni2 ion forming a divalent anion [Ni(dipic)2]2−. The divalent cations and anions are charge-balanced, resulting in a molecular salt. The divalent cations and anions are interconnected by multiple types of hydrogen bonding interactions.  相似文献   

2.
The complexes of Cu(I), Cu(II), Ni(II), Zn(II) and Co(II) with a new polypyridyl ligand, 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (L), have been synthesized and characterized. The crystal structures of these complexes have been elucidated by X-ray diffraction analyses and three types of coordination modes for L were found to exist in them. In the dinuclear complex [Cu(I)L(CH3CN)]2·(ClO4)2 (1), L acts as a tridentate ligand with two Cu(I) centers bridged by two L ligands to form a box-like dimeric structure, in which each Cu(I) ion is penta-coordinated with three nitrogen atoms and a methoxyl oxygen atom of two L ligands, and an acetonitrile. In [Cu(II)L(NO3)2]·CH3CN 2, the Cu(II) center is coordinated to the two nitrogen atoms of the two pyridine rings of L which acts as a bidentate ligand. The structures of [Ni(II)L(NO3)(H2O)2]·2CH3CN·NO3 (3), [Zn(II)L(NO3)2 (H2O)]·2CH3CN (4) and [Co(II)LCl2(H2O)] (5) are similar to each other in which L acts as a tridentate ligand by using its half side, and the metal centers are coordinated to a methoxyl oxygen atom and two bipyridine nitrogen atoms of L in the same side. The formation of infinite quasi-one-dimensional chains (1, 4 and 5) or a quasi-two-dimensional sheet (2) assisted by the intra- or intermolecular face-to-face aryl stacking interactions and hydrogen bonds may have stabilized the crystals of these complexes. Luminescence studies showed that 1 exhibits broad, structureless emissions at 420 nm in the solid state and at 450 nm in frozen alcohol frozen glasses at 77 K. Cyclic voltammetric studies of 1 show the presence of an irreversible metal-centered reduction wave at approximately −0.973 V versus Fc+/0 and a quasi-reversible ligand-centered reduction couple at approximately −1.996 V versus Fc+/0. The solution behaviors of these complexes have been further studied by UV-Vis and ESR techniques.  相似文献   

3.
The complexes [Cu(PCHO)2(NCMe)][BF4] (1) and [Cu(PCHO)3][BF4] (2) have been prepared by treating [Cu(NCMe)4][BF4] with two and three equivalents of Ph2P(o-C6H4)C(O)H (abbreviated as PCHO) at room temperature, respectively. The reaction of 1 and (Ph2PC5H4)2Fe (abbreviated as DPPF) affords [Cu(PCHO)(DPPF)][BF4] (3). The molecular structures of 1-3 have been determined by an X-ray diffraction study. The aldehyde groups in 1 are pendant, while one of the formyl groups in 2 is weakly coordinated to the copper ion through the oxygen atom. On the other hand, the copper atom in 3 is strongly chelated by both DPPF and PCHO ligands.  相似文献   

4.
Four copper(II) complexes containing the reduced Schiff base ligands, namely, N-(2-hydroxybenzyl)-glycinamide (Hsglym) and N-(2-hydroxybenzyl)-l-alaninamide (Hsalam) have been synthesized and characterized. The crystal structures of [Cu2(sglym)2Cl2] (1), [Cu2(salam)2(NO3)2] · H2O (3), [Cu2(salam)2(NO3)(H2O)](NO3) · 1.5H2O (4), [Cu2(salam)2](ClO4)2 · 2H2O (5) show that the Cu(II) atoms are bridged by two phenolato oxygen atoms in the dimers. The sglym ligand bonded to Cu(II) in facial manner while salam ligand prefers to bind to Cu(II) in meridonal geometry. Variable temperature magnetic studies of 3 showed it is antiferromagnetic. These Cu(II) complexes and [Cu2(sglym)2(NO3)2] (2), exhibit very small catecholase activity as compared to the corresponding complexes containing acid functional groups.  相似文献   

5.
The reaction of MCl2 · 2H2O (M = Cu, Zn) with 2,3,5,6-tetra(2-pyridyl)pyrazine (tppz) (referred hereafter as L) in 2:1 molar ratio in acetonitrile at room temperature afforded binuclear complexes [M23-L)Cl4] [Cu (1), Zn (2)] where the ligand is bis-tridentate manner. The complexes have been characterized by elemental analyses, FAB-MS, IR, EPR, NMR and electronic spectral studies. Solid state structures of both the [Cu23-L)Cl4] · 5H2O (1), [Zn23-L)Cl4] · H2O (2) have been determined by single crystal X-ray analyses. A well-resolved uudd cyclic water tetramer and water monomer were reported in the crystal host of [Cu23-L)Cl4] · 5H2O (1) and [Zn23-L)Cl4] · H2O (2) showing the contribution of the water cluster to the stability of the crystal host 1 and 2.  相似文献   

6.
The variations in the coordination environment of Co(II), Cu(II) and Zn(II) complexes with the neutral, tridentate ligand bis[1-(cyclohexylimino)ethyl]pyridine (BCIP) are reported. Analogous syntheses were carried out utilizing either the M(BF4)2 · xH2O or MCl2 · xH2O metal salts (where M = Co(II), Cu(II) or Zn(II)) with one equivalent of BCIP. When the hydrated metal starting material was used, cationic, octahedral complexes of the type [M(BCIP)2]2+ were isolated as the tetrafluoroborate salt (4, 5). Conversely, when the hydrated chloride metal salt was used as the starting material, only neutral, pentacoordinate [M(BCIP)Cl2] complexes (1-3) formed. All complexes were characterized by X-ray diffraction studies. The three complexes that are five coordinate have distortions due mainly to the pyridine di-imine bite angle. The [Cu(BCIP)Cl2] (2) also exhibits deviations in the Cu(II)-Cl bond distances with values of 2.4242(9) and 2.2505(9) Å, which are not seen in the analogous Zn(II) and Co(II) structures. Similarly, the two six coordinate complexes (5, 6) are also altered by the ligand frame bite angle giving rise to distorted octahedral geometries in each complex. The [Cu(BCIP)2](BF4)2 (6) also exhibits Cu(II)-Nimine bond lengths that are on average 0.14 Å longer than those found in the analogous 5 coordinate complex, [Cu(BCIP)Cl2]. In addition to X-ray analysis, all complexes were also characterized by UV/Vis and IR spectroscopy with 1H NMR spectroscopy being used for the analysis of the Zn(II) analogue (3).  相似文献   

7.
Self-assembly of flexible 1,3-bis(1,2,4-triazol-1-yl)propane (btp), inorganic Cu(II) salt and rigid benzene-based carboxylate coligand generates four complexes, {[Cu(btp)2(CH3OH)(H2O)]·H2O·2ClO4}n (1), {[Cu(btp)(Hbtc)2]·0.5H2O}n (2), [Cu(btp)2(H3btea)2]n (3), and [Cu(btp)(nb)2] (4) (H3btc = 1,3,5-benzenetricarboxylic acid, H4btea = 1,2,4,5-benzenetetracarboxylic acid, Hnb = p-nitrobenzoic acid), which are fully structural characterized by single-crystal X-ray crystallography, elemental analysis, IR, and TG-DTA techniques. Structural determinations reveal that the polymeric two-dimensional (2D) Cu-btp grid-like layer for 1, 1D linear single- and double-stranded chains for 2 and 3, as well as the discrete binuclear structure for 4, are jointly directed by the coordination polyhedrons of the Cu(II) ion and the exo-bidentate bridging btp core ligand with various conformations. The theoretical calculations suggest that the trans-trans btp is the most stable conformation, and the metal binding site is collectively determined by the electron density of N donors and the spatial orientation of the btp ligand. Unexpectedly, the polycarboxylate anions in 1-4 can only act as terminal coligands not popular bridging connectors. The thermal stability of the resulting complexes is also compared.  相似文献   

8.
A series of bifunctional chelates of the type dipicolylamino-alkylcarboxylate (NC5H4CH2)2N(CH2)nCO2H (n = 1-4; HL1-HL4, respectively) has been prepared. Reactions of the ligands in aqueous methanol/N,N-dimethylformamide with the appropriate Cu(II) salts yielded the compounds [CuL1](NO3)·H2O (1·H2O), [CuL2(H2O)]BF4·H2O (2·H2O), [Cu(HL3)(SO4)]2 (3) and [CuL4(NO3)]·MeOH (4·MeOH). While compounds 1, 2 and 4 are one-dimensional, the detailed connectivities within the chains are quite distinct, depending on factors such as alkyl chain length and ligation of aqua ligands or anionic components. In contrast to 1, 2 and 4, the structure of 3 is molecular, a binuclear assembly of edge-sharing Cu(II) ‘4+2’ distorted octahedra. The Cd(II) species, [{CdL2}2(SO4)]·4H2O (5·4H2O), prepared from HL2 and CdSO4·nH2O in aqueous methanol/N,N-dimethylformamide, is two-dimensional, with a network constructed from binuclear units of seven coordinate Cd(II), , linked through bridging SO42− groups to produce an assembly of linked hexagonal rings [{CdL2}2(SO4)]6.  相似文献   

9.
Four novel nicotinato-copper(II) complexes containing polybenzimidazole and polyamine ligands were synthesized with formula [Cu2(bbma)2(nic)2](ClO4)2·CH3OH·0.5H2O (1), [Cu2(dien)2(nic)2](ClO4)2·2CH3OH (2), [Cu(ntb)(nic)]ClO4·H2O (3) and [Cu(tren)(nic)]BPh4·CH3OH·H2O (4), in which bbma is bis(benzimidazol-2-yl-methyl)amine, dien is diethylenetriamine, ntb is tris(2-benzimidazolylmethyl)amine, tren is tris(2-aminoethyl)amine and nic is nicotinate anion. All of the complexes were characterized by elemental analysis, IR and X-ray diffraction analysis. Complexes 1 and 2 contain centrosymmetric dinuclear entity with the two Cu(II) atoms bridged by two nicotinate anions in an anti-parallel mode. The Cu···Cu separation is 7.109 Å for 1 and 6.979 Å for 2. Complexes 3 and 4 are mononuclear with nicotinate coordinated to Cu(II) ion by the carboxylate O atom in 3 and the pyridine N atom in 4. All of the complexes exhibit abundant hydrogen bonds to form 1D chain for 1, 3, 4 and 2D network for 2. Magnetic susceptibility measurements over the 2-300 K range reveal very weak ferromagnetic interaction between the two Cu(II) ions in 1 and antiferromagnetic interaction in 2 mediated by nicotinate ligand, with J value to be 0.15 and −0.19 cm−1, respectively.  相似文献   

10.
A series of inorganic-organic hybrid compounds built from bis(undecatungstophosphate) lanthanates and copper-complexes, namely, H8[Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][La(PW11O39)2]}2·18H2O (1), H6[Na2(en)2(H2O)5][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Ce(PW11O39)2]}2·16H2O (2), H6[Na2(en)2(H2O)5][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Pr(PW11O39)2]}2·18H2O (3), H6[Na2(en)2(H2O)4][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Nd(PW11O39)2]}2·14H2O (4), H6[Na2(en)2(H2O)5][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Sm(PW11O39)2]}2·20H2O (5), and H7[Cu(en)2]2[Sm(PW11O39)2]·10H2O (6) (where en = 1,2-ethylenediamine), have been prepared. In these compounds, two lacunary [PW11O39]7− anions sandwich an eight-coordinated Ln(III) cation to yield [Ln(PW11O39)2]11− anion in a twisted square anti-prismatic geometry, which is further bridged by [Cu(en)2]2+ fragments to generate a 1D zigzag-like chain. In 1-6, the coordination bond interactions and weak interactions between adjacent 1D chains play an important role in the zigzagging distances and angles of different 1D chains. The magnetic studies indicate that antiferromagnetic interactions exist in compounds 1, 2 and 4.  相似文献   

11.
When the complexes [Cu(L1)(H2O)](ClO4)21, where L1 = 4-methyl-1-(pyrid-2-ylmethyl)-1,4-diazacycloheptane, and [Cu(L2)Cl2] 2, where L2 = 4-methyl-1-(quinol-2-ylmethyl)-1,4-diazacycloheptane are interacted with one/two equivalents of bis(p-nitrophenylphosphate, (p-NO2Ph)2PO2, BNP), no hydrolysis of BNP is observed. From the solution the adducts of copper(II) complexes [Cu2(L1)2((p-NO2Ph)2PO2)2]-(ClO4)23 and [Cu(L2)((p-NO2Ph)2PO2)2]·H2O 4 have been isolated and structurally characterised. The X-ray crystal structure of 3 contains two Cu(L1) units bridged by two BNP molecules. The Cu···Cu distance (5.1 Å) reveals no Cu-Cu interaction. On the other hand, the complex 4 is mononuclear with Cu(II) coordinated to the 3N ligand as well as BNP molecules through phosphate oxygen. The trigonality index (τ, 0.37) observed for 4 is high suggesting the presence of significant trigonal distortion in the coordination geometry around copper(II). The complexes are further characterized by spectral and electrochemical studies.  相似文献   

12.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

13.
Phosphinoquinoxalines were prepared by treatment of 2,3-dichloroquinoxaline (3) with phosphorus nucleophiles. The Arbuzov reaction of 3 with PPh(O-i-Pr)2 gave a mixture of diastereomers of 2,3-(PPh(O)(O-i-Pr))2quinoxaline (6); the crystal structure of rac-6 was determined, but attempts at reduction to yield bis(phenylphosphino)quinoxaline 7 resulted in P-C cleavage and formation of phenylphosphine. The bis(secondary phosphine) 7 could be generated from 3 and LiPHPh(BH3), but was not isolated in pure form. Copper-catalyzed coupling of PHPh2 with 3 gave 2,3-bis(diphenylphosphino)quinoxaline (4, dppQx), whose coordination chemistry was investigated, with comparison to data for the analogous 1,2-bis(diphenylphosphino)benzene (dppBz) complexes. Reaction of dppQx with [Cu(NCMe)4][PF6] gave [Cu(dppQx)2][PF6] (8); CuCl yielded [Cu(dppQx)Cl]2 (9). Reaction of [Cu(NCMe)4][PF6] with one equiv of DPEphos, followed by one equiv of dppQx, gave [Cu(dppQx)(DPEphos)][PF6] (10). Ligand 4 and copper complexes 8 and 9 were crystallographically characterized. The UV-Vis spectra of dppQx and its copper complexes were red-shifted from those of the dppBz analogs; in contrast to results for the dppBz complexes, those of dppQx were not luminescent in solution.  相似文献   

14.
Synthesis and crystal structure of two coordination polymers of composition [MnII(H2bpbn)1.5][ClO4]2 · 2MeOH · 2H2O (1) and [CoII(H2bpbn)(H2O)2]Cl2 · H2O (2) [H2bpbn = N,N′-bis(2-pyridinecarboxamido)-1,4-butane], formed from the reaction between [Mn(H2O)6][ClO4]2/CoCl2 · 4H2O with H2bpbn in MeCN, are described. In 1 each MnII ion is surrounded by three pyridine amide units, providing three pyridine nitrogen and three amide oxygen donors. Each MnII center in 1 has distorted MnN3O3 coordination. In 2 each CoII ion is coordinated by two pyridine amide moieties in the equatorial plane and two water molecules provide coordination in the axial positions. Thus, the metal center in 2 has trans-octahedral geometry. In both 1 and 2, the existence of 1D zigzag network structure has been revealed. Owing to π-π stacking of pyridine rings from adjacent layers 1 forms 2D network; 2 forms 2D and 3D network assemblies via N-H?Cl and O-H?Cl secondary interactions. Both the metal centers are high-spin.  相似文献   

15.
Two salts consisting of ammonium-crown ether supramolecular cation with bis(maleonitriledithiolato)copperate (II), (NH4)2(15-crown-5)3[Cu(mnt)2] (1) and (NH4)2(benzo-15-crown-5)4[Cu(mnt)2] · 0.5H2O (2), have been synthesized and structurally characterized. The distinct structures of supramolecular cation, an unusual triple-decker dication in 1 and a sandwich dimer in 2, were observed. X-band EPR studies on the single crystals of both 1 and 2 have been carried out at room temperature, which revealed that 1 possesses a single resonance line whereas 2 shows a perfect hyperfine structure. The spin-density distribution in the anionic moiety of 2 is calculated on DFT method and compared well with the experimental data.  相似文献   

16.
Two new manganese(II) complexes, [Mn(L1)(L1H)(ClO4)(H2O)][ClO4]2·0.5CH3CN·H2O (1) [L1 = trans-(±)2-(2,5-di(pyridin-2-yl)-4,5-dihydro-1H-imidazol-4-yl)pyridine)] and [Mn2(μ-L2)2(H2O)3(CH3CN)3][ClO4]4·2CH3CN (2) [L2 = cis-(±)2-(2,5-di(pyridin-2-yl)-4,5-dihydro-1H-imidazol-4-yl)pyridine)], have been prepared and examined by single-crystal X-ray diffraction analysis, showing that complex 1 is a mononuclear compound, whereas complex 2 is a dinuclear species. The cis/trans isomers L1 and L2 have similar coordination properties, but behave as bidentate and tridentate chelating ligands, respectively, giving distorted octahedral metal coordination geometries. X-ray diffraction studies revealed that the molecular and crystal structures are stabilized by a series of intra- and intermolecular interactions. In both cases extended supramolecular networks are generated, in compound 1 through O-H···O, O-H···N, N-H···O, N-H···N, C-H···O, C-H···N, C-H···π and π···π interactions, and in compound 2 through O-H···O, O-H···N, C-H···O and π···π interactions. The observed structural differences between the two metal complexes might be a consequence of these stabilizing effects.  相似文献   

17.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

18.
Four palladium(II) and platinum(II) complexes of 2,2′-dipyridylamine (dpya) with saccharinate (sac), cis-[Pd(dpya)(sac)2]·H2O (1), cis-[Pt(dpya)(sac)2]·H2O (2), [Pd(dpya)2](sac)2·2H2O (3) and [Pt(dpya)2](sac)2·2H2O (4), have been synthesized and characterized by elemental analysis, IR, NMR, TG-DTA and X-ray diffraction. In 1 and 2, the metal ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of dpya, resulting in a neutral square-planar coordination sphere, while in 3 and 4, the metal ions are coordinated by two dpya ligands to generate square-planar cationic species, which are stabilized by two sac counter-ions. The mononuclear species of 1 and 2 interact each other through weak intermolecular N-H?O, C-H?O and π?π interactions to form a three-dimensional network, while the ions of 3 and 4 are connected by N-H?N and OW-H?O hydrogen bonds into one-dimensional chains. On heating at 250 °C, the solid cationic complexes of 3 and 4 convert to corresponding anhydrous neutral complexes of 1 and 2 after elimination of a dpya ligand. In addition, all complexes 1-4 are luminescent at room temperature and their emissions seem to be attributed to the MLCT fluorescence.  相似文献   

19.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

20.
Bin Hu 《Inorganica chimica acta》2010,363(7):1348-6199
Four transition metal complexes of 3,8-di(thiophen-2′,2″-yl)-1,10-phenanthroline (dtphen), formulated as [Ni(dtphen)2(H2O)2]·(ClO4)2 (1), [Zn(dtphen)2(H2O)]·(ClO4)2 (2) [Cu(dtphen)2(H2O)]·(ClO4)2 (3), [Cu(dtphen)(phen)2]·(ClO4)2 (4) (phen = 1,10-phenanthroline) with different metal-to-ligand ratios, were synthesized and characterized herein. The X-ray single-crystal diffraction studies of 1-4 exhibit that different molecular configurations for the dtphen ligand can be observed where the side thiophene rings adopt the trans/trans, trans/cis, trans/disorder and cis/cis conformations relative to the central 1,10-phenanthroline unit in different compounds. Fluorescence emission spectra of 1-4 in methanol show that the fluorescence emission of 2 is much stronger than the other three metal complexes, which is mainly due to its full d10 electronic configuration of Zn(II) ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号