首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of [C5H4(CH2)nX]Tl (1: n = 2, X = NMe2, OMe, CN; n = 3, X = NMe2) with [(η6-C6H6)RuCl(μ-Cl)]2, 2, afforded the sandwich compounds [{η5-C5H4(CH2)nX}Ru(η6-C6H6)]PF6, 3, and [η5-C5H4(CH2)nX]2Ru, 4. Photolytic cleavage of 3 in acetonitrile afforded the tethered products [{η5N-C5H4(CH2)nX}Ru(CH3CN)2]PF6, 5.  相似文献   

2.
A series of water soluble compounds of general formula [{(η6-arene)Ru(HMP)Cl}], [η6-arene = η6-cymene (1), η6-HMB (2), η6-C6H6 (3); HMP = 5-hydroxy-2-(hydroxymethyl)-4-pyrone] have been prepared by the reaction of [{(η6-arene) RuCl2}2] with HMP. The complexes 1 and 2 react with NaN3 to give in excellent yield tetra-azido complexes [{(η6-arene)Ru(μN3)N3}2] (arene = cymene 4, HMB = 5) but similar reaction of complex 3 with NaN3 yielded di-azdo complex [{(η6-C6H6)Ru(μN3)Cl}2] (6). Reaction of [{(η6-arene)Ru(μN3)Cl}2] with HMP in the presence of NaOMe resulted in the formation of azido complex [{(η6-arene)Ru(HMP)N3}]. Mono and dinuclear complexes [{(η6-arene)Ru(HMP)(L1)}]+ and [{(η6-arene)Ru(HMP)}2(μL2)]2+ were also prepared by the reaction of complexes 1 and 2 with the appropriate ligand, L1 or L2 in the presence of AgBF4 (L1 = PyCN, DMAP; L2 = 4,4′-bipy, pyrazine). The complexes are characterized on the basis of spectroscopic data and molecular structures of three representative compounds have been determined by single crystal X-ray diffraction study.  相似文献   

3.
The preparation of a series of 1,2-phenylenedioxoborylcyclopentadienyl-metal complexes is described. These are of formula [M{η5-C5H4(BX)}Cl3] [M = Ti and X = CAT (2a), CATt (2b) or CATtt (2c); X = CATtt and M = Zr (4a) or Hf (4b)], [M{η5-C5H4(BX)}2Cl2] [M = Zr, X = CAT (3a) or CATt (3c); or M = Hf, X = CAT (3b) or CATt (3d)], [M{(μ-η5-C5H3BCAT)2 SiMe2}Cl2] [M = Zr (5a) or Hf (5b)], [M{η5-C5H3(BCAT)2}Cl3] [M = Zr (6a) or Hf (6b)], [M{η5-C5H4BCAT}3(THF)] [M = La (7a), Ce (7b) or Yb (7c)], [Sn{η5-C5 H4(BCATt)}Cl](8) and [Fe{η5-C5H4(BCATt)}2] (9). The abbreviations refer to BO2C6H4-1,2 (BCAT) and the 4-But (BCATt) and the (BCATtt) analogues. The compounds 2a-9 have been characterised by microanalysis, multinuclear NMR and mass spectra. The single crystal X-ray structure of the lanthanum compound 7a is presented.  相似文献   

4.
Reactions of the electron-deficient triosmium cluster [Os3(CO)932-C9H6N)(μ-H)] (1) with various alkynes are described. Cluster 1 readily reacts with the activated alkyne dimethyl acetylenedicarboxylate (dmad) upon mild heating (65-70 °C) to give the adduct [Os3(CO)9(μ-C9H6N)(μ3-MeO2CCCHCO2Me)] (2). In contrast, a similar reaction of 1 with diphenylacetylene affords previously reported compounds [Os3(CO)10(μ-η2-C9H6N)(μ-H)] (3), [Os3(CO)9(μ-C4Ph4)] (4) and [Os3(CO)83-C(C6H4)C3Ph3}(μ-H)] (5) while with 2-butyne gives only the known compound [Os3(CO)7(μ-C4Me4)(μ3-C2Me2)] (6). The new cluster 2 has been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

5.
The B-phenylborole complex CpRh(η5-C4H4BPh) (1) reacts with [ML]+ fragments to give the arene-type cationic complexes [CpRh(μ-η56-C4H4BPh)ML]+ (ML = RuCp (3), Co(C4Me4) (4), Rh(cod) (5), and Ir(cod) (6)). Cation 4 undergoes a reversible rearrangement into the triple-decker complex [CpRh(μ-η55-C4H4BPh)Co(C4Me4)]+ (7) under visible light irradiation in CH2Cl2 solution. DFT calculations revealed greater stability of arene-type complexes over triple-decker isomers. The structure of [3]BF4 was determined by X-ray diffraction.  相似文献   

6.
The synthesis and X-ray characterization of binuclear dipalladium(I) and diplatinum(I) p-xylene complexes [Pd26-C8H10)2(μ-Cl/Br)2(GaCl3)2] (1) and [Pt26-C8H10)2(Ga2Br7)2] (5) are reported. It was established that the toluene ligands in the palladium complex [Pd26-C7H8)2(GaCl4)2] (3) can be substituted by naphthalene without disruption of the metal-metal bond. The reaction of 3 with Pd(PPh3)4 leads to the formation of a dipalladium(II) μ-diphenylphosphido compound [Pd2(μ-PPh2)(PPh3)4] (GaCl4)2 · 4(C7H8) (4), most likely also involving a bridging μ-H ligand.  相似文献   

7.
Dyad (η4-C4Ph4)Co(η5-C5H4CHCHFc) (2) containing isolobal iron and cobalt metallocene fragments has been prepared and its structure and spectroelectrochemical properties examined. Both the E and Z isomers have been characterised and their X-ray structures determined. B3LYP/6-31G calculations for 2 show that the HOMO has more electron density on the Fc than on the CbCo(η5-C5H4) fragment whereas the reverse is the case for the LUMO. Both isomers undergo chemically reversible oxidations at the Fc (0.49 and 0.53 V) and CbCo redox centres (0.96 V) but the [2Z]2+ cation isomerises to [2E]2+ concomitant with the second oxidation process. A NIR band at 1290 nm for the [2E]+ cation is assigned to a CbCo(η5-C5H4) → Fc+ charge-transfer.  相似文献   

8.
Addition of phenyldi(2-thienyl)phosphine (PPhTh2) to [Re2(CO)10−n(NCMe)n] (n = 1, 2) affords the substitution products [Re2(CO)10−n(PhPTh2)n] (1, 2) together with small amounts of fac-[ClRe(CO)3(PPhTh2)2] (3) (n = 2). Reaction of [Re2(CO)10] with PPhTh2 in refluxing xylene affords a mixture which includes 2, [Re2(CO)7(PPhTh2)(μ-PPhTh)(μ-H)] (4), [Re2(CO)7(PPhTh2)(μ-PPhTh)(μ-η11(S)-C4H3S)] (5) and mer-[HRe(CO)3(PPhTh2)2] (6). Phosphido-bridged 4 and 5 are formed by the carbon-phosphorus bond cleavage of the coordinated PPhTh2 ligand, the cleaved thienyl group being retained in the latter. Reaction of [Mn2(CO)10] with PPhTh2 in refluxing toluene affords [Mn2(CO)9(PPhTh2)] (7) and the carbon-phosphorus bond cleavage products [Mn2(CO)6(μ-PPhTh)(μ-η15-C4H3S)] (8) and [Mn2(CO)5(PPhTh2)(μ-PPhTh)(μ-η15-C4H3S)] (9). Both 8 and 9 contain a bridging thienyl ligand which is bonded to one manganese atom in a η5-fashion.  相似文献   

9.
In this work we report on the synthesis, crystal structure, and physicochemical characterization of the novel dinuclear [FeIIICdII(L)(μ-OAc)2]ClO4·0.5H2O (1) complex containing the unsymmetrical ligand H2L = 2-bis[{(2-pyridyl-methyl)-aminomethyl}-6-{(2-hydroxy-benzyl)-(2-pyridyl-methyl)}-aminomethyl]-4-methylphenol. Also, with this ligand, the tetranuclear [Fe2IIIHg2II(L)2(OH)2](ClO4)2·2CH3OH (2) and [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) complexes were synthesized and fully characterized. It is demonstrated that the precursor [FeIII2HgII2(L)2(OH)2](ClO4)2·2CH3OH (2) can be converted to (3) by the fixation of atmospheric CO2 since the crystal structure of the tetranuclear organometallic complex [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) with an unprecedented {FeIII(μ-Ophenoxo)2(μ-CO3)FeIII} core was obtained through X-ray crystallography. In the reaction 2 → 3 a nucleophilic attack of a FeIII-bound hydroxo group on the CO2 molecule is proposed. In addition, it is also demonstrated that complex (3) can regenerate complex (2) in aqueous/MeOH/NaOH solution. Magnetochemical studies reveal that the FeIII centers in 3 are antiferromagnetically coupled (J = − 7.2 cm− 1) and that the FeIII-OR-FeIII angle has no noticeable influence in the exchange coupling. Phosphatase-like activity studies in the hydrolysis of the model substrate bis(2,4-dinitrophenyl) phosphate (2,4-bdnpp) by 1 and 2 show Michaelis-Menten behavior with 1 being ~ 2.5 times more active than 2. In combination with kH/kD isotope effects, the kinetic studies suggest a mechanism in which a terminal FeIII-bound hydroxide is the hydrolysis-initiating nucleophilic catalyst for 1 and 2. Based on the crystal structures of 1 and 3, it is assumed that the relatively long FeIII…HgII distance could be responsible for the lower catalytic effectiveness of 2.  相似文献   

10.
The nuclearity, bonding and H-bonded networks of copper(I) halide complexes with thiophene-2-carbaldehyde thiosemicarbazones {(C4H3S)HC2N3-N(H)-C1(S)N1HR} are influenced by R substituents at N1 atom. Thiophene-2-carbaldehyde-N1-methyl thiosemicarbazone (HttscMe) or thiophene-2-carbaldehyde-N1-ethyl thiosemicarbazone (HttscEt) have yielded halogen-bridged dinuclear complexes, [Cu2(μ-X)21-S-Htsc)2(Ph3P)2] (Htsc, X: HttscMe, I, 1; Br, 2; Cl, 3; HttscEt, I, 4; Br, 5; Cl, 6), while thiophene-2-carbaldehyde-N1-phenyl thiosemicarbazone (HttscPh) has yielded mononuclear complexes, [CuX(η1-S-HttscPh)2] (X, I, 7a; Br 8; Cl, 9) and a sulfur bridged dinuclear complex, [Cu2(μ-S-HttscPh)21-S-HttscPh)2I2] 7b co-existing with 7a in the same unit cell. These results are in contrast to S-bridged dimers [Cu2(μ-S-Httsc)21-Br)2(Ph3P)2] · 2H2O and [Cu2(μ-S-Httsc)21-Cl)2(Ph3P)2] · 2CH3CN obtained for R = H and X = Cl, Br (Httsc = thiophene-2-carbaldehyde thiosemicarbazone) as reported earlier. The intermolecular CHPh?π interaction in 1-3 (2.797 Å, 1; 3.264 Å, 2; 3.257 Å, 3) have formed linear polymers, whereas the CHPh?X and N3?HCH interactions in 4-6 (2.791, 2.69 Å, 5; 2.776, 2.745 Å, 6, respectively) have led to the formation of H-bonded 2D polymer. The PhN1H?π, interactions (2.547 Å, 8, 2.599 Å, 9) have formed H-bonded dimers only. The Cu?Cu separations are 3.221-3.404 Å (1-6).  相似文献   

11.
The scope of formation and structures of tungsten-iron-sulfur clusters has been explored using reactions based on [(Tp*)WS3]1− (1) as the ultimate precursor. The reaction system 1/FeCl2/NaSEt/S affords the cubane cluster [(Tp*)WFe3S4Cl3]1− (2), which with NaSEt is converted to [(Tp*)WFe3S4(SEt)3]1− (3).Clusters 2 and 3 contain the cubane [WFe33-S)4]3+ core.Complex 1 with FeCl2/NaSEt forms [(Tp*)WFe2S3Cl2(SEt)]1− (4) with the cuboidal [WFe22-S)23-S)(μ2-SR)]2+ core.Treatment of 2 with excess Et3P yields the edge-bridged double [(Tp*)2W2Fe6S8(PEt3)4] (5) with the [W2Fe63-S)64-S)2] core. Reaction of 2 with excess leads a mixture of products, from which [(Tp*)2W2Fe5S9Na(SH)(MeCN)]3−(6) was identified.This cluster, as closely related [(Tp)2Mo2Fe6S9(SH)2]3−, exhibits a core topology [W2Fe5Na(μ2-S)23-S)66-S)] very similar to the PN cluster of nitrogenase. All reactions were carried out in acetonitrile. The structures of 2-6 were established crystallographically as Et4N+ salts. In the cubane series, substitution of tungsten for molybdenum decreases the [MFe3S4]3+/2+ redox potential by ca. 0.20 V but has a negligible effect on electron distribution. This work expands the small set of previously known weak-field W-Fe-S clusters, demonstrates the existence of tungsten-containing edge-bridged double cubanes and clusters with the PN core topology, and introduces a new cuboidal core structure as found in 4 (Tp = hydrotris(pyrazolyl)borate, Tp* = hydrotris(3,5-dimethylpyrazolyl)borate).  相似文献   

12.
The cytotoxic effect of vanadocene dichloride (Cp2VCl2, 1) and its ring-substituted, (η5-C5H4Me)2VCl2 (2), (η5-C5Me5)2VCl2 (3), (η5-C5H4R)2VCl2 (4: R = MeOCH2CH2-, 5: R = 2-MeOC6H4CH2-, 6: R = 4-MeOC6H4CH2-) and ansa-bridged analogs Me2C(η5-C5H4)2VCl2 (7) and Me4C25-C5H4)2VCl2 (8) was investigated. Synthesis of two new methoxy-functionalized compounds (4 and 5) is described. They were characterized by spectroscopic methods and X-ray diffraction analysis. The cytotoxicity studies were performed with leukemic cells MOLT-4.  相似文献   

13.
Saponification of the bis(carbamic acid ester) 1,3-C6H4(CMe2NHCO2Me)2 (1), made by the addition of methanol to commercial 1,3-C6H4(CMe2NCO)2, yielded the meta-phenylene-based bis(tertiary carbinamine) 1,3-C6H4(CMe2NH2)2 (2). Dinuclear [{(η4-1,5-C8H12)RhCl}2{μ-1,3-C6H4(CMe2NH2)2}] (3) resulted from the action of 2 on [{(η4-1,5-C8H12)Rh(μ-Cl)}2] in toluene. Combination of 2 with PdCl2 or K2[PdCl4] gave the dipalladium macrocycle trans,trans-[{μ-1,3-C6H4(CMe2NH2)2}2(PdCl2)2] (4) along with cyclometalated [{2,6-C6H3(CMe2NH2)2NC1N′}PdCl] (5). Substitution of PEt3 for the labile chlorido ligand of 5 afforded [{2,6-C6H3(CMe2NH2)2NC1, κN′}Pd(PEt3)]Cl (6). The crystal structures of the following compounds were determined: bis(carbamic acid ester) 1, ligand 2 as its bis(trifluoroacetate) salt [1,3-C6H4(CMe2NH3)2](O2CCF3)2, 2 · (HAcf)2, complexes 3 and 6, as well as 1,3-C6H4(CMe2OH)2 (the diol analogue of 2).  相似文献   

14.
The dinuclear complex [(η6-C6H6)Ru(μ-N3)Cl]2 (1) is obtained by the reaction of [(η6-C6H6)RuCl2]2 with sodium azide in ethanol. The benzene ruthenium β-diketonato complexes of the general formula [(η6-C6H6)Ru(L∩L)Cl] {L∩L = O,O′-acac (2); O,O′-bzac (3); O,O′-dbzm (4)} are obtained in methanol by the reaction of [(η6-C6H6)RuCl2]2 with the corresponding β-diketonates. These complexes further react with sodium azide in ethanol to yield complexes of the type [(η6-C6H6)Ru(L∩L)N3] [L∩L = O,O′-acac (5); L∩L = O,O′-bzac (6); L∩L = O,O′-dbzm (7)]. The complexes 5-7 are obtained as well by treating 1 with sodium salts of β-diketonates. These neutral benzene ruthenium azido complexes undergo [3+2] dipolar cycloaddition reaction with activated alkynes (MeO2CCCCO2Me, EtO2CCCCO2Et) or fumaronitrile (NCHCCHCN) to yield the corresponding benzene ruthenium triazolato complexes; [(η6-C6H6)Ru(O,O′-acac){N3C2(CO2Me)2}] (8), [(η6-C6H6)Ru(O,O′-acac){N3C2(CO2Et)2}] (9), [(η6-C6H6)Ru(O,O′-acac){N3C2HCN}] (10), [(η6-C6H6)Ru(O,O′-bzac){N3C2HCN}] (11) and [(η6-C6H6)Ru(O,O′-dbzm){N3C2HCN}] (12). These complexes are fully characterized on the basis of microanalyses, FT-IR and FT-NMR spectroscopy. The molecular structure of [(η6-C6H6)Ru(O,O′- acac){N3C2(CO2C2H5)2}] (9) is confirmed by single crystal X-ray diffraction study.  相似文献   

15.
The heterobimetallic Ru/Pt and Ru/Pd complexes [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)(μ-I)(μ-dppm)PtCl2 (7), [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)(μ-I)(μ-dppm)PtI2 (8), [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)(μ-I)(μ-dppm)PdCl2 (9), and [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)(μ-I)(μ-dppm)PdI2 (10) were prepared by the reaction of [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)I(κ1-dppm) (6) with Pt(COD)Cl2, Pt(COD)I2, and Pd(COD)Cl2, respectively. Electronic interaction between the two metals is significant for the iodide-bridged compounds 7-10, as evidenced by the shifts of their redox potentials in comparison to the mononuclear complexes. The electrochemical oxidation of methanol was carried out with heterobimetallic complexes 7-10 and leads to the formation of dimethoxymethane (DMM) and methyl formate (MF) as the major oxidation products. The chloride complexes 7 and 9 are the most active catalysts, as evidenced by their TON and current efficiencies. Addition of water at the beginning of the electrolysis results in increased formation of the more oxidized product MF along with higher current efficiencies and TON.  相似文献   

16.
Facile coupling and isomerization of allene (CH2CCH2) has been found on its interaction at low temperatures with [H2Os3(CO)10] to give the di-allyl species [Os33123-C6H8)(CO)10] (1) and [Os33123-C6H8)(CO)9] (2) in which two allene molecules are bonded in an end-to-centre array. Cluster 2 converts either in solution or in the solid state into two different species: the colourless derivative [Os3H(μ31112-C6H7)(CO)9] (3) and the metallocyclopentadiene [Os3(μ-η1122-C6H8)(CO)9] (4), which could be regarded as the result of 1,3-hydrogen shifts of the coupled allene at triosmium clusters.  相似文献   

17.
Using sodium 2-chloro-4-ferrocenylbenzoate as functional ligand, a mononuclear precursor complex [Cd(η2-OOCClH3C6Fc)2(H2O)3](CH3OH)2} P1 [Fc = (η5-C5H5)Fe(η5-C5H4)] was synthesized, which containing facile leaving groups. The substitution reactions of the precursor ferrocenyl carboxylate complex with basic N-containing ligands gave three 1-D polymers [Cd22-OOCClH3C6Fc)4(bix)]n1 [bix = 1,4-bis(imidazol-1-ylmethyl)benzene)], {[Cd22-OOCClH3C6Fc)3(η-OOCClH3C6Fc)(mbbbm)2](CH3OH)2}n2 [mbbbm = 1,3-bis(benzimidazole-1-ylmethyl)benzene] and [Cd(η2-OOCClH3C6Fc)2(pbbbm)]n3 [pbbbm = 1,4-bis(benzimidazole-1-ylmethyl)benzene]. Single-crystal X-ray analysis reveals that the 1-D chain structures of polymers 1-3 are bridged by bix, mpbbbm and pbbbm, respectively, and the three polymers present some differences in their structures. Our results also show that the structural integrity of the precursor complex can be maintained in the resultant polymers. Electrochemical studies of the four complexes in THF/CH3OH solution indicate that the half-wave potentials of the ferrocenyl moieties in these complexes are all shifted to positive potential compared with that of free 2-chloro-4-ferrocenylbenzoic acid.  相似文献   

18.
Photolysis of the molybdaborane [(η5-C5H5)(η51-C5H4)-arachno-2-MoB4H7] (1) in benzene-d6 gives ca. 60% conversion to the compound [(η5-C5H5)(η51-C5H4)-nido-2-MoB4H5] (2). Compound 2 could not be isolated as a solid and is thermally unstable at 20 °C in solution with a half-life of 3-4 h. Repeated photolysis and thermolysis of 1 in the presence of BH3 · thf gives a low yield of the known metallacarbaborane [(η5-C5H5)(η23-C3H3)-closo-1-MoC2B9H9] (3) suggesting that 3 is formed from 1 via 2. Reaction of 1 with PEt3 gives initially [(η5-C5H5)(η51-C5H4)-arachno-2-MoHB4H4PEt3] (4). Longer reaction times (>10 min, 20 °C) give in addition [(η5-C5H5)(η51-C5H4)-arachno-1-MoHB3H3PEt3] (5). Both 4 and 5 are unstable in solution or the solid state decomposing to the molybdacarbaborane [(η5-C5H5)(η32- C3H3)-nido-1-MoC2B3H5] (6), [Mo(η-C5H5)2H2] and BH3 · PEt3. Compound 1 is deprotonated cleanly by KH in thf at the Mo-H-B bridging proton to give (7).  相似文献   

19.
2-Hydroxypyridine (Hhp), 2-hydroxynicotinic acid (HnicOH) and 6-hydroxypicolinic acid (HpicOH) react with Re2Cl4(μ-dppm)2 (dppm=Ph2PCH2PPh2) to afford the complexes Re22-hp)Cl3(μ-dppm)2 (1), Re22-HnicO)Cl3(μ-dppm)2 (2) and Re2(μ-picO)2(μ-dppm)2 (3). The identities of 1 and 2 have been established by single-crystal X-ray structure determinations (Re-Re distances of 2.2602(3) and 2.2539(3) Å, respectively) and they are shown to have unsymmetrical structures with staggered rotational geometries and trans, cis coordination of the pair of μ-dppm ligands. The crystal of 2 that was used in the structure determination was found to be of composition 2Re22-HnicO)Cl3(μ-dppm)2 · Re2Cl6(μ-dppm)2 · 2.906CH2Cl2. The structure of Re2Cl6(μ-dppm)2 in this crystal is compared with structures reported in the literature for other crystals that contain this edge-sharing bioctahedral dirhenium(III) complex.  相似文献   

20.
New C-ansa-zirconocene complexes containing methoxythiophenolate and mercaptophenolate ligands have been synthesized and characterized. The reaction of (HSC6H4-n-OMe) (n = 2, 3 or 4) with [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}Me2] (1) led to the formation of monosubstituted complexes [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}Me(κ,S-SC6H4-n-OMe)] (= 2 (2); = 3 (3)) and the disubstituted complex [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}(κ,S-SC6H4-4-OMe)2] (4). The complexes [Zr{(R)HC(η5-C5Me4)(η5-C5H4)}(κ,O-OC6H4-4-SH)2] (R = t-Bu (6); R = CH2CHCH2 (7)) and [Zr(η5-C5H4)2(OC6H4-n-SH)2] (= 3 (9); = 4 (10)) have been synthesized using the corresponding dimethyl zirconocene and mercaptophenol. However, the reaction of [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}Cl2] (11) with 4-mercaptophenol in the presence of NEt3 led to the formation of the first example of a homoleptic six-coordinate mercaptophenolate complex of zirconium, namely [HNEt3]2[Zr(κ,O-OC6H4-4-SH)6] (12). Complex 12 can be obtained in higher yield by the reaction of ZrCl4 with six equivalents of 4-mercaptophenol and NEt3. The reaction of 12 with [Zr(η5-C5H4)2Cl2] gave the unexpected disubstituted complex [Zr(η5-C5H4)2(OC6H4-4-SH)2] (10). The molecular structures of 4 and 12 have been determined by single-crystal X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号