首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrothermal synthesis has afforded five d10 configuration divalent metal diphenate coordination polymers containing pyridyl-piperazine type ligands, which were structurally characterized by single-crystal X-ray diffraction. {[Cd(diphenate)(3-bpmp)(H2O)]·0.5H2O}n (1, 3-bpmp = bis(3-pyridylmethyl)piperazine) has a double layer topology. Its perchlorate-containing analog {[Cd3(diphenate)4(H23-bpmp)(H3-bpmp)(H2O)2](ClO4)·7H2O}n (2) possesses a very rare 4-connected 658 dmp topology based on anionic trinuclear nodes. {[Cd(diphenate)(4-bpfp)]·H2O}n (3, 4-bpfp = bis(4-pyridylformyl)piperazine) manifests a non-interpenetrated diamondoid lattice, while the related compound [Cd(diphenate)(4-bpmp)(H2O)]n (4, 4-bpmp = bis(4-pyridylmethyl)piperazine) has a simple (4,4) grid topology. {[Zn(diphenate)(4-bpmp)]·0.5H2O}n (5) displays a 2-fold interpenetrated diamondoid lattice. Luminescent properties of these materials are also reported.  相似文献   

2.
Hydrothermal synthesis has afforded three cadmium coordination polymers incorporating both an aromatic dicarboxylate ligand and the kinked and hydrogen-bonding capable organodiimine 4,4′-dipyridylamine (dpa). The positions and length of the pendant arms of the aromatric dicarboxylate moiety exerts a strong structure directing effect in this system. {[Cd(hmph)(dpa)] · H2O}n (1, hmph = homophthalate) possesses interdigitated herringbone (6,3) grid layers with an ABAB stacking pattern. {[Cd(1,3-phda)(dpa)(H2O)] · 0.5H2O}n (2, 1,3-phda = 1,3-phenylenediacetate) exhibits a (4,4)-grid layer structure with two different aperture sizes and an unusual ABCD layer stacking pattern. Shortening the pendant arm length resulted in an uncommon CdSO4-type (658 topology) 4-connected 3-D network in {[Cd(iph)(dpa)] · 4H2O}n (3, iph = isophthalate), whose uncoordinated water molecules occupy a sizable incipient void space of 23.7% of the unit cell volume. All three coordination polymers underwent blue-violet luminescence under ultraviolet irradiation.  相似文献   

3.
Hydrothermal synthesis has afforded a pair of divalent cobalt coordination polymers containing meta-substituted benzenedicarboxylate and 4,4′-dipyridylamine (dpa) ligands, in which the length of the pendant arms on the anionic components dictates the overall dimensionality. [Co(1,3-phda)(dpa)(H2O)]n (1, 1,3-phda = 1,3-phenylenediacetate) possesses a ruffled (4,4) rhomboid grid 2-D layered structure with an 5-connected sqp supramolecular net. Use of a meta-substituted benzenedicarboxylate with shorter pendant arms generated {[Co(1,3-bdc)(dpa)]·3H2O}n (2, 1,3-bdc = 1,3-benzenedicarboxylate), which displays a 3-D network structure with 658 topology. Antiferromagnetic coupling, in conjunction with zero-field splitting, was evident across the supramolecular Co-O-H?O-Co patterns in 1 and the syn-syn bridged {Co(OCO)}2 dimeric units in 2.  相似文献   

4.
Hydrothermal synthesis has afforded divalent copper coordination polymers containing bis(4-pyridylformyl)piperazine (4-bpfp) tethers and aromatic meta-dicarboxylate ligands. {[Cu(ip)(4-bpfp)]·2H2O}n (1, ip = isophthalate) possesses a (4, 4) rectangular grid structure with an unusual ABCD stacking pattern along a 41 screw axis. Sterically bulky substituents in the 5-position of the isophthalate ligands reduced the coordination polymer dimensionality, with [Cu2(tBuip)2(4-bpfp)(H2O)2]n (2, tBuip = 5-tert-butylisophthalate) and {[Cu(MeOip)(HMeOip)2(4-bpfp)]·3H2O}n (3, MeOip = 5-methoxyisophthalate) displaying 1D polymeric ladder and chain motifs, respectively. Compound 3 possesses a rare twofold interpenetrated binodal supramolecular hms net with (63)(698) topology. Longer meta-disposed acetate pendant arms induced a doubly interpenetrated 3D primitive cubic topology in {[Cu2(1,3-phda)2(H2O)2(4-bpfp)]}n (4, 1,3-phda = 1,3-phenylenediacetate), which possesses antiferromagnetically coupled {Cu2O2} kernels (J = −6.14(8) cm−1).  相似文献   

5.
Hydrothermal synthesis has afforded divalent cadmium coordination polymers containing bis(pyridylmethyl)piperazine (bpmp) tethers and either phenylenediacetate (phda) or phenylenedipropionate (phdp) ligands. {[Cd(1,4-phda)(4-bpmp)]·1.5H2O}n (1) displays a (4,4)-grid layered structure based on 4-connected {Cd2O2} dimeric units. Extension of the pendant arms generated {[Cd(1,4-phdp)(H4-bpmp)](ClO4)·3.5H2O}n (2, phdp = phenylenedipropionate), which possesses a rare (3,6) 2D trigonal lattice based on 6-connected {Cd2O2} dimers. Changing the nitrogen donor atom disposition by using 3-bpmp as the nitrogen co-ligand yielded [Cd(1,4-phdp)(3-bpmp)(H2O)]n (3), which crystallizes in a 3-fold interpenetrated achiral diamondoid lattice. [Cd(1,3-phda)(4-bpmp)]n (4) adopts a very similar structure to that of 1. Complexes 1-4 undergo blue-violet luminescence upon exposure to ultraviolet radiation.  相似文献   

6.
Hydrothermal synthesis has afforded cobalt 5-substituted isophthalate complexes with 4,4′-dipyridylamine (dpa) ligands, showing different dimensionalities depending on the steric bulk and hydrogen-bonding facility of the substituent. [Co(tBuip)(dpa)(H2O)]n (1, tBuip = 5-tert-butylisophthalate) is a (4,4) grid two-dimensional coordination polymer featuring 2-fold parallel interpenetration. [Co(MeOip)2(Hdpa)2] (2, MeOip = 5-methoxyisophthalate) is organized into 3-fold parallel interpenetrated (4,4) grids through strong N-H+?O hydrogen bonding. {([Co(OHip)(dpa)(H2O)3])3·2H2O}n (3, OHip = 5-hydroxyisophthalate) possesses 1-D chain motifs. The 5-methyl derivative {[Co(mip)(dpa)]·3H2O}n (4, mip = 5-methylisophthalate) has a 3-D 658 cds topology. {[Co(H2O)4(Hdpa)2](nip)2·2H2O} (5, nip = 5-nitroisophthalate) and {[Co(sip)(Hdpa)(H2O)4]·2H2O} (6, sip = 5-sulfoisophthalate) are coordination complexes. Antiferromagnetic superexchange is observed in 1 and 4, with concomitant zero-field splitting. Thermal decomposition behavior of the higher dimensionality complexes is also discussed.  相似文献   

7.
To determine the influence of metal ion and the auxiliary ligand on the formation of metal-organic frameworks, six new coordination polymers, {[Mn2(bpdc)(bpy)3(H2O)2] · 2ClO4 · H2O}n (1), {[Mn(bpdc)(dpe)] · CH3OH · 2H2O}n (2), {[Cu(bpdc)(H2O)2]}n (3), {[Zn(bpdc)(H2O)2]}n (4), {[Cd(bpdc)(H2O)3] · 2H2O}n (5), and {[Co(bpdc)(H2O)3] · 0.5dpe · H2O}n (6) (H2bpdc = 2,2′-bipyridine-3,3′-dicarboxylic acid, bpy = 2,2′-bipyridine, dpe = 1,2-di(4-pyridyl) ethylene), have been synthesized and characterized. Compound 1 forms 1D helical chain structure containing two unique MnII ions. In 2, the bridging ligand dpe links Mn-bpdc double zigzag chains to generate a layer possesses rectangular cavities. In 3, bpdc2− ligand connects to three metal centers forming a 2D network. Different from the above compounds, 4 displays a 1D double-wavelike chain. Compound 5 features a helical chain. Compound 6 also displays a helical chain with guest molecule dpe existing in the structure. These diverse structures illustrate rational adjustment of metal ions and the second ligand is a good method for the further design of helical compounds with novel structures and properties. In addition, the magnetic properties of 2, 3 and 6, the thermal stabilities and photoluminescence properties of 4 and 5 were also studied.  相似文献   

8.
Complexes 1 and 2, formulated {[Co2(4,4′-bpy)2 · 8H2O] · (CCA)2 · 4H2O}n (1) and {[Co(TMG)(4,4′-bpy)(H2O)2] · 3H2O}n (2) (H2CCA = 2-carboxylatocinnamate, H2TMG = 3,3-tetramethyleneglutate, 4,4′-bpy = 4,4′-bpyridine) have been synthesized by the reaction of cobalt (II), 4,4′-bpy and carboxylate ligands, in which 2D metal-water layers and 1D metal-water chains have been observed, respectively. In the metal-water clusters, the water molecules are trapped by the cooperative association of coordination interactions as well as hydrogen bonds.  相似文献   

9.
Six transition-metal complexes, {[Co(4,4′-bipy)(H2O)4](Hbs)2 · 3H2O}n (1), [Mn(4,4′-bipy)2(H2O)4](Hbs)2 · 2H2O (2), {[Mn(HCOO)(H2O)2(4,4′-bipy)]2[Mn(4,4′-bipy)(Hssal)2(H2O)2]}n (3), [Cd(4,4′-bipy)2(H2O)4](Hbs)2 · 2H2O (4), {[Cd3(CH3COO)4(4,4′-bipy)4](Hbs)2 · 10H2O}n (5), and {[Cd(HCOO)(H2O)2(4,4′-bipy)]2[Cd(4,4′-bipy)(Hssal)2(H2O)2]}n (6), have been synthesized by hydrothermal or reflux synthetic method and characterized by single-crystal X-ray diffraction, IR, elemental analysis, thermogravimetric analysis and fluorescence analysis, where Hssal2− is doubly deprotonated 5-sulfosalicylate, Hbs is 4-hydroxybenzenesulfonate and 4,4′-bipy is 4,4′-bipyridine. The structural analyses showed that all of the six complexes are cation-anion species containing in situ synthesized ligands, Hbs or HCOO, and the former arises from the decarboxylation of 5-sulfosalicylic acid under the hydrothermal conditions. The formate anions derived from the hydrolysis of DMF. A series of supramolecular compounds show that the structural diversity is strongly associated with their properties.  相似文献   

10.
Four new cadmium(II) and zinc(II) coordination polymers {[Zn(btrp)(SIP)][Zn0.5(H2O)3]}n (1), {[Cd1.5(btrp)(SIP)(H2O)2]·2H2O}n (2), {[Cd1.5(btrb)(SIP)(H2O)3]·2H2O}n (3), {[Zn1.5(btrb)1.5(SIP)(H2O)2]·2H2O}n (4) (btrp = 1,3-bis(1,2,4-triazol-1-yl)propane, btrb = 1,3-bis(1,2,4-triazol-1-yl)butane, NaH2SIP = 5-sulfoisophthalic acid monosodium salt) have been synthesized under hydrothermal conditions and structurally characterized. Compound 1 possesses an infinite 1D ladder-like chain structure with [Zn(H2O)6]2+ trapped in the pores, which is further interconnected by π?π interactions to lead to a 2D supramolecular architecture. Compounds 2 and 3 features two similar 2D layer structures, and the resulting 2D structures are interconnected by hydrogen-bond interactions to lead to 3D supramolecular architectures. Compound 4 is a 2D parallel ladder structure, and through the interpenetrating btrb ligand, it constructs into 3D architectures. Luminescence analyses were performed on all the four compounds, which show strong fluorescent emissions in the solid state at room temperature.  相似文献   

11.
Four new fluconazole-bridged zinc(II) and cadmium(II) complexes with dicarboxylate co-ligands, namely [Zn(HFlu)(TPA)]n (1), {[Cd(HFlu)2(TPA)]·2CH3OH}n (2), [Zn(HFlu)2(Suc)(H2O)2]·H2O (3), and [Cd(HFlu)2(Suc)(H2O)2]·H2O (4), have been synthesized and characterized by elemental analysis, IR, TG, and single-crystal X-ray diffraction (HFlu = 2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl)-propan-2-ol, H2TPA = terephthalic acid, and H2Suc = succinic acid). Complex 1 displays a 2-D corrugated network with common (4,4) topology, in which two types of grids constructed by two bridging TPA dianions and two HFlu ligands are found. Complex 2 shows an unusual (3,6) coordination layer consisting of alternative PMPM Cd-HFlu helical chains in which the Cd(II) nodes are also fixed by terephthalate dianions in a cis fashion. The isostructural complexes 3 and 4 have 20-membered dimeric macrocyclic motifs with the Zn···Zn and Cd···Cd distances of 11.258(2) and 11.528(2) Å, respectively. The fluorescence and thermal stability of complexes 1-4 have also been investigated.  相似文献   

12.
This work presents a systematic investigation on coordination chemistry of a novel pyridine-2,6-dicarboxylic acid N-oxide (pydco), and also reveals the significant function of supramolecular interactions in dominating the resultant crystalline nets. Assemblies of pydco with transition-metal ions under similar conditions yield a series of polymers in the absence/presence of the organonitrogen ligands {[Cu(pydco)(L)0.5(H2O)] · 2H2O}n (L = bipy (1), bpa (2) and bpe (3)), {[M(pydco)(bpp)(H2O)] · 2H2O}n (M = Cu (4) and Ni (5)), [Ag2(pydco)]n (6) and [Ag2Cu(pydco)2]n (7) (bipy = 4,4′-bipyridine, bpa = 1,2-bis(4-pyridyl)ethane, bpe = 1,2-bis(4-pyridyl)ethene, bpp = 1,3-bis(4-pyridyl)propane). 1-5 feature different structural characteristics, although they exhibit analogous chain networks. Remarkably, extended architectures are further constructed with the aid of weak interactions. Reaction of pydco with AgAc yields a 2-D polymer 6, which was reported in our recent Communication. A mixed-metal coordination polymer 7 was obtained by the self-assembly of AgAc, Cu(Ac)2 · H2O and pydco.In 7, two left- and right-hand helical chains are constructed by carboxylic groups of pydco and Cu centers, which are further connected by [AgCO2]2 cores into a 2-D network. Structural evolution under the co-ligand intervention in this series of compounds, as well as the general coordination rule of pydco, has been further discussed. Furthermore, variable temperature magnetic properties of 1, 3 and 7 are also studied. The magnetic measurements of 1 and 3 reveal the existence of weak antiferromagnetic interactions with J1 = −4.59 cm−1 and J2 = −4.63 cm−1, respectively. Whereas 7 displays weak ferromagnetic interactions with J3 = 1.81 cm−1.  相似文献   

13.
Four new coordination polymers namely {[Mn2(BT)(DPS)2(H2O)6]·10H2O}n (MnBTDPS), {[Co2(BT)(DPS)2(H2O)6]·10H2O}n (CoBTDPS), {[Cu2(BT)(DPS)(H2O)4]·5H2O}n (CuBTDPS) and {[Zn2(BT)(DPS)2]·6H2O}n (ZnBTDPS), where BT = 1,2,4,5-benzenetetracarboxylate and DPS = di(4-pyridyl) sulfide, were synthesized and characterized by thermal analysis, vibrational spectroscopy (Raman and infrared) and single crystal X-ray diffraction analysis. In all compounds, the DPS ligands are coordinated to metal sites in a bridging mode and the carboxylate moiety of BT ligands adopts a monodentate coordination mode, as indicated by the Raman spectra data through the Δν (νasym(COO) − νsym(COO)) value. According to X-ray diffraction analysis, MnBTDPS and CoBTDPS are isostructural and in these cases, the metal centers exhibit a distorted octahedral geometry. In CuBTBPP, the Cu2+ centers geometries are best described as square-pyramids, according to the trigonality index τ = 0.14 for Cu1 and τ = 0.10 for Cu2. On the other hand, in ZnBTDPS, the Zn2+ sites adopt a tetrahedral geometry. Finally, the four compounds formed two-dimensional sheets that are connected to each other through hydrogen bonding giving rise to three-dimensional supramolecular arrays.  相似文献   

14.
Four novel metal coordination polymers, [Cd(dpa)(H2O)]n (1), [Cd(dpa)(2,2′-bipy)]n (2), {[Cd2(dpa)2(4,4′-bipy)3](4,4′-bipy)(H2O)2}n (3) and [Cd(dpa)(bim)2(H2O)]}n (4) (H2dpa = 2,4′-biphenyl-dicarboxylic acid, 2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine, bim = benzimidazole), have been synthesized and structurally characterized by elemental analysis, IR and X-ray diffraction. Single-crystal X-ray analyses reveal that the 2,4′-diphenic acids acts as bridging ligands, exhibiting rich coordination modes to link metal ions: bis-monodentate, bidentate chelating, chelating/bridging, monoatomic bridging and monodentate modes. In addition, the luminescent properties for compound 1-4 are also investigated in this work.  相似文献   

15.
Three novel d10 metal coordination polymers, {[Cd(H2odpa)(phen)2]·H2O}n (1), [Cd2(odpa)(phen)(H2O)2]n (2), {[Zn4(odpa)2(phen)2(H2O)2]·H2O}n (3), (H4odpa = 4,4′-oxydiphthalic acid, phen = 1,10-phenanthroline) were obtained with different metal/ligand ratios through hydrothermal method and characterized. Compound 1 forms a one dimensional zigzag chain, in which two phen ligands chelate to one cadmium atom. Compound 2 shows a three dimensional network structure comprised of new tetranuclear cadmium clusters as the nodes and (odpa)4− anions as the linkers, exhibits an unusual topological structure. Compound 3 is an unprecedented three dimensional polymer based on octanuclear zinc clusters cross-linked by (odpa)4− anions. In 1-3, central CdII/ZnII ions and (odpa)4− ligand display completely different coordination modes and conformations. In addition, the thermal stabilities and photoluminescence properties of 1-3 were also studied.  相似文献   

16.
The self-assembly of a V-shaped ligand 3,3′,4,4′-diphenylsulfonetetracarboxylate (dstc) and metal salts in the presence of a series of N-donor ligands yielded four new complexes, namely, [Cu4(H2dstc)4(phen)4]·12H2O (1), {[Cu2(dstc)(bpe)(H2O)2]·4H2O}n (2), [Cu3(dstc)(bipy)(μ2-OH)2(H2O)2]n (3), {[Cd5(dstc)2(bipy)23-OH)2(H2O)4]·4H2O}n (4) (phen = 1,10-phenanthroline; bpe = 1,2-bis(4-pyridyl)ethene; bipy = 4,4′-bipyridine). All the complexes were structurally determined by single-crystal X-ray diffraction and characterized by elemental analyses, IR spectra, X-ray powder diffraction and TG analyses. Complex 1 is a discrete tetranuclear unit, which further assembles into a 3D supramolecular framework by intermolecular hydrogen bonding interactions. Complex 2 is composed of 2D 44 grid-like layers based on dinuclear copper units. Complex 3 features a rare 3D (6,8)-connected topological net consisting of trimetallic clusters. 12-connected pentanuclear cadmium clusters are observed in complex 4 and the resulting structure shows an uncommon (4,12)-connected topology. The structural differences among 1-4 demonstrate that the nature of the N-donor assistant ligands and metal ions can play critical roles in the formation and structures of the resulting complexes. Magnetic studies showed antiferromagnetic interactions for 1 and 3. In addition, the luminescent property of 4 was also studied.  相似文献   

17.
Three Cd(II) and Zn(II) coordination polymers, including {[Cd(3-bpo)(mip)(H2O)](H2O)2}n (1), {[Cd(4-bpo)(hip)(H2O)](H2O)4}n (2), and {[Zn(4-bpo)(tp)](CH3OH)}n (3) were synthesized from the reactions of CdII or ZnII nitrate with mixed organic ligands [3-bpo = 2,5-bis(3-pyridyl)-1,3,4-oxadiazole, H2mip = 5-methylisophthalic acid, 4-bpo = 2,5-bis(4-pyridyl)-1,3,4-oxadiazole, H2hip = 5-hydroxylisophthalic acid, H2tp = terephthalic acid] under the similar layered diffusion condition. The resulting crystalline materials 1-3 were characterized by IR, microanalysis, powder X-ray diffraction (PXRD) techniques. Single-crystal X-ray diffraction indicates a 1-D tubular motif for 1, a 1-D dual-track array for 2, and a 2-D grid-like pattern for 3, constructed via different metal-ligand coordination contacts. Higher-dimensional supramolecular architectures are further assembled in 1-3 via H-bonding and aromatic stacking interactions. In addition, thermal stability and fluorescence of these polymeric complexes were also investigated and discussed.  相似文献   

18.
Four new complexes, {[Mn(imH)2(pdc)]·H2O}n (1), [Zn2(pdc)2(H2O)5]·2H2O (2), [Zn(imH)2(pdc)]·H2O (3), {[Zn2(pdc)2(bpy)(H2O)2]·5H2O}n (4) [imH = imidazole pdc = pyridine 2,6-dicarboxylate, bpy = 4,4′-bipyridine] have been synthesized under hydrothermal conditions and structurally characterized by elemental analysis, IR, PXRD, single-crystal X-ray diffraction and thermogravimetric analyses. All the four complexes display a three-dimensional (3D) open framework with one-dimensional (1D) channels that are filled with lattice water molecules. Particularly, in 4, the lattice water molecules form an infinite water chain. Both 1 and 4 consist of 1D polymeric chains. While 2 contains a dinuclear Zn(II) unit, and 3 is a mononuclear complex. Further, the result of thermal analysis of 1 and 2 shows the robustness of the overall supramolecular three-dimensional architecture. Complexes 1, 3, and 4 exhibit strong fluorescent emissions in the solid state at room temperature and could be significant in the field of photoactive materials.  相似文献   

19.
Ten transition metal coordination complexes [Cu2(phen)(p-tpha)(μ-O)]n1, [Cu(m-tpha)(imH)2]n2, [Ni(5-Haipa)2(H2O)2]n3, [Ni(phen)2(H2O)2]·btc·[Ni(H2O)6]0.5·9H2O 4, [Co(2,5-pdc)(H2O)2]n·nH2O 5, [Co2(2,5-pdc)2(H2O)6]n·2nH2O 6, [Fe(2,5-Hpdc)2(H2O)2]·H2O 7, [Co(C6H4NO2)3]·H2O 8, [Fe22-btec)(μ2-H2btec)(bipy)2(H2O)2]n9, [Mn(phen)(2,5-pdc)(H2O)2]·H2O 10 (H4btec = 1,2,4,5-benzenetetracarboxylic acid, phen = 1,10-phenanthroline, 2,5-H2pdc = 2,5-pyridine-dicarboxylic acid, p-tpha = p-phthalic acid, m-tpha = m-phthalic acid, bipy = 2,2′-bipyridine, 5-H2aipa = 5-aminoisophthalic acid, imH = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid) were synthesized through hydrothermal method. They were characterized by UV-Vis absorption spectra, single-crystal X-ray diffraction and surface photovoltage spectra (SPS). Structural analysis indicated that the complexes 1, 2, 3, 5, 6 and 9 were linked into infinite structures bridged by organic acid ligands. The other four complexes were molecular complexes and further connected to 2D or 3D structures by the hydrogen bonds. The SPS of complexes 1-10 indicate that there are positive response bands in the range of 300-800 nm showing different levels of photo-electric conversion properties. The intensity, position, shape and the number of the response bands in SPS are obviously different since the structure, species, valence, dn electrons configuration and coordinated environment of the center metals are different. There are good relationships between SPS and UV-Vis spectra.  相似文献   

20.
Three ternary zinc complexes of the open chain polycarboxylic acid, tricarballylic (1,2,3-propane-tricarboxylic) acid (PTCH3) have been isolated and characterized with crystallographic and physicochemical techniques. [Zn(PTCH)(phen)(H2O)]2 · 4H2O (1) (where phen = 1,10-phenanthroline) has a unique dinuclear structure, while [Zn(PTCH)(bpy)]n · 3nH2O (2) and [Zn(PTCH)(epy)]n · 4nH2O (3) (where bpy = 4,4′-bipyridine and epy = 1,2-bis(4-pyridine)ethane) have 2D polymeric structures. The bis-deprotonated ligand, in all three complexes, uses for coordination only two oxygen atoms, which belong to the same carboxylate in 1, and to two different carboxylates in 2 and 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号