首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dithioformato [Re{η2-SC(H)S}(NO)P3]BPh4 (1), thioformamido [Re{η2-RNC(H)S}(NO)P3]BPh4 (2) (R = Et, p-tolyl), formamido [Re{η2-PhNC(H)O}(NO)P3]BPh4 (3) and formamidinato [Re{η2-p-tolylNC(H)Np-tolyl}(NO)P3]BPh4 (4) (P = PPh2OEt) complexes were prepared by allowing the hydride ReH2(NO)P3 to react first with triflic acid and then with the appropriate heteroallene CS2, RNCS, PhNCO and p-tolylNCNp-tolyl. Treatment of the ReH2(NO)L(PPh3)2 [L = P(OEt)3, PPh(OEt)2] and ReH2(NO)(PPh3)3 hydrides first with triflic acid and then with isothiocyanate RNCS (R = Et, p-tolyl) gave the [Re{η2-RNC(H)S}(NO){P(OEt)3}(PPh3)2]BPh4 (5, 6) and [Re(η2-RNC(H)S)(NO)(PPh3)3]BPh4 (7) derivatives. Depending on the nature of the phosphite, instead, the reaction of ReH2(NO)L(PPh3)2 and ReH2(NO)(PPh3)3 hydrides first with CF3SO3H and then with isocyanate R1NCO (R1 = Ph, p-tolyl) gave the chelate [Re{η2-R1NC(H)O}(NO){P(OEt)3}(PPh3)2]BPh4 (8) and [Re{η2-R1NC(H)O}(NO)(PPh3)3]BPh4(10) complexes with P(OEt)3 or PPh3, while the η1-coordinate [Re{η1-RNC(H)S}(NO){PPh(OEt)2}2(PPh3)2]BPh4 (9) derivative was obtained with the PPh(OEt)2 phosphite ligand. η1-Coordinate dithioformato [Re{η1-SC(H)S}(NO){PPh(OEt)2}2(PPh3)2]BPh4 (11) and formato [Re{η1-OC(H)O}(NO){PPh(OEt)2}2(PPh3)2]BPh4 (12) complexes, as well as the formamidinato [Re{η2-p-tolylNC(H)Np-tolyl}(NO){P(OEt)3}(PPh3)2]BPh4 (13) derivative were also prepared.  相似文献   

2.
Reaction of [(p-cymene)RuCl2(PPh3)] (1) or [CpMCl2(PPh3)] (Cp = C5Me5) (3a: M = Rh; 4a: M = Ir) with 1-alkynes and PPh3 were carried out in the presence of KPF6, generating the corresponding alkenyl-phosphonio complexes, [(p-cymene)RuCl(PPh3){CHCR(PPh3)}](PF6) (2a: R = Ph; 2b: R = p-tolyl) or [CpMCl(PPh3){CHCPh(PPh3)}](PF6) (5: M = Rh; 6: M = Ir). Similar reactions of complexes [CpRhCl2(L1)] (3a: L1 = PPh3; 3c: L1 = P(OMe)3) with L2 (L2 = PPh3, PMePh2, P(OMe)3) gave [CpRhCl(L1)(L2)](PF6) (7bb: L1 = L2 = PMePh2; 7ca: L1 = P(OMe)3, L2 = PPh3; 7cc: L1 = L2 = P(OMe)3). Alkenyl-phosphonio complex 5 was treated with P(OMe)3 or 2,6-xylyl isocyanide, affording [CpRhCl(L){CHCPh(PPh3)}](PF6) (8a: L = P(OMe)3; 8b: L = 2,6-xylNC). X-ray structural analyses of 2a, 6 and 8a revealed that the phosphonium moiety bonded to the Cβ atom of the alkenyl group are E configuration.  相似文献   

3.
Condensation of 3,6-dichloropyridazine with 3,5-dimethylpyrazole in 1:1 ratio yielded one side substituted pyrazolylpyridazine ligand 3-chloro-6-(3,5-dimethylpyrazolyl)pyridazine (L) while condensation of 3,6-dichloropyridazine with substituted pyrazoles in 1:2 ratio yielded both side substituted pyrazolylpyridazine ligands such as 3,6-bis(pyrazolyl)pyridazine (L1), 3,6-bis(3-methylpyrazolyl)pyridazine (L2) and 3,6-bis(3,5-dimethylpyrazolyl)pyridazine (L3). A new series of cationic mononuclear complexes of the type [(η5-Cp)Ma(L)(PPh3)]PF6, [(η5-Cp*)Mb(L)Cl]PF6, [(η5-Cp*)Ru(L′)(PPh3)]PF6 and [(η5-Cp*)Mb(L′)Cl]+ (where Ma = Ru, Os; Mb = Rh, Ir and L′ = L1, L2, L3) bearing pyrazolylpyridazine and η5-cyclopentadienyl ligands are reported. The complexes have been completely characterized by spectral studies. The molecular structures of representative complexes have been determined by single crystal X-ray crystallography.  相似文献   

4.
Five novel silver (Ι) complexes with 1,3-imidazolidine-2-thione ligand formulated as [Ag21-SC3H6N2)6]SO4 (1), [Ag22-SC3H6N2)21-SC3H6N2)4](NO3)2 (2), [Ag(μ2-SC3H6N2)Br]n (3), [Ag22-SC3H6N2)3(CH3COO)2]n (4), [Ag(μ2-SC3H6N2)Cl]n (5) have been synthesized under similar conditions except for different anions and solvents. They are structurally characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. Complex 1 is a binuclear complex, with SO42− anions as the counteranions. Complex 2 is a molecular binuclear silver cluster, with NO3 anions as the counteranions. Complex 3 shows a novel 2D lamella structure constructed by the S atom of 1,3-imidazolidine-2-thione ligand and Br anions, and exhibits 12-membered metallacyclic rings in its structure. Complex 4 is a novel 2D layered polymer with a graphite-like array of silver (I) ions, with CH3COO anion coordinated to silver(I) ions by O atom. Complex 5 shows a 3D diamond-like network structure constructed by the sulfur atom of 1,3-imidazolidine-2-thione ligand and Cl anions.  相似文献   

5.
The nuclearity, bonding and H-bonded networks of copper(I) halide complexes with thiophene-2-carbaldehyde thiosemicarbazones {(C4H3S)HC2N3-N(H)-C1(S)N1HR} are influenced by R substituents at N1 atom. Thiophene-2-carbaldehyde-N1-methyl thiosemicarbazone (HttscMe) or thiophene-2-carbaldehyde-N1-ethyl thiosemicarbazone (HttscEt) have yielded halogen-bridged dinuclear complexes, [Cu2(μ-X)21-S-Htsc)2(Ph3P)2] (Htsc, X: HttscMe, I, 1; Br, 2; Cl, 3; HttscEt, I, 4; Br, 5; Cl, 6), while thiophene-2-carbaldehyde-N1-phenyl thiosemicarbazone (HttscPh) has yielded mononuclear complexes, [CuX(η1-S-HttscPh)2] (X, I, 7a; Br 8; Cl, 9) and a sulfur bridged dinuclear complex, [Cu2(μ-S-HttscPh)21-S-HttscPh)2I2] 7b co-existing with 7a in the same unit cell. These results are in contrast to S-bridged dimers [Cu2(μ-S-Httsc)21-Br)2(Ph3P)2] · 2H2O and [Cu2(μ-S-Httsc)21-Cl)2(Ph3P)2] · 2CH3CN obtained for R = H and X = Cl, Br (Httsc = thiophene-2-carbaldehyde thiosemicarbazone) as reported earlier. The intermolecular CHPh?π interaction in 1-3 (2.797 Å, 1; 3.264 Å, 2; 3.257 Å, 3) have formed linear polymers, whereas the CHPh?X and N3?HCH interactions in 4-6 (2.791, 2.69 Å, 5; 2.776, 2.745 Å, 6, respectively) have led to the formation of H-bonded 2D polymer. The PhN1H?π, interactions (2.547 Å, 8, 2.599 Å, 9) have formed H-bonded dimers only. The Cu?Cu separations are 3.221-3.404 Å (1-6).  相似文献   

6.
The 2-methallyl complex [(η5-C9H7)Ru(η3-2-MeC3H4)(PPh3)] (3), prepared from [(η5-C9H7)Ru(PPh3)2Cl] (2) and 2-MeC3H4MgCl, reacts with HX (X = Cl, CF3CO2) in the presence of ethene to give the chiral-at-metal compounds [(η5-C9H7)Ru(C2H4)(PPh3)X] (4, 5) in nearly quantitative yields. Treatment of 2 with AgPF6 and ethene affords [(η5-C9H7)Ru(C2H4)(PPh3)2]PF6 (6), which reacts with acetone to give the substitution product [(η5-C9H7)Ru(OCMe2)(PPh3)2]PF6 (7). The molecular structure of 7 has been determined crystallographically. Whereas treatment of 4 with CH(CO2Et)N2 yields the olefin complex [(η5-C9H7)Ru{η2-(Z)-C2H2(CO2Et)2}(PPh3)Cl] (8), the reactions of 4 and 5 with Ph2CN2, PhCHN2 and (Me3Si)CHN2 lead to the formation of the carbeneruthenium(II) derivatives [(η5-C9H7)Ru(CRR′)(PPh3)Cl] (9-11) and [(η5-C9H7)Ru(CRR′)(PPh3)(κ1-O2CCF3)] (12-14), respectively. Treatment of 9 (R = R′ = Ph), 10 (R = H, R′ = Ph) and 11 (R = H, R′ = SiMe3) with MeLi produces the hydrido(olefin) complexes [(η5-C9H7)RuH(η2-CH2CPh2)(PPh3)] (15), [(η5-C9H7)RuH(η2-CH2CHPh)(PPh3)] (18a,b) and [(η5-C9H7)RuH(η2-CH2CHSiMe3)(PPh3)] (19) via C-C coupling and β-hydride shift. The analogous reactions of 11 with PhLi gives the η3-benzyl compound [(η5-C9H7)Ru{η3-(Me3Si)CHC6H5}(PPh3)] (20). The η3-allyl complex [(η5-C9H7)Ru(η3-1-PhC3H4)(PPh3)] (17) was prepared from 10 and CH2CHMgBr by nucleophilic attack.  相似文献   

7.
The reaction of [RuCl2(PPh3)3] and [OsBr2(PPh3)3] precursors with a series of heterocyclic bidentate (N, X) ligands, X = S, Se, gave complexes [M(R-pyS)2(PPh3)2], (R = H, 3-CF3, 5-CF3, 3-Me3Si); [M(R-pymS)2(PPh3)2], (R = 4-CF3, 4,6-MeCF3) and [M(R-pySe)2(PPh3)2], (R = H, 3-CF3, 5-CF3), where M is Ru or Os, pyS and pymS the anions of pyridine-2-thione and pyrimidine-2-thione, respectively, and pySe is the anion produced by the reductive cleavage of the Se-Se bond in the dipyridyl-2,2′-diselenide. All of the compounds obtained were characterized by microanalysis, IR, FAB, NMR spectroscopy and by cyclic voltammetry. Compounds [Ru(3-CF3-pyS)2(PPh3)2] · 2(CH2Cl2) (2), [Ru(3-Me3Si-pyS)2(PPh3)2] (4), [Ru(4-CF3-pymS)2(PPh3)2] (5), [Ru(3-CF3-pySe)2(PPh3)2] · 2(CH2Cl2) (8), [Os(3-CF3-pyS)2(PPh3)2] · (CHCl3) (11), [Os(3-Me3Si-pyS)2(PPh3)2] (13), [Os(3-CF3-pySe)2(PPh3)2] · 2(CH2Cl2) (17), [Os(5-CF3-pySe)2(PPh3)2] · 2(H2O) (18) and [OsCl2(4,6-MeCF3-pymS)(PPh3)2] (19) were also characterized by X-ray diffraction. In all cases, the metal is in a distorted octahedral environment with the heterocyclic ligand acting as a bidentate (N, S) chelate system.  相似文献   

8.
Reactions of [PPh4][(η5-C5Me5)WS3] with equimolar M′Cl2 (M′ = Zn, Cd) in MeCN or 0.5 equiv. of HgCl2 in DMF afforded two binuclear clusters [PPh4][(η5-C5Me5)WS3(M′Cl2)] (1: M′ = Zn; 2: M′ = Cd) and one trinuclear cluster [{(η5-C5Me5)WS3}2Hg] (3). Compounds 1-3 were characterized by elemental analysis, IR, UV-Vis, 1H NMR and X-ray crystallography. Compound 1 may be viewed as a 1:1 composite of [PPh4][(η5-C5Me5)WS3] and ZnCl2, in which one [(η5-C5Me5)WS3] anion binds a ZnCl2 moiety via two μ-S atoms. In the structure of 3, two [(η5-C5Me5)WS3] anions coordinate the central Hg atom via two μ-S atoms, forming an unique bent linear structure. In addition, internal redox reactions of [PPh4][(η5-C5Me5)WS3] under the presence of M′Cl2 (M′ = Zn, Cd, Hg) in high concentrations were discussed.  相似文献   

9.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

10.
The organometallic tin(IV) complexes [SnPh2(SRF)2] SRF = SC6F4-4-H (1), SC6F5 (2), were synthesized and their reactivity with [MCl2(PPh3)2] M = Ni, Pd and Pt explored. Thus, transmetallation products were obtained affording polymeric [Ni(SRF)(μ-SRF)]n, monomeric cis-[Pt(PPh3)2(SC6F4-4-H)2] (3) and cis-[Pt(PPh3)2(SC6F5)2] (4) and dimeric species [Pd(PPh3)(SC6F4-4-H)(μ-SC6F4-4-H)]2 (5) and [Pd(PPh3)(SC6F5)(μ-SC6F5)]2 (6) for Ni, Pt and Pd, respectively. The crystal structures of complexes 1, 2, 3, 4 and 6 were determined.  相似文献   

11.
The reaction of FcCOCl (Fc = (C5H5)Fe(C5H4)) with benzimidazole or imidazole in 1:1 ratio gives the ferrocenyl derivatives FcCO(benzim) (L1) or FcCO(im) (L2), respectively. Two molecules of L1 or L2 can replace two nitrile ligands in [Mo(η3-C3H5)(CO)2(CH3CN)2Br] or [Mo(η3- C5H5O)(CO)2(CH3CN)2Br] leading to the new trinuclear complexes [Mo(η3-C3H5)(CO)2(L)2Br] (C1 for L = L1; C3 for L = L2) and [Mo(η3-C5H5O)(CO)2(L)2Br] (C2 for L = L1; C4 for L = L2) with L1 and L2 acting as N-monodentade ligands. L1, L2 and C2 were characterized by X-ray diffraction studies. [Mo(η3-C5H5O)(CO)2(L1)2Br] was shown to be a trinuclear species, with the two L1 molecules occupying one equatorial and one axial position in the coordination sphere of Mo(II). Cyclic voltammetric studies were performed for the two ligands L1 and L2, as well as for their molybdenum complexes, and kinetic and thermodynamic data for the corresponding redox processes obtained. In agreement with the nature of the frontier orbitals obtained from DFT calculations, L1 and L2 exhibit one oxidation process at the Fe(II) center, while C1, C3, and C4 display another oxidation wave at lower potentials, associated with the oxidation of Mo(II).  相似文献   

12.
Complexes of the type (η4-BuC5H5)Fe(CO)2(P) (P = PPh2Py 3, PPhPy24, PPy35; Py = 2-pyridyl) were satisfactorily prepared. Upon treatment of 3 with M(CO)3(EtCN)3 (M = Mo, 6a; W, 6b), the pyridyl N-atom could be coordinated to the metal M, which then eliminates a CO ligand from the Fe-centre and induced an oxidative addition of the endo-C-H of (η4-BuC5H5). This results in a bridged hydrido heterodimetallic complex [(η5-BuC5H4)Fe(CO)(μ-P,N-PPh2Py)(μ-H)M(CO)4] (M = Mo, 7a, 81%; W, 7b, 76%). The reaction of 4 or 5 with 6a,b did not give the induced oxidative addition, although these complexes contain more than one pyridyl N-atom. The reaction of 4 with M(CO)4(EtCN)2 (M = Mo, 9a; W, 9b) produced heterodimetallic complexes [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′-PPhPy2)M(CO)4] (M = Mo, 10a, 81%; W, 10b, 83%). Treatment of 5 with 6a,b gave [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′,N″-PPy3)M(CO)3] (M = Mo, 12a, 96%; W, 12b, 78%).  相似文献   

13.
[Rh(CO)2Cl]2 reacts with two mole equivalent of 2-acetylpyridine (a), 3-acetylpyridine (b) and 4-acetylpyridine (c) to afford chelate [Rh(CO)Cl(η2-N∩O)] (1a) and non-chelate [Rh(CO)2Cl(η1-N∼O)] (1b, 1c) complexes, where, N∩O = a, N∼O = b, c. Oxidative addition (OA) of 1a-1c with CH3I and C2H5I yields penta coordinate rhodium(III) complexes, [Rh(COR)ClI(η2-N∩O)] {R = -CH3 (2a); -C2H5 (3a)} and [Rh(COR)(CO)ClI(η1-N∼O)] {R = -CH3 (2b, 2c); -C2H5 (3b, 3c)}. Kinetic study for the reaction of 1a-1c with CH3I indicates a pseudo-first order reaction. The catalytic activity of 1a-1c for the carbonylation of methanol to acetic acid and its ester was evaluated at different initial CO pressures 5, 10 and 20 bar at ∼25 °C and higher turn over numbers (TON = 1581-1654) were obtained compared to commercial Monsanto’s species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature = 130 ± 1 °C, pressure = 15-32 bar, rpm = 450, time = 1 h and catalyst: substrate = 1: 1900.  相似文献   

14.
Palladium [PdCl2(L)] complexes with N-alkylpyridylpyrazole derived ligands [2-(5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L1), 2-(1-ethyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L2), 2-(1-octyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L3), and 2-(3-pyridin-2-yl-5-trifluoromethyl-pyrazol-1-yl)ethanol (L4) were synthesised. The crystal and molecular structures of [PdCl2(L)] (L = L2, L3, L4) were resolved by X-ray diffraction, and consist of monomeric cis-[PdCl2(L)] molecules. The palladium centre has a typical square-planar geometry, with a slight tetrahedral distortion. The tetra-coordinate metal atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine ligands in cis disposition. Reaction of L (L2, L4) with [Pd(CH3CN)4](BF4)2, in the ratio 1M:2L, gave complexes [Pd(L)]2(BF4)2. Treatment of [PdCl2(L)] (L = L2, L4) with NaBF4 and pyridine (py) and treatment of the same complexes with AgBF4 and triphenylphosphine (PPh3) yielded [Pd(L)(py)2](BF4)2 and [Pd(L)(PPh3)2](BF4)2 complexes, respectively. Finally, reaction of [PdCl2(L4)] with 1 equiv of AgBF4 yields [PdCl(L4)](BF4).  相似文献   

15.
In the presence of sodium nitrite, the reaction of methyl anthranilate and 2-aminopyridine or o-aminobenzoic acid gives two triazenes, 1-[(2-carboxymethyl)benzene]-3-[2-pyridine]triazene (HL) and 1-[(2-carboxymethyl)benzene]-3-[o-aminobenzoic acid]triazene (H2L′), respectively. In the presence of Et3N, the reaction of Pt(PPh3)2Cl2 and HL or H2L′ produces two triazenido platinum(II) complexes, Pt(PPh3)2(L)Cl (1) and Pt(PPh3)2(L′) (2), respectively, which have been characterized by X-ray crystallography, 31P NMR spectra, UV-Vis spectra, emission spectra and cyclic voltammetry. When excited at 310 nm, complexes 1 and 2 show luminescence at 432 and 442 nm, respectively, which is consistent with the trend of the lowest-energy absorption wavelengths of 1 (376 nm) and 2 (379 nm). Complexes 1 and 2 exhibit one or two redox waves and follow the order 1 (0.97 V) → 2 (0.89 and 0.07 V), which is also in accordance with the trend of the lowest-energy absorption spectra of 1 (376 nm) and 2 (379 nm).  相似文献   

16.
Addition of phenyldi(2-thienyl)phosphine (PPhTh2) to [Re2(CO)10−n(NCMe)n] (n = 1, 2) affords the substitution products [Re2(CO)10−n(PhPTh2)n] (1, 2) together with small amounts of fac-[ClRe(CO)3(PPhTh2)2] (3) (n = 2). Reaction of [Re2(CO)10] with PPhTh2 in refluxing xylene affords a mixture which includes 2, [Re2(CO)7(PPhTh2)(μ-PPhTh)(μ-H)] (4), [Re2(CO)7(PPhTh2)(μ-PPhTh)(μ-η11(S)-C4H3S)] (5) and mer-[HRe(CO)3(PPhTh2)2] (6). Phosphido-bridged 4 and 5 are formed by the carbon-phosphorus bond cleavage of the coordinated PPhTh2 ligand, the cleaved thienyl group being retained in the latter. Reaction of [Mn2(CO)10] with PPhTh2 in refluxing toluene affords [Mn2(CO)9(PPhTh2)] (7) and the carbon-phosphorus bond cleavage products [Mn2(CO)6(μ-PPhTh)(μ-η15-C4H3S)] (8) and [Mn2(CO)5(PPhTh2)(μ-PPhTh)(μ-η15-C4H3S)] (9). Both 8 and 9 contain a bridging thienyl ligand which is bonded to one manganese atom in a η5-fashion.  相似文献   

17.
The reactions of 2-amino-anthracene with [Os3(CO)10(CH3CN)2] have been studied and the products structurally characterized by spectroscopic, X-ray diffraction, photophysical and electrochemical techniques. At room temperature in CH2Cl2 two major, isomeric products are obtained [Os3(CO)10(μ-η2-(N-C(1))-NH2C14H8)(μ-H)] (1, 14%) and [Os3(CO)10(μ-η2-(N-C(3))-NHC14H9)(μ-H)] (2, 35%) along with a trace amount of the dihydrido complex [Os3(CO)9(μ-η2-(N-C(3))-NHC14H8)(μ-H)2] (3). In refluxing tetrahydrofuran only complexes 2 and 3 are obtained in 24% and 28%, respectively. A separate experiment shows that complex 1 slowly converts to 2 and that the rearrangement is catalyzed by adventitious water and involves proton transfer to the anthracene ring. Complex 1 is stereochemically non-rigid; exhibiting edge to edge hydride migration while 2 is stereochemically rigid. Complex 3 is also stereochemically non-rigid showing a site exchange process of the magnetically nonequivalent hydrides typical for trinuclear dihydrides. Interestingly, 2 decarbonylates cleanly to the electronically unsaturated 46e cluster [Os3(CO)932-(N-C(3))-NHC10H9)(μ-H)] (4, 68%) in refluxing cyclohexane, while photolysis of 2 in CH2Cl2 yields only a small amount of 3 along with considerable decomposition. The mechanism of the conversion of 1 to 2 and the dependence of the product distribution on solvent are discussed. All four compounds are luminescent with compounds 1-3 showing emissions that can be assigned to radiative decay associated with the anthracene ligand. Complexes 1-3 all show irreversible 1e reductions in the range of −1.85-2.14 V while 4 shows a nicely reversible 1e wave at −1.16 V and a quasi-reversible second 1e wave at −1.62 V. Irreversible oxidations are observed in the range from +0.35 to +0.49 V. The relationship between the cluster ligand configurations and the observed electrochemical and photochemical behavior is discussed and compared with that of the free ligand.  相似文献   

18.
Cytidine (cyt) and adenosine (ado) react with cis-[L2Pt(μ-OH)]2(NO3)2 (L = PMe3, PPh3) in various solvents to give the nucleoside complexes cis-[L2Pt{cyt(− H),N3N4}]3(NO3)3 (L = PMe3, 1),cis-[L2Pt{cyt(− H),N4}(cyt,N3)]NO3 (L = PPh3, 2), cis-[L2Pt{ado(− H),N1N6}]2(NO3)2 (L = PMe3, 3) and cis-[L2Pt{ado(− H),N6N7}]NO3 (L = PPh3, 4). When the condensation reaction is carried out in solution of nitriles (RCN, R = Me, Ph) the amidine derivatives cis-[(PPh3)2PtNH=C(R){cyt(− 2H)}]NO3 (R = Me, 5a; R = Ph, 5b) and cis-[(PPh3)2PtNH=C(R){ado(− 2H)}]NO3 (R = Me, 6a: R = Ph, 6b) are quantitatively formed. The coordination mode of these nucleosides, characterized in solution by multinuclear NMR spectroscopy and mass spectrometry, is similar to that previously observed for the nucleobases 1-methylcytosine (1-MeCy) and 9-methyladenine (9-MeAd). The cytotoxic properties of the new complexes, and those of the nucleobase analogs, cis-[(PPh3)2PtNH=C(R){1-MeCy(− 2H)}]NO3 (R = Me, 7a: R = Ph, 7b), cis-[(PPh3)2PtNH=C(R){9-MeAd(− 2H)}]NO3 (R = Me, 8a: R = Ph, 8b) have been investigated in a wide panel of human cancer cells. Interestingly, whereas the Pt(II) nucleoside complexes (1-4) did not show appreciable cytotoxicity, the corresponding amidine derivatives (7a, 7b, 8a, 8b, 5b, and 6b) exhibited a significant in vitro antitumor activity.  相似文献   

19.
Synthesis and characterization of the ruthenium complexes [RuH(CO)Cl(κ1-P-PPh2Py)2(PPh3)] (1) and [Ru(CO)Cl2(κ1-P-PPh2Py)(κ2-P-N-PPh2Py)] (2) containing diphenyl-2-pyridylphosphine (PPh2Py) are described. Spectral and structural data suggested linkage of the PPh2Py in κ1-P bonding mode in 1 and both the κ1-P and κ2-P-N bonding modes in 2. The complex 1 reacted with N,N-donor bases viz., ethylenediamine (en), N,N′-dimethyl-(ethylenediamine) (dimen), 1,3-diaminopropane (diap), 2,2′-bipyridine (bipy), 1,10-phenanthroline (phen) and di-2-pyridylaminomethylbenzene (dpa) to afford cationic complexes of formulation [RuH(CO)(κ1-P-PPh2Py)2(N-N)]+ (3-8) [N-N = en, 3; dimen, 4; diap, 5; bipy, 6; phen, 7; and dpa, 8], which have been isolated as their tetrafluoroborate salts. The complexes under investigation have been characterized by elemental analyses, spectroscopic and electrochemical studies. Molecular structures of 2, 3, 6, and 8 have been determined by single crystal X-ray diffraction analyses. Further, the complexes 1-8 act as effective precursor catalyst in transfer hydrogenation of acetophenone/ketones in basic 2-propanol.  相似文献   

20.
The heterobimetallic Ru/Pt and Ru/Pd complexes [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)(μ-I)(μ-dppm)PtCl2 (7), [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)(μ-I)(μ-dppm)PtI2 (8), [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)(μ-I)(μ-dppm)PdCl2 (9), and [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)(μ-I)(μ-dppm)PdI2 (10) were prepared by the reaction of [η5-C5H4CH2CH2N(CH3)2 · HI]Ru(PPh3)I(κ1-dppm) (6) with Pt(COD)Cl2, Pt(COD)I2, and Pd(COD)Cl2, respectively. Electronic interaction between the two metals is significant for the iodide-bridged compounds 7-10, as evidenced by the shifts of their redox potentials in comparison to the mononuclear complexes. The electrochemical oxidation of methanol was carried out with heterobimetallic complexes 7-10 and leads to the formation of dimethoxymethane (DMM) and methyl formate (MF) as the major oxidation products. The chloride complexes 7 and 9 are the most active catalysts, as evidenced by their TON and current efficiencies. Addition of water at the beginning of the electrolysis results in increased formation of the more oxidized product MF along with higher current efficiencies and TON.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号