首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two novel Co(II) coordination polymers {[Co(H2O)2(CH3OH)2(4-bpfp)](NO3)2}n1 (4-bpfp=N,N-bis(4-pyridylformyl)piperazine) and [Co(NCS)2(CH3OH)2(3-bpfp)]n2 (3-bpfp=N,N-bis(3-pyridylformyl)piperazine) have been synthesized and characterized by single crystal X-ray diffraction. Both the polymers consist of one-dimensional chains constructed by bridging bpfp ligands and Co(II) ions. The existence of O?H-O hydrogen bond in 1 and S?H-O hydrogen bond in 2 play important roles in creating interesting supramolecular structures. Their third-order nonlinear optical (NLO) properties in DMF solution have been studied by Z-scan technique. The results reveal that polymers 1 and 2 exhibit strong NLO absorption effects (α2=9.00×10−11 m W−1 for 1; 1.41 × 10−10 m W−1 for 2) and self-focusing performance (n2=3.24×10−16 esu for 1; 3.05 × 10−16 esu for 2) in DMF solutions. The corresponding effective NLO susceptibilities χ(3) values are 3.08 × 10−12 esu (1) and 4.70 × 10−12 esu (2). All of the values are comparable to those of the reported good NLO materials. Additionally, the TG-DTA results of the two polymers are in agreement with the crystal structures.  相似文献   

2.
Hydrothermal synthesis has afforded five d10 configuration divalent metal diphenate coordination polymers containing pyridyl-piperazine type ligands, which were structurally characterized by single-crystal X-ray diffraction. {[Cd(diphenate)(3-bpmp)(H2O)]·0.5H2O}n (1, 3-bpmp = bis(3-pyridylmethyl)piperazine) has a double layer topology. Its perchlorate-containing analog {[Cd3(diphenate)4(H23-bpmp)(H3-bpmp)(H2O)2](ClO4)·7H2O}n (2) possesses a very rare 4-connected 658 dmp topology based on anionic trinuclear nodes. {[Cd(diphenate)(4-bpfp)]·H2O}n (3, 4-bpfp = bis(4-pyridylformyl)piperazine) manifests a non-interpenetrated diamondoid lattice, while the related compound [Cd(diphenate)(4-bpmp)(H2O)]n (4, 4-bpmp = bis(4-pyridylmethyl)piperazine) has a simple (4,4) grid topology. {[Zn(diphenate)(4-bpmp)]·0.5H2O}n (5) displays a 2-fold interpenetrated diamondoid lattice. Luminescent properties of these materials are also reported.  相似文献   

3.
Hydrothermal synthesis has afforded divalent cadmium coordination polymers containing isophthalate (ip) or 5-methylisophthalate (mip) dicarboxylate ligands and bis(4-pyridylformyl)piperazine (4-bpfp) or bis(4-pyridylmethyl)homopiperazine (4-bpmh) tethers. {[Cd2(ip)2(H2O)2(4-bpfp)]·7H2O}n (1) displays a (4,4) grid topology based on {Cd2O2} dimeric clusters, along with “infinite” water molecule tapes with rare T4(0)A(1) classification. {[Cd(mip)(H2O)(4-bpfp)]·3H2O}n (2) also exhibits (4,4) grid layers but with 2D + 2D → 3D mutual inclined interpenetration instead of parallel stacking. [Cd4(ip)4(4-bpmh)2]n (3) has tetrameric {Cd4(ip)4} cluster units linked by ip and 4-bpmh ligands into a unique self-penetrated 3,5,5,5-connected tetranodal net with (4.82)(436285)(446482)(4.5648) topology. {[Cd2(mip)2(H2O)2(4-bpmh)]·2H2O}n (4) possesses a structure similar to that of 1, without the aggregated water molecule tapes. All four materials emit visible light upon ultraviolet excitation, ascribed to ligand-based electronic transitions.  相似文献   

4.
Hydrothermal reaction of a d10 configuration divalent metal precursor with flexible-arm aromatic ortho-dicarboxylates and a bis(pyridyl)piperazine-type neutral co-ligand has generated four coordination polymers, some with rare topologies. {[Cd(hmph)(4-bpmp)1.5]·4H2O}n (1, hmph = homophthalate, 4-bpmp = bis(4-pyridylmethyl)piperazine) manifests a new 3-fold interpenetrated uninodal 5-connected 3-D net with a very simple 4466 topology, different from the usual sqp 5-connected topology. [Cd2(hmph)2(4-bpfp)]n (2, 4-bpfp = bis(4-pyridylformyl)piperazine) displays a rare 4,5-connected binodal tcs net with (4462)(4466) topology. [Zn2(1,2-phda)2(4-bpmp)(H2O)2]n (3, 1,2-phda = 1,2-phenylenediacetate) possesses an uncommon 3,4-connected binodal 2-D layer with (426)(42638) (V2O5 prototype) topology. [Zn2(hmph)2(4-bpfp)]n (4) has a decorated (4,4) grid topology with embedded [Zn2(OCO)4] paddlewheel clusters. All materials exhibit ligand-centered fluorescent behavior. Thermal degradation behavior of the 3-D network materials is reported.  相似文献   

5.
A series of pyrazole-bridged heterometallic 3d-4f complexes, [CuDy(ipdc)2(H2O)4] · (2H2O)(H3O+) (1) and [CuLn(pdc)(ipdc)(H2O)4] · H3O+ (Ln = Ho (2), Er (3), Yb (4); H3ipdc = 4-iodo-3,5-pyrazoledicarboxylic acid; H3pdc = 3,5-pyrazoledicarboxylic acid), {[Cu3Ln4(ipdc)6(H2O)16] · xH2O}n (Ln = Sm (5), x = 8.5; Ln = Eu (6), x = 7; Ln = Gd (7), Tb (8), x = 9), have been synthesized and structurally characterized. Ligand H3ipdc was in situ obtained by iodination of ligand H3pdc. Complexes 1-4 are pyrazole-bridged heterometallic dinuclear complexes, and 2-4 are isostructural. Complexes 5-8 are isostructural and comprised of an unusual infinite one-dimensional tape-like chain based on pyrazole-bridged heterometallic dinuclear units. The magnetic properties of compounds 1-4, 7 and 8 have been investigated through the magnetic measurement over the temperature range of 1.8-300 K.  相似文献   

6.
To determine the influence of metal ion and the auxiliary ligand on the formation of metal-organic frameworks, six new coordination polymers, {[Mn2(bpdc)(bpy)3(H2O)2] · 2ClO4 · H2O}n (1), {[Mn(bpdc)(dpe)] · CH3OH · 2H2O}n (2), {[Cu(bpdc)(H2O)2]}n (3), {[Zn(bpdc)(H2O)2]}n (4), {[Cd(bpdc)(H2O)3] · 2H2O}n (5), and {[Co(bpdc)(H2O)3] · 0.5dpe · H2O}n (6) (H2bpdc = 2,2′-bipyridine-3,3′-dicarboxylic acid, bpy = 2,2′-bipyridine, dpe = 1,2-di(4-pyridyl) ethylene), have been synthesized and characterized. Compound 1 forms 1D helical chain structure containing two unique MnII ions. In 2, the bridging ligand dpe links Mn-bpdc double zigzag chains to generate a layer possesses rectangular cavities. In 3, bpdc2− ligand connects to three metal centers forming a 2D network. Different from the above compounds, 4 displays a 1D double-wavelike chain. Compound 5 features a helical chain. Compound 6 also displays a helical chain with guest molecule dpe existing in the structure. These diverse structures illustrate rational adjustment of metal ions and the second ligand is a good method for the further design of helical compounds with novel structures and properties. In addition, the magnetic properties of 2, 3 and 6, the thermal stabilities and photoluminescence properties of 4 and 5 were also studied.  相似文献   

7.
Hydrothermal synthesis has afforded cobalt 5-substituted isophthalate complexes with 4,4′-dipyridylamine (dpa) ligands, showing different dimensionalities depending on the steric bulk and hydrogen-bonding facility of the substituent. [Co(tBuip)(dpa)(H2O)]n (1, tBuip = 5-tert-butylisophthalate) is a (4,4) grid two-dimensional coordination polymer featuring 2-fold parallel interpenetration. [Co(MeOip)2(Hdpa)2] (2, MeOip = 5-methoxyisophthalate) is organized into 3-fold parallel interpenetrated (4,4) grids through strong N-H+?O hydrogen bonding. {([Co(OHip)(dpa)(H2O)3])3·2H2O}n (3, OHip = 5-hydroxyisophthalate) possesses 1-D chain motifs. The 5-methyl derivative {[Co(mip)(dpa)]·3H2O}n (4, mip = 5-methylisophthalate) has a 3-D 658 cds topology. {[Co(H2O)4(Hdpa)2](nip)2·2H2O} (5, nip = 5-nitroisophthalate) and {[Co(sip)(Hdpa)(H2O)4]·2H2O} (6, sip = 5-sulfoisophthalate) are coordination complexes. Antiferromagnetic superexchange is observed in 1 and 4, with concomitant zero-field splitting. Thermal decomposition behavior of the higher dimensionality complexes is also discussed.  相似文献   

8.
Slow diffusion of aqueous solutions of metal perchlorates with alcoholic solutions of bis(4-pyridylmethyl)piperazine (4-bpmp) or bis(3-pyridylmethyl)piperazine (3-bpmp) afforded crystalline coordination polymer phases whose dimensionality and topology is determined largely by the pyridyl nitrogen donor disposition within the imine components. {[M(H2O)4(4-bpmp)](ClO4)2·4-bpmp·4H2O}n (M = Co, 1-Co; M = Zn, 1-Zn) are isostructural, displaying cationic [M(H2O)4(4-bpmp)]n2n+ 1-D coordination polymer chains connected through extensive hydrogen-bonding pathways involving unligated species. In contrast, use of the 3-bpmp isomer generated compounds with formulation of {[M(H2O)2(3-bpmp)2](ClO4)2·8H2O}n (M = Co, 2-Co; M = Zn, 2-Zn), which manifest achiral 3-fold interpenetrated 66 diamondoid lattices. The zinc derivatives undergo modest blue-violet luminescence on exposure to ultraviolet light.  相似文献   

9.
Five new supramolecular lanthanide coordination polymers with three different structures, {[La2(IA)3(phen)2] · 2H2O}n (1), {[Ln(IA)1.5(phen)] · xH2O}n [x = 1, Ln = Eu (2); x = 0.25, Ln = Dy (3)], and [Ln(IA)1.5(phen)]n [Ln = Er (4); Yb (5)], were prepared by hydro- and solvothermal reactions of lanthanide chlorides with itaconic acid (H2IA) and 1,10-phenanthroline (phen), and structurally characterized by single crystal X-ray diffraction. 1 Comprises 1-D double-chains that are further assembled to a 3-D supramolecular structure via hydrogen bonds and π-π stacks between phen molecules. 2 and 3 have 2-D infinite networks which are further constructed to form 3-D supramolecular architectures with 1-D channels by π-π aromatic interactions. 4 and 5 have 2-D layer structures consisting of three types of rings which are further architectured to form 3-D supramolecular structures by C-H?O hydrogen bonds. The H2IA ligands are all completely deprotonated and exhibit tetra-, penta-, and hexadentate coordination modes in the titled complexes. The high-resolution emission spectrum of 2 shows only one Eu3+ ion site in 2, which is in agreement with the result of X-ray diffraction. And the magnetic property and the thermal stability of 2 were also investigated.  相似文献   

10.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

11.
Four new complexes, {[Mn(imH)2(pdc)]·H2O}n (1), [Zn2(pdc)2(H2O)5]·2H2O (2), [Zn(imH)2(pdc)]·H2O (3), {[Zn2(pdc)2(bpy)(H2O)2]·5H2O}n (4) [imH = imidazole pdc = pyridine 2,6-dicarboxylate, bpy = 4,4′-bipyridine] have been synthesized under hydrothermal conditions and structurally characterized by elemental analysis, IR, PXRD, single-crystal X-ray diffraction and thermogravimetric analyses. All the four complexes display a three-dimensional (3D) open framework with one-dimensional (1D) channels that are filled with lattice water molecules. Particularly, in 4, the lattice water molecules form an infinite water chain. Both 1 and 4 consist of 1D polymeric chains. While 2 contains a dinuclear Zn(II) unit, and 3 is a mononuclear complex. Further, the result of thermal analysis of 1 and 2 shows the robustness of the overall supramolecular three-dimensional architecture. Complexes 1, 3, and 4 exhibit strong fluorescent emissions in the solid state at room temperature and could be significant in the field of photoactive materials.  相似文献   

12.
Three Cd(II) and Zn(II) coordination polymers, including {[Cd(3-bpo)(mip)(H2O)](H2O)2}n (1), {[Cd(4-bpo)(hip)(H2O)](H2O)4}n (2), and {[Zn(4-bpo)(tp)](CH3OH)}n (3) were synthesized from the reactions of CdII or ZnII nitrate with mixed organic ligands [3-bpo = 2,5-bis(3-pyridyl)-1,3,4-oxadiazole, H2mip = 5-methylisophthalic acid, 4-bpo = 2,5-bis(4-pyridyl)-1,3,4-oxadiazole, H2hip = 5-hydroxylisophthalic acid, H2tp = terephthalic acid] under the similar layered diffusion condition. The resulting crystalline materials 1-3 were characterized by IR, microanalysis, powder X-ray diffraction (PXRD) techniques. Single-crystal X-ray diffraction indicates a 1-D tubular motif for 1, a 1-D dual-track array for 2, and a 2-D grid-like pattern for 3, constructed via different metal-ligand coordination contacts. Higher-dimensional supramolecular architectures are further assembled in 1-3 via H-bonding and aromatic stacking interactions. In addition, thermal stability and fluorescence of these polymeric complexes were also investigated and discussed.  相似文献   

13.
Four novel coordination polymers, [Cd(Hdtbb)(dtbb)0.5(DMF)]n (1), {[Cd(dtbb)(2,2′-bpy)(H2O)]·2DMA}n (2), {[Cd2(dtbb)2(1,4-bix)2]·3DMF}n (3) and [Cd(dtbb)(1,4-btx)]n (4) [H2dtbb = 2,2-dithiobisbenzoic acid, 2,2′-bpy = 2,2′-bipyridine, 1,4-bix = 1,4-bis(imidazol-1-ylmethyl)benzene, 1,4-btx = 1,4-bis(triazol-1-ylmethyl)benzene] have been synthesized and structurally characterized. Complexes 1 and 2 possess one-dimensional (1D) infinite structures. The structures of complexes 3 and 4 exhibit two dimensional (2D) frameworks, which mainly due to the differences in the bridging modes of dtbb2− ligand and the effect of the N-donor auxiliary ligands. The infrared spectra, thermogravimetric and luminescent properties were also investigated for these compounds.  相似文献   

14.
To further investigate the solvent effect on the structures of coordination polymers, a series of polymeric CuII complexes have been synthesized and characterized by single-crystal diffraction through combining of 2,3,5,6-tetrachloro-1,4-benzenedicarboxylic acid (H2BDC-Cl4) with CuII perchlorate. The products including {[Cu(BDC-Cl4)(py)3] · H2O}n (py = pyridine) (1), {[Cu(BDC-Cl4)(dioxane)(H2O)2] · dioxane}n (2), and {[Cu2(BDC-Cl4)2(DMF)4] · 2G}n (G = MeOH in 3 and G = EtOH in 4) have been obtained in different mixed solvents systems. With the change of the solvent system from pyridine/H2O (1:1) into dioxane/H2O (1:1), the infinite 1-D CuII-BDC-Cl4 chain motif in 1 is tuned into the 2-D (4,4) layered structure in 2 with the coordination of dioxanes to copper atoms. When the solvent system is changed into DMF/MeOH (1:1), then into DMF/EtOH (1:1), similar 1-D CuII-BDC-Cl4 double chains are afforded in 3 and 4 with different solvents inclusion. Moreover, the judicious choice of binding-guests leads to numerous coordination geometries of CuII centers and final dissimilar supramolecular lattices of 1-4 from 1-D to 3-D via robust hydrogen-bonding interactions. The spectroscopic, thermal, and fluorescent properties of 1-4 have also been investigated.  相似文献   

15.
Three novel d10 metal coordination polymers, {[Cd(H2odpa)(phen)2]·H2O}n (1), [Cd2(odpa)(phen)(H2O)2]n (2), {[Zn4(odpa)2(phen)2(H2O)2]·H2O}n (3), (H4odpa = 4,4′-oxydiphthalic acid, phen = 1,10-phenanthroline) were obtained with different metal/ligand ratios through hydrothermal method and characterized. Compound 1 forms a one dimensional zigzag chain, in which two phen ligands chelate to one cadmium atom. Compound 2 shows a three dimensional network structure comprised of new tetranuclear cadmium clusters as the nodes and (odpa)4− anions as the linkers, exhibits an unusual topological structure. Compound 3 is an unprecedented three dimensional polymer based on octanuclear zinc clusters cross-linked by (odpa)4− anions. In 1-3, central CdII/ZnII ions and (odpa)4− ligand display completely different coordination modes and conformations. In addition, the thermal stabilities and photoluminescence properties of 1-3 were also studied.  相似文献   

16.
Four novel topological nets of lanthanide metal-organic frameworks: [Sm2(op)3(H2O)]n (1), {Ln2(op)2(ox)(H2O)4] · H2O}n (Ln = La, 2; Sm, 3), {[La2(mp)2(ox)(H2O)4] · 2H2O}n (4), [La2(op)2(mp)(H2O)4]n (5) (op = o-phthalate, mp = m-phthalate, and ox = oxalate), have been hydrothermally synthesized and characterized. Compound 1 exhibits novel (3,4,5,6)-connected five-nodal two-dimensional net, compound 2 and 3 show the (3,4)-connected V2O5 topologies, compound 4 has the (4,5)-connected topological net, and compound 5 shows the (4,5)-connected four-nodal three-dimensional network. Photoluminescent analyses of 1 and 3 show strong blue emission in the solid state at room temperature.  相似文献   

17.
Two new zinc(II)-triazole-aliphatic dicarboxylate coordination polymers, [Zn(trz)(Hsuc)]n (1), [Zn2(trz)2(tar)]n (2), have been hydrothermally synthesized by reaction of Zn salt, Htrz with H2suc and H2tar, respectively (Htrz = 1,2,4-triazole, H2suc = succinic acid, H2tar = tartaric acid).Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by X-ray powder diffraction, elemental analyses, IR spectra and TG analyses. Compound 1 displays a 2D layer structure containing {[Zn4(trz)4]4+}n layers decorated by the suc ligand. Compound 2 is in a 3D structure formed by the interconnection of 2D {[Zn4(trz)4]4+}n layers with tar ligand, resulting a 3,4-connected topological network. Due to the different coordination mode and conformation of aliphatic carboxylate ligand, the similar 2D {[Zn4(trz)4]4+}n layers stack in the -AAA- fashion in 1, while the {[Zn4(trz)4]4+}n layers hold together in the -ABAB- stacking sequence in 2. Additionally, the two compounds show strong fluorescence in the solid state at room temperature.  相似文献   

18.
Two new zinc-triazole-carboxylate frameworks constructed from secondary building units (SBUs), [Zn5(trz)4(btc)2(DMF)2(H2O)2]·2H2O·DMF (1) and [Zn4(trz)3(btc)2(CH3CN)(H2O)]·5H2O·(Bu4N) (2), [Htrz = 1,2,4-triazole, H3btc = 1,2,4-benzenetricarboxylate, Bu4N = tetrabutylammonium], have been synthesized by solvothermal reactions and characterized by single-crystal X-ray diffraction analyses, X-ray power diffraction, elemental analyses, infrared spectra and thermogravimetric analyses. Both compounds 1 and 2 exhibit 3D (3,8)-connected tfz-d nets with {43}2{46.618.84} topology symbol built from rod-shaped {[Zn5(trz)4]6+}n SBUs (1) and {[Zn4(trz)3]5+}n SBUs (2). In two compounds, rodlike units are connected by btc ligands via different modes. Additionally, solid state fluorescent emission spectra of two compounds show fluorescent properties at room temperature.  相似文献   

19.
Four new coordination polymers namely {[Mn2(BT)(DPS)2(H2O)6]·10H2O}n (MnBTDPS), {[Co2(BT)(DPS)2(H2O)6]·10H2O}n (CoBTDPS), {[Cu2(BT)(DPS)(H2O)4]·5H2O}n (CuBTDPS) and {[Zn2(BT)(DPS)2]·6H2O}n (ZnBTDPS), where BT = 1,2,4,5-benzenetetracarboxylate and DPS = di(4-pyridyl) sulfide, were synthesized and characterized by thermal analysis, vibrational spectroscopy (Raman and infrared) and single crystal X-ray diffraction analysis. In all compounds, the DPS ligands are coordinated to metal sites in a bridging mode and the carboxylate moiety of BT ligands adopts a monodentate coordination mode, as indicated by the Raman spectra data through the Δν (νasym(COO) − νsym(COO)) value. According to X-ray diffraction analysis, MnBTDPS and CoBTDPS are isostructural and in these cases, the metal centers exhibit a distorted octahedral geometry. In CuBTBPP, the Cu2+ centers geometries are best described as square-pyramids, according to the trigonality index τ = 0.14 for Cu1 and τ = 0.10 for Cu2. On the other hand, in ZnBTDPS, the Zn2+ sites adopt a tetrahedral geometry. Finally, the four compounds formed two-dimensional sheets that are connected to each other through hydrogen bonding giving rise to three-dimensional supramolecular arrays.  相似文献   

20.
To investigate the effect of organic anions on the coordination frameworks, we synthesized five new complexes, namely, {[Zn3(μ-OH2)2(btc)2(btx)3]·4H2O}n (1), [Zn(bdc)(btx)]n (2), {[Ag8(3,5-pydc)4(btx)4]·8H2O}n (3), [Ag(2,6-Hpydc)(btx)]n (4) and [Cd22-OH2)(2,6-pydc)2(btx)]n (5) (H2bdc = 1,4-benzenedicarboxylic acid; H3btc = 1,3,5-benzenetricarboxylate; 3,5-H2pydc = pyridine-3,5-dicarboxylic acid; 2,6-H2pydc = pyridine-2,6-dicarboxylic acid), which were obtained by the reactions of 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene (btx) as main ligand, and several aromatic polycarboxylate as organic anions with different d10 metal salts. Single crystal structure analysis shows that complexes 1, 3 and 5 possess 3D structures, 2 takes a 2D layer motif, and 4 displays a 1D chain structure. The distinct structures indicate that polycarboxylate anions with the diverse coordination modes and coordination groups can affect the topologies of metal-organic frameworks. In addition, the luminescence measurements reveal that the complexes 1, 2 and 5 exhibit strong fluorescent emissions in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号