首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RNHC(S)NHP(S)(OiPr)2 [R = pyridin-2-yl (HLa), pyridin-3-yl (HLb), 6-amino-pyridin-2-yl (HLc)] with Cu(PPh3)3I in aqueous EtOH/CH2Cl2 leads to mononuclear [Cu(PPh3)2La,b-S,S′] (1, 2) and [Cu(PPh3)Lc-S,S′] (3) complexes. Using copper(I) iodide instead of Cu(PPh3)3I, polynuclear complexes [Cun(L-S,S′)n] (4-6) were obtained. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy, ES-MS and elemental analyses. The crystal structures of Cu(PPh3)2Lb (2) and Cu(PPh3)Lc (3) were determined by single-crystal X-ray diffraction.  相似文献   

2.
Reactions of labile [MCl3(PPh3)2(NCMe)] (M = Tc, Re) precursors with 1H-benzoimidazole-2-thiol (H2L1), 5-methyl-1H-benzoimidazole-2-thiol (H2L2) and 1H-imidazole-2-thiol (H2L3), in the presence of PPh3 and [AsPh4]Cl gave a new series of trigonal bipyramidal M(III) complexes [AsPh4]{[M(PPh3)Cl(H2L1-3)3]Cl3} (M = Re, 1-3; M = Tc, 4-6). The molecular structures of 1 and 3 were determined by X-ray diffraction. When the reactions were carried out with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5), neutral paramagnetic monosubstituted M(III) complexes [M(PPh3)2Cl2(L4,5)] (M = Re, 8, 9; M = Tc, 10, 11) were obtained. In these compounds, the central metal ions adopt an octahedral coordination geometry as authenticated by single crystal X-ray diffraction analysis of 8 and 11. Rhenium and technetium complexes 1, 4 and rhenium chelate compounds 8, 9 have been also synthesized by reduction of [MO4] with PPh3 and HCl in the presence of the appropriate ligand. All the complexes were characterized by elemental analyses, FTIR and NMR spectroscopy.  相似文献   

3.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

4.
The First examples of (Te, N, S) type ligands, 2-CH3SC6H4CHNCH2CH2TeC6H4-4-OCH3 (L1) and 2- CH3SC6H4CHNHCH2CH2TeC6H4-4-OCH3 (L2), and their metal complexes, [PdCl(L1)]PF6 · CHCl3 · 0.5H2O (4), [PtCl(L1)]PF6 (5), [PdCl(L2)]ClO4.CHCl3 (6), [PtCl(L2)]ClO4 (7), and [Ru(p-cymene)(L2)](PF6)2 · CHCl3 (8), have been synthesized and characterized. The single crystal structures of 4, 6 and 8 have revealed that both the ligands coordinate in them in a tridentate (Te, N, S) mode. The geometry around Pd in both the complexes has been found to be square planar, whereas for Ru in a half sandwich complex 8, it is found to be octahedral. Between two molecules of 4 there are intra and inter molecular weak Te?Cl [3.334(3) and 3.500(3) Å, respectively] interactions along with weak intermolecular Pd?Te [3.621(2) Å] interactions. The Pd-Te bond lengths are between 2.517(6) and 2.541(25) Å and the Ru-Te bond length is 2.630(6) Å. The crystal structure of [PdCl2(4-MeO-C6H4- TeCH2CH2NH2)] (9) is also determined. It is formed when KPF6 is not added in the synthesis of 4 and Pd-complex of L1 is recrystallized. Apart from Te?Cl secondary interactions, C-H?π interactions also exist in the crystal of 9.  相似文献   

5.
Reaction of the ligands 3-phenyl-5-(2-pyridyl)pyrazole (HL1), 3,5-bis(2-pyridyl)pyrazole (HL2), 3-methyl-5-(2-pyridyl)pyrazole (HL3) and 3-methyl-5-phenylpyrazole (HL4) with [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) or [PdCl2(cod)] gives complexes with stoichiometry [PdCl2(HL)2] (HL = HL1, HL2, HL3), [Pt(L)2] (L = L1, L2, L3) and [MCl2(HL4)2] (M = Pd(II), Pt(II)). The new complexes were characterised by elemental analyses, conductivity measurements, infrared and 1H NMR spectroscopies. The crystal and molecular structure of [PdCl2(HL1)] was resolved by X-ray diffraction, and consists of monomeric cis-[PdCl2(HL1)] molecules. The palladium centre has a typical square planar geometry, with a slight tetrahedral distortion. The tetra-coordinated metal atom is bonded to one pyridine nitrogen, one pyrazolic nitrogen and two chloro ligands in a cis disposition. The ligand HL1 is not completely planar.  相似文献   

6.
Different imine-type ligands, prepared by the condensation of anilines or of α-methylbenzylamine with 2-pyridinecarboxaldehyde (pyim1,2) or 2-quinolinecarboxaldehyde (quim1,2) were prepared. These species act as N,N′-bidentate, chelating ligands upon coordination to Cu(I): treatment of [Cu(PPh3)3Cl] with an equimolar amount of the ligands resulted in the displacement of two molecules of PPh3, giving rise to the formation of [Cu(pyim1,2)(PPh3)Cl] (1-2) and [Cu(quim1,2)(PPh3)Cl] (3-4), respectively. The copper derivatives 1-4 proved to be highly active catalysts in olefin cyclopropanation in the presence of ethyl diazoacetate, even using deactivated olefins (namely, 2-cyclohexen-1-one) as substrate. The X-ray structure of complex 2, [Cu(pyim2)(PPh3)Cl], is also reported.  相似文献   

7.
Trirutheniumdodecacarbonyl (Ru3(CO)12) reacts with 2-hydroxy-6-methylpyridine and with 2-hydroxy-5,6,7,8-tetrahydroquinoline in toluene to form centrosymmetric tetranuclear complexes of the type [Ru(η2, μ-L)(CO)23-L)Ru(CO)2]2, where L is the respective (N,O)-pyridonate ligand (2 and 3). The structures of these complexes, which are almost insoluble in all common solvents, could be determined by single-crystal X-ray diffraction. Reaction of Ru3(CO)12 with 2-hydroxy-4,6-diphenylpyridine in methanol includes ortho-metallation at the phenyl ring, furnishing the dinuclear complex [Ru(κ2N,C-L)(CO)2(μ-OCH3)2Ru(CO)22N,C-L)] (4), where L = (2-(6-hydroxy-4-phenylpyridin-2-yl)phenyl), according to an X-ray crystal structure determination.  相似文献   

8.
[Ru(H)(CO)(PPh3)2(α/β-NaiR)](ClO4) (3, 4) are synthesized by the reaction of [Ru(H)(Cl)(CO)(PPh3)3] with 1-alkyl-2-(naphthyl-α/β-azo)imidazole (α-NaiR (3); β-NaiR (4)). One of the complexes [Ru(H)(CO)(PPh3)2(α-NaiMe)](ClO4) (3a) has been structurally established by X-ray diffraction study. Upon addition of Cl2 saturated in MeCN to 3 or 4 gives [Ru(Cl)(CO)(α/β-NaiR)(PPh3)2](ClO4) (for α-NaiR (5); β-NaiR (6)), without affecting metal oxidation state, which were characterized by spectroscopic measurements. The redox property of the complexes is examined by cyclic voltammetry.  相似文献   

9.
Treatment of the five-coordinate chlorodimethylsilyl complex, Os(SiMe2Cl)Cl(CO)(PPh3)2 with hydroxide readily produces Os(SiMe2OH)Cl(CO)(PPh3)2 (1). Complex 1 is deprotonated by tBuLi giving the silanolate complex, Os(SiMe2OLi)Cl(CO)(PPh3)2 (2), which reacts further with Me3SiCl or Me3SnCl to give Os(SiMe2OSiMe3)Cl(CO)(PPh3)2 (3) or Os(SiMe2OSnMe3)Cl(CO)(PPh3)2 (4), respectively. The structures of 3 and 4 have been determined by X-ray crystallography. Reaction between OsH(κ2-S2CNMe2)(CO)(PPh3)2 and HSiMe2Cl gives Os(SiMe2Cl)(κ2-S2CNMe2)(CO)(PPh3)2 (5). This six-coordinate chlorodimethylsilyl complex, is unreactive towards hydroxide at room temperature and at 60 °C forms Os[Si(OH)3](κ2-S2CNMe2)(CO)(PPh3)2 (7). Complex 5 is, however, smoothly converted to the hydroxy derivative, Os(SiMe2OH)(κ2-S2CNMe2)(CO)(PPh3)2 (6) upon chromatography on silica gel. Complex 6 is deprotonated by tBuLi giving the intermediate silanolate complex, Os(SiMe2OLi)(κ2-S2CNMe2)(CO)(PPh3)2, which reacts further with Me3SiCl to give Os(SiMe2OSiMe3)(κ2-S2CNMe2) (CO)(PPh3)2 (8). Crystal structure determinations for 5, 6, 7, and 8 have been obtained and structural comparisons of these related compounds are made.  相似文献   

10.
Reactions of 2-(arylazo)aniline, HL (H represents the dissociable protons upon orthometallation and HL is p-RC6H4NNC6H4-NH2; RH for HL1; CH3 for HL2 and Cl for HL3) with IrCl3 in methanol afforded orthometallated complexes of composition (L)(HL)IrCl2 (2) and (L)(MeOH)IrCl2 (3), respectively. Complex (L)(MeOH)IrCl2 (3) converted into (L)(CH3CN)IrCl2 (4) upon refluxing in acetonitrile. The X-ray structure of the complexes (L1)(HL1)IrCl2 (2a) and (L3)(CH3CN)IrCl2 (4c) have been determined and characterized unequivocally. The anionic L binds the metal in tridentate (C, N, N) manner for all the complexes.  相似文献   

11.
The preparation and structural characterization of several new Ru(II) complexes in which four coordination positions are occupied by the sulfur atoms of a macrocycle, either 1,4,7,10-tetrathiacyclododecane ([12]aneS4) or 1,5,9,13-tetrathiacyclohexadecane ([16]aneS4), and the two others by relatively labile ligands (Cl, , H2O, dmso-S), are described:cis-[Ru([12]aneS4)(dmso-S)(H2O)](CF3SO3)2 (2a), cis-[Ru([12]aneS4)(dmso-S)(ONO2)](NO3) (2b), cis-[Ru([16]aneS4)Cl2] (4), and trans-[Ru([16]aneS4)(dmso-S)(H2O)](CF3SO3)2 (5).The complexes of the larger [16]aneS4 macrocycle have a flexible coordination geometry, either cis or trans, that makes them unsuited for being used as precursors in metal-driven self-assembly processes.On the contrary, the [12]aneS4 complexes cis-[Ru([12]aneS4)(dmso-S)Cl]Cl (1) and, above all, its chlorido free derivatives cis-[Ru([12]aneS4)(dmso-S)(H2O)](CF3SO3)2 (2a) and cis-[Ru([12]aneS4)(dmso-S)(ONO2)](NO3) (2b) are potential precursors of the geometrically stable 90° bis-acceptor fragment cis-[Ru([12]aneS4)]2+.Preliminary results of their reactivity towards the linear linker pyrazine (pyz) showed that the nature of the isolated product depends on that of the counter-anion.When treated with pyz 2b afforded the dinuclear complex [{Ru([12]aneS4)(ONO2)}2(μ-pyz)](NO3)2 (8), while 2a gave the molecular triangle [{cis-Ru([12]aneS4)(μ-pyz)}3](CF3SO3)6 (9), both in low yields.The X-ray structures of compounds 2a, 2b, 4, 5, [{Ru([12]aneS4)Cl}2(μ-pyz)]Cl2 (7), 9, and of the sandwich complex[Ru([12]aneS3-S)2](CF3SO3)2 (3), in which only three sulfur atoms of each macrocycle are bound to ruthenium, are also described.  相似文献   

12.
Reactions of chloro(3-thiapentane-1,5-dithiolato)oxorhenium(V) [ReO(SSS)Cl] with N-methyl-1H-imidazole-2-thiol (HL1) and 2-pyrimidinethiol (HL2) have been studied to form ‘3+1’ oxorhenium(V) complexes. In the absence of triethylamine, [Re(SSS)(HL1)]Cl (1a) was formed, while in the presence of triethylamine [Re(SSS)L1] (1b) and [Re(SSS)L2] (2) were produced. Molecular structures of complexes 1a and 2 were determined to be distorted square pyramidal by single crystal X-ray analytical method. From cyclic voltammetric studies, furthermore, it was proposed that complexes 1b and 2 are irreversibly oxidized to Re(VI) at around 0.84 and 1.01 V versus Ag/AgNO3, respectively, and are reduced to Re(IV) at −1.55 and −1.51 V with the dissociation of L1 or L2, followed by the quasi-reversible reductions to Re(III) at around −1.69 V, respectively.  相似文献   

13.
The reaction of [Ru(CO)2Cl2]n with bis(2-pyridylmethyl)amine (bpma) in refluxing ethanol followed by anion exchange yields two products: cis,fac-[Ru(bpma)(CO)2Cl]PF6 (1a, 71%) and trans,fac-[Ru(bpma)(CO)2Cl]PF6 (1b, 29%). Reaction of 1a with AgBF4 in acetone, followed by acetonitrile and then anion exchange gave cis,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2a). In the same way, 1b afforded trans,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2b). Reaction of depolymerized [Ru(CO)2Cl2]n with bpma in ethanol at room temperature afforded cis,cis-[Ru(η2-bpma)(CO)2Cl2] (3). In refluxing ethanol, 3 was converted to cis,fac-[Ru(bpma)(CO)2Cl]Cl (1a-Cl). Heating 3 in chlorobenzene afforded 1b-Cl, exclusively; heating 3 in ethylene glycol gave mainly 1a-Cl. Heating 1a-Cl in ethanol resulted in no isomerization, but heating in chlorobenzene gave a mixture of 3 and 1b-Cl. Anion exchange for PF6 with 1a-Cl and 1b-Cl afforded 1a and 1b, respectively, whereas anion exchange for BPh4 afforded 1a-BPh4. Compounds 1a, 1b, 2a and 3 have been structurally characterized.  相似文献   

14.
Mononuclear zinc complexes of a family of pyridylmethylamide ligands abbreviated as HL, HLPh, HLMe3, HLPh3, and MeLSMe [HL = N-(2-pyridylmethyl)acetamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide; MeLSMe = N-methyl-2-methylsulfanyl-N-pyridin-2-ylmethyl-acetamide] were synthesized and characterized spectroscopically and by single crystal X-ray structural analysis. The reaction of zinc(II) salts with the HL ligands yielded complexes [Zn(HL)2(OTf)2] (1), [Zn(HL)2(H2O)](ClO4)2 (2), [Zn(HLPh3)2(H2O)](ClO4)2 (3), [Zn(HLPh)Cl2] (4), [Zn(HLMe3)Cl2] (5), and [Zn(MeLSMe)Cl2] (6). The complexes are either four-, five- or six-coordinate, encompassing a variety of geometries including tetrahedral, square-pyramidal, trigonal-bipyramidal, and octahedral.  相似文献   

15.
The P-O ligand 3-(di(2-methoxyphenyl)phosphanyl)propionic acid (HL) was synthesized by a microwave-assisted reaction of a secondary phosphane. The coordination of HL to PtII yielded the neutral mononuclear complex trans-[PtCl(κ2-P,O-L)(κ-P-HL)] (1), while the reaction of PdClMe(η4-COD) (COD = 1,4-cyclooctadiene) with HL in the presence of NEt3 gave the anionic PdII compound of the formula (HNEt3)[PdClMe(κ2-P,O-L)] (2). Upon crystallization of the latter compound the neutral chloride-bridged dimetallic compound cis-[Pd(μ-Cl)Me(HL)]2 (3) was obtained. HL, 1 and CH2Cl2 have been characterized by single crystal X-ray structure analyses.  相似文献   

16.
Four new binucleating ligands featuring a hydroxytrimethylene linker between two coordination sites (1,3-bis{N-[3-(dimethylamino)propyl]-N-methylamino}propan-2-ol, HL1; 1,3-bis{N-[2-(dimethylamino)ethyl]-N-methylamino}propan-2-ol, HL2; 1,3-bis[bis(2-methoxyethyl)amino]propan-2-ol, HL3; and 1-bis[(2-methoxyethyl)amino]-3-{N-[2-(dimethylamino)ethyl]-N-methylamino}propan-2-ol, HL4) were synthesized, along with the corresponding zinc complexes. The structures of three dinuclear zinc complexes ([Zn2L1(μ-CH3COO)2]BPh4 (1), [Zn2L3(μ-CH3COO)2]BPh4 (3), and [Zn2L4(μ-CH3COO)(CH3COO)(EtOH)]BPh4 (4)) and a tetranuclear zinc complex ({[Zn2L2(μ-CH3COO)]2(μ-OH)2}(BPh4)2 (2)) were revealed by X-ray crystallography. Hydrolysis of tris(p-nitrophenyl)phosphate (TNP) by these zinc complexes in an acetonitrile solution containing 5% Tris buffer (pH 8.0) at 30 °C was investigated spectrophotometrically and by 31P NMR. Although zinc complexes 1, 3, and 4 did not show hydrolysis activity, the tetranuclear zinc complex 2, containing μ-hydroxo bridges, was capable of hydrolyzing TNP. This suggests that the hydroxide moiety in the complex may have an important role in the hydrolysis reaction.  相似文献   

17.
The orange-red colored complexes of the type [Fe(LSB)Cl3], 1, have been synthesized in excellent yields by reacting FeCl3·6H2O with LSB in methanol. Here, LSB is (2-(ethylthio)-N-(pyridin-2-ylmethyl)ethanamine), (LSB1) and (2-(benzylthio)-N-(pyridin-2-ylmethyl)ethanamine) (LSB2). Similarly, FeCl3·6H2O reacted with 2-(((2-(ethylthio) ethyl) (pyridin-2-ylmethyl)amino)methyl)phenol (HL1), 2-(((2-(ethylthio)ethyl)(pyridin-2 ylmethyl)amino)methyl)-4-nitrophenol (HL2), 4-chloro-2-(((2-(ethylthio)ethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (HL3), 2-(((2-(benzylthio)ethyl)(pyridin-2-ylmethyl) amino)methyl)phenol (HL4), 2-(((2-(benzylthio)ethyl)(pyridin-2-ylmethyl)amino)methyl) -4-nitrophenol (HL5), and 4-chloro-2-(((2-(benzylthio)ethyl)(pyridin-2-ylmethyl)amino) methyl)phenol (HL6) to give dichloro complexes of the type [Fe(L)Cl2], 2. The solid and solution structure of the complexes, as well as their properties, were probed using X-ray diffraction, spectroscopic and electrochemical methods. The Mössbauer spectral study at 80 K for complexes reveals the existence of (III) oxidation state and high-spin state of the metal center in the complex. Dioxygenase activity of the complexes has been studied and both 1 and 2 have been found to display the intradiol-cleaving pathway. However, no extradiol cleavage products have been isolated.  相似文献   

18.
The reaction of 2-(2-aminophenyl)benzothiazole (Habt) with [Re(CO)5Br] led to the isolation of the rhenium(I) complex fac-[Re(Habt)(CO)3Br] (1). With trans-[ReOCl3(PPh3)2], the ligand Habt decomposed to form the oxofree rhenium(V) complex [Re(itp)2Cl(PPh3)] (2) (itp = 2-amidophenylthiolate). From the reaction of trans-[ReOBr3(PPh3)2] with 2-(2-hydroxyphenyl)benzothiazole (Hhpd) the complex [ReVOBr2(hpd)(PPh3)] (3) was obtained. Complexes 1-3 are stable and lipophilic. 1H NMR and infrared assignments, as well as the X-ray crystal structures, of the complexes are reported.  相似文献   

19.
The interactions of π-arene-Ru(II)-chloroquine complexes with human serum albumin (HSA), apotransferrin and holotransferrin have been studied by circular dichroism (CD) and UV-Visible spectroscopies, together with isothermal titration calorimetry (ITC). The data for [Ru(η6-p-cymene)(CQ)(H2O)Cl]PF6 (1), [Ru(η6-benzene)(CQ)(H2O)Cl]PF6 (2), [Ru(η6-p-cymene)(CQ)(H2O)2][PF6]2 (3), [Ru(η6-p-cymene)(CQ)(en)][PF6]2 (4), [Ru(η6-p-cymene)(η6-CQDP)][BF4]2 (5) (CQ: chloroquine; DP: diphosphate; en: ethylenediamine), in comparison with CQDP and [Ru(η6-p-cymene)(en)Cl][PF6] (6) as controls demonstrate that 1, 2, 3, and 5, which contain exchangeable ligands, bind to HSA and to apotransferrin in a covalent manner. The interaction did not affect the α-helical content in apotransferrin but resulted in a loss of this type of structure in HSA. The binding was reversed in both cases by a decrease in pH and in the case of the Ru-HSA adducts, also by addition of chelating agents. A weaker interaction between complexes 4 and 6 and HSA was measured by ITC but was not detectable spectroscopically. No interactions were observed for complexes 4 and 6 with apotransferrin or for CQDP with either protein. The combined results suggest that the arene-Ru(II)-chloroquine complexes, known to be active against resistant malaria and several lines of cancer cells, also display a good transport behavior that makes them good candidates for drug development.  相似文献   

20.
Five new complexes [Cu2(L1)I2] (1), [Cu(L2)I]2 (2), {[Cu2(L2)I2](CH3CN)3} (3), [Cu2(L3)I2] (4) and {[Cu(L3)I](CH3CN)}2 (5) have been obtained by reacting three structurally related ligands, 2,3-bis(n-propylthiomethyl)quinoxaline (L1), 2,3-bis(tert-butylthiomethyl)quinoxaline (L2) and 2,3-bis[(o-aminophenyl)thiomethyl]quinoxaline (L3) with CuI, respectively, at different temperatures. Single crystal X-ray analyses show that 1, 3, 4 possess 1D chain structures, while 2 and 5 are discrete dinuclear molecules. It is interesting that the reactions of CuI with L1 at room temperature and 0 °C, respectively, only afforded same structure of 1 (1a and 1b), while using L2 (or L3) instead, two different frameworks 2 and 3 (or 4 and 5) have been obtained. The structural changes mainly resulted from the different conformations that L2 or L3 adopted at different temperatures. Our research indicates that terminal groups of ligands take an essential role in the framework formation, and the reaction temperature also has important effect on the construction of such Cu(I) coordination architectures. Furthermore, the influence of hydrogen bonds on the conformation of ligands and the supramolecular structures of these complexes have also been explored. The luminescence properties of complexes 1, 2, and 4 have been studied in solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号