首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A potential tetradentate indolecarboxamide ligand, H4L3 is synthesized and investigated for its coordination abilities towards Ni(II) and Cu(II) ions. Two H4L3 ligands in their tetra-deprotonated form [L3]4−, were found to coordinate two metal centers resulting in the formation of [Ni2(L3)2]4− (5) and [Cu2(L3)2]4− (6) complexes. The crystal structure of 6 displays the formation of a dinuclear structure where two fully deprotonated ligands, [L3]4− hold two copper(II) ions together. Even more interesting is the fact that both deprotonated ligands, [L3]4− coordinate the copper ions in an identical and symmetrical fashion. The Na+ cations present in the complex 6 stitch together the dinuclear units resulting in the formation of a coordination chain polymer. Four sodium ions connect two dinuclear units via interacting with the Oamide groups. Further, Na+ cations were found to coordinate several DMF molecules; some of them are terminal and a few are bridging in nature. The solution state structure (determined by the NMR spectral analysis) of the diamagnetic complex 5 also supported the fact that two deprotonated ligands, coordinate two nickel ions in an identical and symmetrical fashion. Absorption spectral studies reveal that the solid-state square-planar geometry is retained in solution and both complexes do not show any tendency to coordinate potential axial ligands. The variable-temperature magnetic measurements and EPR spectra indicate spin-spin exchange between two copper centers in complex 6. The electrochemical results for both complexes show three irreversible oxidative responses that correspond to the oxidation of first and second metal ion followed by the ligand oxidation, respectively.  相似文献   

2.
Two complexes of the formula [MH3L](ClO4)2 [M = Cu(II) (1), Ni(II) (2)] have been prepared by the reaction of M(ClO4)2 · 6H2O with the ligand (H3L) formed by the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 4-methyl-5-imidazolecarboxaldehyde and structurally and magnetically characterized. The structures of 1 and 2 are isomorphous with each other and with the iron(II) complex of H3L which has been reported previously. The ligand, while potentially heptadentate, forms six coordinate complexes with both metal centers forming three M-Nimine and three M-Nimidazole bonds. The tren central N atom is at a nonbonded distance from M of 3.261 Å for 1 and 3.329 Å for 2. The neutral complex CuHL 3 was prepared by reaction of H3L with Cu(OCH3)2 and the ionic complex Na[NiL] 4 was prepared by deprotonation of 2 with aqueous sodium hydroxide. Magnetic measurements of 1-3 are consistent with the spin-only values expected for S = 1/2 (d9, Cu(II)) and S = 1 (d8, Ni (II)) systems.  相似文献   

3.
The voltammetric behaviours of aspartame in the presence of some metal ions (Cu(II), Ni(II), Zn(II)) were investigated. In the presence of aspartame, copper ions reduced at two stages with quasi-reversible one-electron and, with increasing the aspartame (L) concentration, Cu(II)L(2) complex reduces at one-stage with irreversible two-electron reaction (-0.322 V). Zn(II)-aspartame complex (logbeta=3.70) was recognized by a cathodic peak at -1.320 V. Ni(II)-aspartame complex (logbeta=6.52) is reduced at the more positive potential (-0.87 V) than that of the hydrated Ni(II) ions (-1.088 V). In the case of the reduction of Ni(II) ions, aspartame serves as a catalyst. From electronic spectra data of the complexes, their stoichiometries of 1:2 (metal-ligand) in aqueous medium are determined. The greatness of these logarithmic values is agreement with Irwing-Williams series (NiZn).  相似文献   

4.
New CuII and NiII complexes of potentially tridentate N2O Schiff base ligands 1 and 2 have been synthesised and characterised. [Cu(2)(OH2)]+ possesses a square planar geometry in the solid state whereas [Ni(1)2] possesses a distorted octahedral geometry in which the amine donors of 1 coordinate weakly to the NiII centre. EPR spectroscopy demonstrates that the N2O2 coordination sphere of [Cu(2)(OH2)]+ is retained in CH2Cl2 solution. [Cu(2)(OH2)]+ exhibits a reversible one electron oxidation at E1/2 = 0.54 V versus [Fc]+/[Fc], the product of which has been characterised by UV-Vis absorption and EPR spectroscopies. The spectroscopic signature of the oxidised product is consistent with the formation of a stable phenoxyl radical ligand bound to a CuII centre. [Ni(1)2] possesses a reversible metal-based oxidation process at E1/2 = 0.03 V versus [Fc]+/[Fc] and a further oxidation, attributed to the generation of a phenoxyl radical centre, at  = 0.44 V versus [Fc]+/[Fc]. UV-Vis absorption and EPR spectroscopic studies indicate that the lower potential process is a formal NiIII/II couple. In contrast, the pro-ligands 1H and 2H exhibit chemically irreversible oxidation processes at  = 0.42 and 0.40 V versus Fc+/Fc, respectively, and do not support the formation of stable phenoxyl radical species.  相似文献   

5.
The template reaction between salicylaldehyde S-methyl-isothiosemicarbazone and 2-formylpyridine in presence of nickel(II) or copper(II) salts yields two new coordination compounds with general formula [NiL1]2(1) and [CuL2]2(2) (L1 = the dianionic (N1-salicylidene)(N4-(hydroxy(pyridin-2-yl)methyl) S-methyl-isothiosemicarbazide) ligand and L2 = the doubly deprotonated (N1-salicylidene)(N4-(picolinoyl) S-methyl-isothiosemicarbazide) ligand). In the complex 1, the formed L1 ligand appears as result of an addition reaction of the precursors, while for 2 a redox mechanism is implicated in the formation of L2. Despite the fact that the initial organic precursors are the same, the resulting ligands obtained in the template reaction are different. In 1, the Ni(II) metal ion adopts a square-planar geometry and the [NiL1] units are forming dimerized chains through weak Ni···Ni interactions (3.336 and 3.632 Å). In 2, the Cu(II) metal ions adopt a square-pyramidal geometry and form dinuclear species through weak Cu···O (phenoxo) interactions. The magnetic susceptibility measurements of the complexes reveal the diamagnetic nature of 1 as expected for a square planar Ni(II) complex and a paramagnetic behavior for 2 with weak intra-dimer antiferromagnetic interaction (J/kB = −2.1(1) K).  相似文献   

6.
The study on the binding ability of dehydro-tri- and tetrapeptides has shown that the ,β-double bond has a critical effect on the peptide coordination to metal ions. It may affect the binding of the vicinal amide nitrogens by the electronic effect and stabilize the complex due to steric effects. The (Z) isomer is the most effective in stabilizing of the complexes formed. The presence of large side chain in the dehydroamino acid residue may also be critical for the coordination mode in the metallopeptide systems.  相似文献   

7.
The synthesis, crystal structures, magnetic and spectroscopic properties of zinc(II), nickel(II) and copper(II) dinuclear complexes 2-4 of a novel dinucleating polyoxazoline ligand 1 are reported. X-ray analysis revealed that the three complexes are centrosymmetric dinuclear species with an overall S shape, the bisoxazoline moieties pointing toward the aromatic core of the molecule. Magnetic susceptibility measurements suggest that there is a very weak exchange interaction between the copper or nickel ions in complexes 3 and 4.  相似文献   

8.
The interactions between a new proline-threonine dipeptide ligand with two metallic cations were investigated in aqueous solution. The metallic cations studied were the copper(II) and the nickel(II), which are involved in many biological processes. The combination of potentiometry, UV-visible spectrophotometry, EPR, and mass spectrometry was used to determine the formation constants of the complexes and their structure in solution. The complexation sites were identified using electronic absorption and EPR spectroscopies. Copper complexes were obtained as square planar or square pyramidal mononuclear species, whereas nickel complexes were obtained as dinuclear species with an octahedral geometry.  相似文献   

9.
Complexes of general formula [{CuX}2(YNC10H14O)] (X = Cl; Y = NHMe, NH2 or X = Br; Y = NH2) were synthesised from camphor hydrazone ligands (YNC10H14O) by reaction with the suitable copper(I) halide. Structural analysis by X-rays performed on a red crystal of [{CuCl}2(Me2NNC10H14O)] revealed that the complex is a one-dimensional copper polymer formed by two rather different copper units bridged by chloride. One of the copper units displays a tetrahedral geometry while the other is linear. Although the geometries and neighbourhoods of the two copper units are very different the oxidation state of the metal is the same, i.e. Cu(I) as corroborated by magnetic and electrochemical measurements.The ability of [{CuCl}2(Me2NNC10H14O)] to promote the activation of 4-pentyn-1-ol towards cyclization was studied under homogeneous or heterogeneous experimental conditions. The best results were obtained under homogeneous conditions at 40 °C.  相似文献   

10.
An asymmetric single EO azido bridged dinuclear copper(II) complex, [Cu2(dmterpy)2(μ-1,1-N3)(N3)2] · NO3 · (H2O)21 [dmterpy = 5,5″-dimethyl-2,2′:6′,2″-terpyridine], and a double EO azido bridged dinuclear nickel(II) complex, [Ni2(pbdiim)4(μ-1,1-N3)2] · 2(N3) · 6(H2O) 2 [pbdiim = 2-(2′-pyridyl)benzo[1,2-d:4,5-d′]diimidazole], have been synthesized and characterized structurally and magnetically. Compound 1 consists of a single EO azido bridged CuII dimer in which each CuII ion is five-coordinated in the form of a distorted square-based pyramid. The N(μ−1,1) atom holds on the apical position of one CuII pyramid with an elongated bond length of 2.305 Å and on the basal plane of another distorted CuII pyramid with a bond length of 1.991 Å. The Cu-N(μ−1,1)-Cu angle is 117.4 (2)°. The copper(II) dimer forms a 1 D zig-zag chain via hydrogen bondings between azide ions, water molecules and the nitrate anion. Compound 2 consists of a double EO azido bridged NiII dimer with the Ni-N(μ−1,1)-Ni bond angle of 102.96 (13)°. The coordination geometry of NiII is octahedral. Their magnetic properties have been measured in the range from 300 to 2 K and correlated with the molecular structures. Compound 1 shows weak ferromagnetic interactions within the copper(II) dimer (J = 2.88 cm−1), despite the large EO azide bridge angle (117.4 (2)°). The intramolecular coupling between the NiII (S = 1) ions in compound 2 was found to be ferromagnetic (J = 27.87 cm−1).  相似文献   

11.
The synthesis and characterisation of two dicopper(II) and two dinickel(II) macrocyclic complexes, [CuII2LPr] (10), [CuII2LBu] (11), [NiII2LPr] (12) and [NiII2LBu] (13), are reported. The two new Schiff-base macrocycles (LPr)4− and (LBu)4− are isolated as dimetallic complexes 10-13 by the [2+2] condensation of 5,5-dimethyl-1,9-diformyldipyrromethane (9) and 1,3-diaminopropane or 1,4-diaminobutane, respectively, using Cu2+ or Ni2+ template ions. Single crystal X-ray structure determinations carried out on 10-13 show that each metal atom is in a square planar N4 geometry, being bound to two deprotonated pyrrole nitrogen atoms of one dipyrromethane unit and to the two adjacent imine nitrogen atoms. NMR spectra obtained for the two dinickel(II) complexes 12 and 13 show that in CDCl3 solution they are highly symmetrical and diamagnetic.  相似文献   

12.
Dialdehyde starch obtained by periodate oxidation from potato starch was converted into its disemicarbazone (DSC), dithiosemicarbazone (DTSC), dihydrazone (DHZ) and dioxime (DOX). The Cu(II) complexes of these compounds were prepared and characterized by Raman and EPR spectra, as well as by the measurements of magnetic susceptibility. EPR investigations showed that two types of complexes with different surroundings of copper centres existed in each starch derivative. Besides nitrogen atoms of the CN moiety and sulphur atoms of the CS moiety, also oxygen atoms from starch hydroxyl groups and/or water molecule were proposed as the coordination sites for the central copper ions.  相似文献   

13.
Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)2·6H2O in methanol produced a trinuclear CuII complex, [(CuL1)3(μ3-OH)](ClO4)2·H2O·0.5CH2Cl2 (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary CuII complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central μ3-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal CuII coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = −15.4(2) cm−1.  相似文献   

14.
This article describes the partial hydrolysis of the multidentate ligand 2,4,6-tris(pyrazol-1-yl)-1,3,5-triazine in the presence of copper(II), to give the anionic ligand 2,4-dione-1,3,5-(1H)-triazin-1-amido, which was isolated as the cupric complex catena-[CuL(H2O)Cl]n, where L is the amido ligand. No other hydrolysis products were isolated or identified.The complex defines a zigzag 1D covalent chain, along the b cell axis, through apical copper-oxygen bonds (Cu-N-C-O···Cu bridges).  相似文献   

15.
The crystal and molecular structures of the N-rac-isomer of the nickel(II) complex of 14-membered amide-containing macrocycle [NiL1] · 4H2O (H2L1=5,12-dioxo-1,4,8,11-tetraazacyclotetradecane) have been determined. Two deprotonated amide and two amine donors co-ordinate to the nickel(II) in nearly square planar manner with Ni-Namine bonds longer than Ni-Namide ones (1.930 vs. 1.898 Å). Water molecules do not co-ordinate and form hydrogen bond bridges between macrocyclic units in the crystal lattice. The analysis of 1H NMR data confirmed that the solid-state conformation of the macrocycle in N-rac[NiL1] is retained in aqueous solution though equilibrated with some amount of N-meso isomer. The comparison of the spectroscopic characteristics of the M(II) and M(III) complexes and the redox potentials of M(III/II) couples (M=Ni and Cu) for ML1 with those for ML2(H2L2=5,7-dioxo-1,4,8,11-tetraazacyclotetradecane) revealed a rather small influence of the trans- vs. cis-arrangement of amide donors in co-ordination spheres of the metal ions.  相似文献   

16.
A series of nickel(II) and copper(II) salicylaldiminato complexes containing side arms with either potentially coordinating (OH) or non-coordinating (Cl) functional groups have been prepared and characterized by X-ray crystallography. The Cu(II) complexes are square planar, but the Ni(II) complexes prefer octahedral coordination. Linear absorption spectra depend on the metal and on its coordination geometry, with the octahedral Ni(II) complexes being the most weakly absorbing at 532 nm and the square planar Cu(II) complexes being the most strongly absorbing at 532 nm. The third-order nonlinear optical properties of the complexes have been characterized using degenerate four-wave mixing (DFWM) and Z-scan. Two different Z-scan experimental configurations were used, one of which employs a Gaussian beam in a tightly focused geometry while the other employs a top-hat beam and a more relaxed focus. The observed third-order optical nonlinearity is primarily due to transient thermal (photo-acoustic) effects associated with linear absorption in the samples. The dependence of the third-order nonlinear optical properties on the linear absorption means that the nonlinear optical properties vary substantially between the complexes even though they all contain the same chromophore. The hyperpolarizability of one of the complexes, γ = 1.3 × 10−30 esu, rivals the nonlinearities measured at 532 nm in expanded porphyrin and phthalocyanine complexes.  相似文献   

17.
1:1 adducts of N,N′-bis(benzophenone)-1,2-diiminoethane (bz2en) with copper(I) chloride, bromide and iodide, [Cu(bz2en)2][CuX2] (X = Cl, Br, and I), have been synthesized and the structures of the solid bromide and iodide adducts were determined by X-ray crystallography from single-crystal data. The solid-state structure reveals ionic complexes containing a cation of copper(I) ion coordinated to four nitrogen atoms of two bz2en molecules (distorted tetrahedron) and a linear dibromocuprate(I) and a di-μ-iodo-diiododicuprate(I) anion for the bromo and iodo adducts, respectively. The bromo adduct structure contains CH?Br intermolecular hydrogen bonds. The complexes are very stable towards atmospheric oxygen in the solid state. The spectral properties of the above complexes are also discussed.  相似文献   

18.
[Cu(NCCH3)6][B(C6F5)4]2 and [Cu(NCCH3)6][B{C6H3(CF3)2}4]2 are immobilized on poly(4-vinylpyridine). Both resulting materials (Cu(II) complexes immobilized on polymer) are applicable as catalysts for the cyclopropanation of olefins at room temperature. The immobilized Cu(II) compounds are quite stable and recyclable for several catalytic runs, however with some decrease in the catalytic activity.  相似文献   

19.
The 1:1 condensation of 1,2-diaminopropane and 1-phenylbutane-1,3-dione at high dilution gives a mixture of two positional isomers of terdentate mono-condensed Schiff bases 6-amino-3-methyl-1-phenyl-4-aza-2-hepten-1-one (HAMPAH) and 6-amino-3,5-dimethyl-1-phenyl-4-aza-2-hexen-1-one (HADPAH). The mixture of the terdentate ligands has been used for further condensation with pyridine-2-carboxaldehyde or 2-acetylpyridine to obtain the unsymmetrical tetradentate Schiff base ligands. The tetradentate Schiff bases are then allowed to react with the methanol solution of copper(II) and nickel(II) perchlorate separately. The X-ray diffraction confirms the structures of two of the complexes and shows that the condensation site of the diamine with 1-phenylbutane-1,3-dione is the same.  相似文献   

20.
The study on the binding ability of dehydro-tri- and tetrapeptides has shown that the α,β-double bond has a critical effect on the peptide coordination to metal ions. It may affect the binding of the vicinal amide nitrogens by the electronic effect and stabilize the complex due to steric effects. The (Z) isomer is the most effective in stabilizing of the complexes formed. The presence of large side chain in the dehydroamino acid residue may also be critical for the coordination mode in the metallopeptide systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号