首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of a N3O-donor chelate ligand (mpppa = N-methyl-N-((6-pivaloylamido-2-pyridyl)methyl)-N-(2-pyridylethyl)amine; bpppa = N-benzyl-N-((6-pivaloylamido-2-pyridyl)methyl)-N-(2-pyridylmethyl)amine) with equimolar amounts of Mn(ClO4)2 · 6H2O and Me4NX (X = Cl, Br, I) in methanol resulted in the production of a series of mononuclear Mn(II) halide complexes of the formula [(L)Mn-X(CH3OH)]ClO4 (L = mpppa or bpppa). X-ray crystallographic studies of [(mpppa)Mn-Cl(CH3OH)]ClO4 · CH3OH (2 · CH3OH), [(mpppa)Mn-Br(CH3OH)]ClO4 · CH3OH (4 · CH3OH), [(mpppa)Mn-I(CH3OH)]ClO4 · CH3OH (6 · CH3OH), and [(bpppa)Mn-I(CH3OH)]ClO4 · O2(CH2CH3)2 (7 · O(CH2CH3)2) revealed for each a mononuclear Mn(II) center having tetradentate coordination of the chelate ligand, one coordinated halide anion, and one molecule of coordinated methanol. An increase in the Mn-X distance through the halide series (Cl, Br, I) correlates linearly with the increase in the radius of the anion. The magnetic moment of each halide complex, measured via Evans method in methanol, is consistent with the presence of a high-spin distorted octahedral Mn(II) center. The EPR features of the halide complexes in methanol do not change as a function of the nature of the halide coordinated to the Mn(II) center.  相似文献   

2.
Four new ligands, N-(2-methoxyethyl)-N-(pyridin-2-ylmethyl)amine (mepma), N-(3-methoxypropyl)-N,N-bis(pyridin-2-ylmethyl)amine (mpbpa), N-(2-methoxyethyl)-N,N-bis(pyridin-2-ylmethyl)amine (mebpa) and 2-{[(2-methoxyethyl)(pyridin-2-ylmethyl)amino]methyl} phenol (Hmepap), and four of their complexes with manganese(II) halides, [MnCl2(mepma)2] (1), [MnCl(μ-Cl)(mpbpa)]2 (2), [MnBr2(mebpa)] (3) and [MnBr2(MeOH)(Hmepap)] (4) have been synthesized and characterized. Single-crystal Xray studies revealed that in all four complexes, the Mn(II) coordination spheres are distorted octahedral. In 1 and 2, the ether oxygen atom does not coordinate to the Mn(II) centre, but in 3 and 4 it does. The mononuclear molecules of 1 are linked by double hydrogen bonds to form linear chains. Temperature dependent magnetic susceptibility measurements revealed that the Mn(II) ions in 1 interact antiferromagnetically, with J=−1.06 cm−1. Compound 2 crystallizes as a double chloride-bridged dimer in which there is a weak ferromagnetic interaction (J=0.55 cm−1) between the Mn(II) pair. The solution EPR spectrum of 2 suggests that in methanol compound 2 decomposes to a great extent to mononuclear species. In compound 3, mebpa acts as a tetradentate ligand with all of its nitrogen and oxygen atoms coordinated to the Mn(II) ion. Unexpectedly, in complex 4, the phenolic oxygen of Hmepap remains protonated and does not coordinate to the metal ion. Instead the oxygen from a methanol molecule coordinates the manganese centre. Hydrogen bonds between one of the two bromide ions, and the methanol and phenol hydroxyl groups, respectively, connect the mononuclear molecules of 4 into chains. No magnetic interactions were observed between the Mn(II) ions in 3 or 4.  相似文献   

3.
New complexes have been synthesized of scorpionate ligands with cyano substituents in the 4-positions of the pyrazoles and tert-butyl substituents in the 3-positions of the pyrazoles. Reaction of Co2+, Mn2+, and Ni(cyclam)2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) with Tpt-Bu,4CN in a 1:2 ratio produced new octahedral metal complexes of the form (Tpt-Bu,4CN)2ML4 (L= (H2O)4, (H2O)2(MeOH)2, or cyclam). Unlike the sandwich complexes previously isolated with TpPh,4CN, the crystal structures showed none of the pyrazole nitrogen atoms coordinated to the metal. Rather, the metal is coordinated to one CN nitrogen atom from each ligand, with two Tp anions coordinated trans to each other around the metal center. This leaves the Tp pyrazole nitrogen atoms open for another metal to coordinate, which could to lead to heterometallic complexes, new coordination polymers, as well as the framework for supramolecular complexes.  相似文献   

4.
The syntheses, structures and magnetic properties of five new manganese (III) cyclam complexes, trans-[Mn(cyclam)(OH2)2](CF3SO3)3 · H2O, trans-[Mn(cyclam)I2]I, trans-[Mn(cyclam)(ONO)2]ClO4, trans-[Mn(cyclam)(OClO3)2]ClO4 and trans-[Mn(cyclam)(CH3COO)(CH3COOH)](ClO4)2, are reported. Cyclam is the tetradentate amine ligand 1,4,8,11-tetraazacyclotetradecane. The complexes all exhibit pronounced tetragonal elongation of the coordination octahedron with the four cyclam nitrogens occupying the four equatorial positions. The magnetic properties are consistent with the formulation of the complexes as high-spin d4 systems. trans-[Mn(cyclam)(OH2)2](CF3SO3)3 · H2O is shown to be a convenient starting material for the syntheses of trans cyclam complexes. [Mn(cyclam)(CH3COO)(CH3COOH)](ClO4)2 exhibits extremely short intermolecular hydrogen bonds resulting in a pseudo-chain structure. The tilt of the axial ligands with respect to the equatorial plane containing the manganese and the cyclam nitrogen atoms is discussed.  相似文献   

5.
We report here the crystal and molecular structures of three compounds [FeL2] [Ni(mnt)2] (1), [FeL2]2 [Ni(mnt)2]3·2H2O (2) and [FeL2] [Cu(mnt)2]·2CH3CN (3) where L = 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine and mnt = maleonitriledithiolate, and their detailed spectroscopic and magnetic properties using variable temperature Mössbauer, EPR, susceptibility studies, along with room temperature electron spectroscopy for chemical analysis (ESCA) studies. The observed temperature dependant high spin/low spin (HS/LS) ratios of [FeL2]2+ cations in these lattices, exhibiting ‘reverse spin cross-over’ measured unequivocally by Mössbauer, have been interpreted as resulting from differing amount of ‘void space’ in the lattice, a measure of the ease of lattice dynamics originating from ligand L. Differential scanning calorimetric data points this HS/LS transition to order-disorder type of second order phase transitions. While trying to test this lattice dynamics controlled property of [FeL2]2+ cations an unusual behavior of cocrystallization of two planar complex anions of the same type in two different oxidation states, viz. [Ni(mnt)2]2− and [Ni(mnt)2], was observed in [FeL2]2 [Ni(mnt2)]3, supported by crystallography, ESCA chemical shifts of Ni 2p3/2 and EPR. The susceptibility data in combination with ESCA chemical shifts of S 2p3/2 and Ni 2p3/2 on all the compounds reveal the importance of charge transfer between the two counter ions.  相似文献   

6.
Nickel(II) complexes bearing a κ3SNS pincer ligand, 2,5-bis(benzylaminothiocarbonyl)pyrrolyl (L1) and a κ3SCS-pincer ligand, 2,6-bis(benzylaminothiocarbonyl)phenyl (L2), were synthesized, and their structures and electrochemical properties were elucidated. The crystal structures of [Ni(SNS)Br] (2) and [Ni(SCS)Br] (5) were determined by X-ray crystallography. The electrochemical and crystallographic data obtained from the complexes revealed that the κ3SCS ligand has a stronger electron-donating ability than the κ3SNS ligand.  相似文献   

7.
《Inorganica chimica acta》2002,328(1):111-122
The electrochemical oxidation of anodic metal (nickel, copper, zinc and cadmium) in acetonitrile solutions containing N,N′-bis[(4-methylphenyl)sulfonyl]ethylenediamine H2L and an additional nitrogen coligand, such as 1,10-phenanthroline, yielded mixed complexes of general formula [ML(phen)2] (M=Ni, Cu, Zn and Cd). The compounds have been characterized by microanalysis, IR and UV-Vis (Ni, Cu complexes) spectroscopy, FAB mass spectrometry, 1H NMR spectroscopic studies (Zn, Cd complexes) and EPR spectroscopy (Cu and Ni complexes). All compounds have also been characterized by single crystal X-ray diffraction. The molecular structures of these compounds consist of individual monomeric molecules in which the metal atom is in an [MN6] distorted octahedral environment.  相似文献   

8.
The chelating behavior of 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) (H2dapa) towards manganese(II), cadmium(II) and oxovanadium(IV) ions has been studied by elemental analyses, conductance measurements, magnetic properties and spectral (IR, 1H NMR, UV-Vis and EPR) studies. The IR spectral studies suggest the pentadentate nature of the ligand with pyridine nitrogen, two azomethine nitrogens and two carbonyl oxygen atoms as the ligating sites. Six coordinate structure for [VO(H2dapa)]SO4 · H2O and seven coordinate structures for [Mn(H2dapa)(Cl)(H2O)]Cl · 2H2O and [Cd(H2dapa)Cl2] · H2O complexes have been proposed. Pentagonal bipyramidal geometry for [Mn(H2dapa)(Cl)(H2O)]Cl · 2H2O and [Cd(H2dapa)(Cl2)] · H2O complexes was confirmed by single crystal analysis. The X-band EPR spectra of the oxovanadium(IV) and manganese(II) complexes in the polycrystalline state at room (300 K) and also at liquid nitrogen temperature (77 K) were recorded and their salient features are reported.  相似文献   

9.
The solid-state structures for two complexes, 7 and 8, are reported. Complex 7 was prepared by treating Ru(OAc)2(Binap) with two equivalents of HBArF in toluene solution, and represents only the second solid-state structure of a Binap complex, in which the Binap is a 6e donor to the Ru(II). The bonding is maintained in solution as shown via 13C NMR studies. The unusual cation 8, as an salt, arises from prolonged reaction of Ru(OAc)2(Binap) with wet HBF4 (and, subsequently, added HSbF6) in 1,2-dichloroethane.  相似文献   

10.
The mixed-ligand complexes of manganese(II) of formula [Mn(pyim)2(C5O5)] (1) and [Mn(pyim)(H2O)(C5O5)]n · 2.5nH2O (2) [pyim = 2-(2-pyridyl)imidazole and  = croconate (dianion of 4,5-dihydroxy-4-cyclopentene-1,2,3-trione)] have been prepared and their structures determined by X-ray crystallographic methods. Compound 1 is a tris-chelated mononuclear complex where the manganese atom is six-coordinate: four nitrogen atoms from two pyim molecules and two oxygen atoms from a croconate group build a somewhat distorted octahedral surrounding around the metal atom. The resulting neutral mononuclear units are linked to each other through double bridges which are constituted by the imidazole N-H and the metal-coordinated croconate-oxygen atom, the metal-metal separation through this supramolecular pathway being 7.6856(11) Å. Compound 2 is a croconato-bridged manganese(II) uniform chain with an intrachain metal-metal distance of 7.5118(9) Å. A bidentate pyim group, a water molecule and four oxygen atoms from two bis-bidentate croconate ligands build an irregular seven-coordination polyhedron around each manganese atom in 2. The investigation of the magnetic properties of 2 in the temperature range 1.9-295 K has shown the occurrence of a weak antiferromagnetic interaction [J = −0.066 cm−1 with the Hamiltonian defined as H = −i Si · Si+1] through the bis-bidentate croconate. The ability of the bis-chelating croconate to mediante magnetic interactions between paramagnetic first-row transition metal ions is discussed and compared to that of the related oxalate ligand.  相似文献   

11.
The phenol-based compartmental ligand Hpy2ald contains a tridentate amino arm and a weak donor aldehyde group at the 2 and at the 6 positions of the phenol ring, respectively. This ligand reacts with cobalt(II) perchlorate, cobalt(II) tetrafluoroborate and manganese(II) perchlorate, yielding dinuclear complexes, where two metal ions are doubly bridged by two deprotonated cresolate moieties. The coordination environment around the metal ions is then completed to a very distorted octahedron by three nitrogen donor atoms from the pendant amino arm and the oxygen atom of the aldehyde group. The crystal structures of the complexes, their spectroscopic and magnetic properties are reported.  相似文献   

12.
Two 1D complexes [Mn(4- methylpyrazole)3(H2O)(tp)]n (2) and [Mn(4-methylpyrazole)4(tp)]n (3) (tp = terephthalate) were synthesized and characterized by means of X-ray analysis and magnetic studies. The molecular structure of 2 reveals that Mn(II) centers with asymmetric coordination surroundings are bridged by crystallographically different tp ligands, forming a 1D chain. The 1D coordination chains are interconnected by hydrogen bonds between free carboxylate oxygen atoms in a chain and hydrogens of pyrazole nitrogen atoms in neighboring chains, leading to a 3D framework. Compound 3 also exhibits a 1D coordination chain which is hydrogen-bonded to adjacent chains, providing a 2D sheet structure. Interestingly, the structures include intra- and interchain hydrogen bonds contributed from N-H groups of the capping 4-methylpyrazole ligands. Magnetic measurements show weak antiferromagnetic interactions with exchange coupling parameters of J = −0.018 cm−1 for 2 and J = −0.062 cm−1 for 3 through the extended tp ligand on the basis of an infinite chain model (H = −JSi · Si + 1).  相似文献   

13.
The reactions of RuCl2[P(C6H5)3]3, RuCl2(tmeda)2, and RuCl2(1,5-COD)(tmeda) with polybasic amines such as pyrazole have been studied. From the phosphine complex, a binuclear complex has been isolated in which one pyrazole has been incorporated, while reactions of the latter two with excess pyrazole lead to the replacement of a tmeda ligand by two pyrazoles.  相似文献   

14.
New direct syntheses of [Pt(trpy)(NCCH3)](CF3SO3)22 (where trpy = 2,2′:6′,2′′-terpyridine) and [Pt(tBu3-trpy)(NCCH3)](CF3SO3)23 (where tBu3-trpy = 4,4′,4″-tri-tert-butyl-2,2′:6′,2″-terpyridine) via the displacement of acetonitrile from [Pt(NCCH3)4](CF3SO3)2 have been developed. The synthetic utility of 2 was investigated in reactions with triphenylphosphine (PPh3), 2,6-dimethylphenyl isocyanide (CN-Xyl), 2,5-dimethyl-2,5-diisocyanohexane (TM4), and tert-butyl isocyanide (CN-tBu). Whereas the expected substitution products were observed for reactions with PPh3, CN-Xyl, and CN-tBu, dealkylation of TM4 occurred to afford [Pt(trpy)(CN)](CF3SO3) 6. The structures of [Pt(trpy)L]2+ dications show little intermolecular interactions in the solid state, with the exception of the tBu3-trpy complex 3 which exists as head-to-tail dimers with a Pt-Pt distance of 3.29 Å. The cyano product 6 was found to stack in infinite chains of cations with a Pt-Pt distance of 3.45 Å.  相似文献   

15.
A new ligand, 1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)-N-(thiophen-3-ylmethyl)methanamine, ThDPA, was synthesized, as a new example of an N3S donor. Cu(II) complexes of this ligand were isolated. When Cu(NO3)2 was used as the metal source, a homobinuclear complex with the formula [CuThDPA(NO3)2]2·H2O, 1, with two different types of nitro coordination was isolated. 1 crystallizes in the monoclinic P21/n space group with a = 15.193, b = 8.181, c = 32.827 Å, β = 103.3° and V = 3971.9 Å3. In the case of CuSO4 as the source of copper(II), uncommon sulfato-bridged structures were isolated. The homobinuclear complex crystallized in two different lattices, depending on the solvent evaporation rate. Compound 2, with the formula [CuThDPA(SO4)]2·3H2O, crystallizes with 3 water molecules per binuclear structure in the monoclinic space group P21/c with a = 10.143, b = 17.013, c = 11.793 Å, β = 97.18° and V = 2019.1 Å3, and 3, [CuThDPA(SO4)]2·4H2O, crystallizes with 4 water molecules per binuclear structure in the triclinic space group, with a = 9.2906, b = 10.7297, c = 12.7236 Å, α = 79.66, β = 72.18, γ = 67.1° and V = 1109.7 Å3.  相似文献   

16.
Three new palladium(II) complexes incorporating the bispyrazolylmethane core have been synthesised and fully characterised in the solution and solid state. Single crystal X-ray studies revealed almost complete blocking of the upper face of the palladium ion by the substituents at the 3- and 5-positions of the pyrazole rings. Preliminary screening of the complexes for palladium(II) mediated catalysis revealed good catalytic activity for the Heck coupling reaction.  相似文献   

17.
Three novel oxamido-bridged heterobinuclear copper(II)-nickel(II) complexes derived from macrocylic oxamido compound with diamines and tetraazacyclam as blocking ligands were synthesized and characterized by IR, ESR and electronic spectra. Their formula is [Cu(L)Ni(en)2](ClO4)2·0.5C2H5OH·H2O (1), [Cu(L)Ni(tmd)2](ClO4)2·4H2O (2) and [Cu(L)Ni(rac-cth)](ClO4)2·CH3OH (3), where L=1,4,8,11-tetraazacyclotradecanne-2,3-dione, en=1,2-diaminoethande, tmd=1,3-diaminopropane and rac-cth is rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The crystal structures of the three complexes have been determined. The structures consist of binuclear units in which the copper(II) ion is in a square-planar environment and linked to the nickel(II) ion via the exo-cis oxygen atoms of the oxamido macrocyclic ligand, with Cu?Ni separations of 5.311 (1), 5.420 (2) and 5.307 Å (3), respectively. The temperature dependence of the magnetic susceptibility for 1, 2 and 3 was analyzed by means of the Hamiltonian ?=−2J?Ni?Cu, leading to J=−52.8, −45.7 and −56.9 cm−1 for 1, 2 and 3, respectively.  相似文献   

18.
Diffusion NMR investigations were carried out in CD2Cl2 for a series of neutral (1-7) and cationic (8-10) square planar palladium complexes. Diffusion data were elaborated through a modified Stokes-Einstein equation that takes into account the size and shape of molecules. The hydrodynamic volume at infinite dilution of all complexes was found to be similar to the crystallographic volume and always much larger than the van der Waals volume. The self-aggregation tendency of [Pd(N,C)(N,N)][PF6] ionic complexes [(N,C) = (C6H4-(Ph)C(O)-CN-Et); 8, (N,N) = 2,2′-bipirydine; 9, (N,N) = (2,6-(iPr)2-C6H3)NC(Me)-C(Me)N(2,6-(iPr)2-C6H3); 10, (N,N) = (2,6-(iPr)2-C6H3)NC(R′)-C(R′)N(2,6-(iPr)2-C6H3), R′2 = naphthalene-1,8-diyl] was investigated by performing 1H and 19F diffusion experiments as a function of the concentration. Clear evidence for the formation of ion triples containing two cationic units was obtained for 8, most likely due to the establishment of a weak Pd?O interaction. The tendency to form ion triples was much reduced in 9 and 10, having an increased steric hindrance in the apical positions. While 9 showed the usual tendency to afford a mixture of free ions and ion pairs, solvated ions were the predominant species in the case of 10 even at high concentration values (approaching 100 mM).  相似文献   

19.
Dinuclear manganese(II) complexes [Mn2(bomp)(PhCO2)2]BPh4 (1), [Mn2(bomp)(MeCO2)2]BPh4 (2), and [Mn2(bomp)(PhCO2)2]PF6 (3) were synthesized with a dinucleating ligand 2,6-bis[bis(2-methoxyethyl)aminomethyl]-4-methylphenol [H(bomp)]. Dinuclear zinc complex [Zn2(bomp)(PhCO2)2]PF6 (4) was also synthesized for the purpose of comparison. X-ray analysis revealed that the complex 1·CHCl3 contains two manganese ions bridged by the phenolic oxygen and two benzoate groups, forming a μ-phenoxo-bis(μ-benzoato)dimanganese(II) core. Magnetic susceptibility measurements of 1–3 over the temperature range 1.8–300 K indicated antiferromagnetic interaction (J=−4 to −6 cm−1). Cyclic voltammograms of 3 showed a quasi-reversible oxidation process at +0.9 V versus a saturated sodium chloride calomel reference electrode, assigned to MnIIMnII/MnIIMnIII.  相似文献   

20.
The ligand bis(1-methylimidazol-2-yl)ketone (bik) (1) was applied in the synthesis of mononuclear manganese(II) complexes. The complexes [Mn(bik)2Cl2] (2), [Mn(bik)2(OH2)Br]Br × H2O (3b) and [Mn(bik)3](ClO4) (4) were characterised by X-ray crystallography, ESR and UV-Vis methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号