首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
[VIVO(acac)2] reacts with an equimolar amount of benzoyl hydrazone of 2-hydroxyacetophenone (H2L1) or 5-chloro-2-hydroxyacetophenone (H2L2) in the presence of excess pyridine (py) in methanol to produce the quaternary [VVO(L1)(OCH3)(py)] (1) and [VVO(L2)(OCH3)(py)] (2) complexes, respectively, while under similar condition, the benzoyl hydrazones of 2-hydroxy-5-methylacetophenone (H2L3) and 2-hydroxy-5-methoxyacetophenone (H2L4) afforded only the methoxy bridged dimeric [VVO(L3/L4)(OCH3)]2 complexes. The X-ray structural analysis of 1 and 2 indicates that the geometry around the metal is distorted octahedral where the three equatorial positions are occupied by the phenolate-O, enolate-O and the imine-N of the fully deprotonated hydrazone ligand in its enolic form and the fourth one by a methoxide-O atom. An oxo-O and a pyridine-N atom occupy two axial positions. Quaternary complexes exhibit one quasi-reversible one-electron reduction peak near 0.25 V versus SCE in CH2Cl2 and they decompose appreciably to the corresponding methoxy bridged dimeric complex in CDCl3 solution as indicated by their 1H NMR spectra. These quaternary VO3+ complexes are converted to the corresponding -complexes simply on refluxing them in acetone and to the -complexes on reaction with KOH in methanol. An equimolar amount of 8-hydroxyquinoline (Hhq) converts these quaternary complexes to the ternary [VVO(L)(hq)] complexes in CHCl3.  相似文献   

2.
In the title family, the ONO donor ligands are the acetylhydrazones of salicylaldehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2′-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [VIVO(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [VVO(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of VIV → VV) in the synthesis of pentavalent complexes (5) and (6). [VIVO(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [VVO(L)(hq)] complexes are diamagnetic. The X-ray structure of [VVO(L2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by ∼0.07 Å and is identical with V-O (carboxylate) bond. 1H NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)-(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near −0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+E1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E1/2 increases in the order: (L2)2− < (L1)2−.  相似文献   

3.
Four hydrazone ligands: 2-benzoylpyridine benzoyl hydrazone (HBPB), di-2-pyridyl ketone nicotinoyl hydrazone (HDKN), quinoline-2-carbaldehyde benzoyl hydrazone (HQCB), and quinoline-2-carbaldehyde nicotinoyl hydrazone (HQCN) and four of their complexes with vanadyl salts have been synthesized and characterized. Single crystals of HBPB and complexes [VO(BPB)(μ2-O)]2 (1) and [VO(DKN)(μ2-O)]2·½H2O (2) were isolated and characterized by X-ray crystallography. Each of the complexes exhibits a binuclear structure where two vanadium(V) atoms are bridged by two oxygen atoms to form distorted octahedral structures within cis-N2O4 donor sets. In most complexes, the uninegative anions function as tridentate ligands, coordinating through the pyridyl- and azomethine-nitrogen atoms and enolic oxygen whereas in complex [VO(HQCN)(SO4)]SO4·4H2O (4) the ligand is coordinated in the keto form. Complexes [VO(QCB)(OMe)]·1.5H2O (3) and 4 are found to be EPR active and showed well-resolved axial anisotropy with two sets of eight line pattern.  相似文献   

4.
Oxovanadium(IV) complexes [VO(L)(B)] (1-3), where H2L is a Schiff base ligand 2-(2-hydroxybenzylideneamino)phenol and B is 1,10-phenanthroline (phen for 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq for 2) or dipyrido[3,2-a:2′,3′-c]phenazine (dppz for 3), have been prepared, characterized and their DNA binding property and photo-induced DNA cleavage activity studied. Complex 3 which is structurally characterized by X-ray crystallography shows the presence of an oxovanadium(IV) moiety in a six coordinate VO3N3 coordination geometry. The complexes show a d-d band within 800-850 nm in DMF. The complexes display an oxidative response near 0.7 V versus SCE for V(V)-V(IV) and a reductive response within −1.1 to −1.3 V due to V(IV)-V(III) couple in DMF-0.1 M TBAP. The complexes are avid binders to calf thymus DNA giving binding constant values of 4.2 × 104 to 1.2 × 105 M−1. The complexes do not show any “chemical nuclease” activity in dark. The dpq and dppz complexes are photocleavers of plasmid DNA in UV-A light of 365 nm via 1O2 pathway and in near-IR light (752.5 to 799.3 nm IR optics) by HO pathway. Complex 3 exhibits significant photocytotoxicity in visible light in HeLa cells giving IC50 value of 13 μM, while it is less toxic in dark (IC50 = 97 μM).  相似文献   

5.
The 1:1 condensation of 1,2-diaminopropane and 1-phenylbutane-1,3-dione at high dilution gives a mixture of two positional isomers of terdentate mono-condensed Schiff bases 6-amino-3-methyl-1-phenyl-4-aza-2-hepten-1-one (HAMPAH) and 6-amino-3,5-dimethyl-1-phenyl-4-aza-2-hexen-1-one (HADPAH). The mixture of the terdentate ligands has been used for further condensation with pyridine-2-carboxaldehyde or 2-acetylpyridine to obtain the unsymmetrical tetradentate Schiff base ligands. The tetradentate Schiff bases are then allowed to react with the methanol solution of copper(II) and nickel(II) perchlorate separately. The X-ray diffraction confirms the structures of two of the complexes and shows that the condensation site of the diamine with 1-phenylbutane-1,3-dione is the same.  相似文献   

6.
A chiral N,N-ligand based on glucose is able to recognise selectively one enantioface of a prochiral olefin in a trigonal Pt environment. NMR and X-ray studies have been carried out aiming to disclose the factors, which govern this unexpected result. The selectivity originates from the ability of the ligand to create a chiral pocket of C(2) symmetry, which is retained in both solution and solid state.  相似文献   

7.
A series of organotin (IV) compounds of the type [R3SnL]2, R is Me (1), Bu (2), [R2SnL]2, R is Ph (3), Me (4), Bu (5), L is pyruvic acid thiophene-2-carboxylic hydrazone, and R2SnL, R is Me (6), Bu (7), Ph (8), L is salicylaldehyde thiophene-2-carboxylic hydrazone have been synthesized in 1:1 molar ratio. All compounds were characterized by elemental analysis, IR, 1H NMR, 13C NMR and 119Sn NMR spectra. The crystal structure of compounds 1, 3, 4, 8 have been determined by X-ray single crystal diffraction analyses, study found that the compounds 1 and 3 are rendered one-dimensional chain structure and the tin atoms are five-coordinated in a distorted trigonal-bipyramidal geometry. The compound 4 has a dimeric structure and the central tin atom is rendered seven-coordinate in a distorted pentagonal-bipyramid configuration. While the compound 8 is a monomer in which the tin atom adopts five-coordinated in distorted trigonal-bipyramidal geometry.  相似文献   

8.
Bis(diphenylphosphino)ethane (dppe) complexes of the type ReOCl(dppe)(O-O), where O-O = catecholate or tetrachlorocatecholate dianion, were prepared by reacting ReOCl3(dppe) with the catechol ligand in the presence of NEt3. X-ray diffraction on the tetrachlorocatecholate compound showed that the molecule adopts a distorted octahedral structure, in which the dppe ligand and the bidentate catecholate lie in the equatorial plane, perpendicular to the ORe-Cl unit. In contrast, for ReOCl(PPh3)2(O-O), the position trans to the ReO bond is occupied by a catecholate oxygen, whereas the two PPh3 ligands are trans to one another in the equatorial plane. The UV-Vis absorption spectrum of ReO(OMe)(dppe)(oxalate) is similar to those of ReO(OR)X2(dppe) compounds, showing two weak bands for the spin-allowed d-d transitions from the filled interaxial d orbital in the xy plane into the inequivalent metal dxz and dyz orbitals, respectively. For the catecholate complexes, the spectra are dominated by charge-transfer transitions from the HOMO π orbital of the catecholate ligand into the dxz and dyz orbitals. Both the singlet-singlet and the singlet-triplet transitions are generally observed. No information could be obtained on the weaker d-d transitions for the catecholate compounds.  相似文献   

9.
Five dissymmetric tridentate Schiff base ligands, containing a mixed donor set of ONN and ONO were prepared by the reaction of benzhydrazide with the appropriate salicylaldehyde and pyridine-2-carbaldehyde and characterized by FT-IR, 1H and 13C NMR. The complexes of these ligands were synthesized by treating an ethanolic solution of the appropriate ligand and one equivalent Et3N with an equimolar amount of MnCl2 · 4H2O or alternatively by a more direct route in which an ethanolic solution of benzhydrazide was added to ethanolic solution of appropriate salicylaldehyde and MnCl2 · 4H2O solution to yield [MnCl(L1)(H2O)2], [Mn(L2)2(H2O)2], [MnCl(L3)], [MnCl(L4)] and [MnCl2(H2O)(L5)]. The hydrazone Schiff base ligands and their manganese complexes including HL1-4 and L5 (HL1 = benzoic acid (2-hydroxy-3-methoxy-benzylidene)-hydrazide, HL2 = benzoic acid (2,3-dihydroxy-benzylidene)-hydrazide, HL3 = benzoic acid (2-hydroxy-benzylidene)-hydrazide, HL4 = benzoic acid (5-bromo-2-hydroxy-benzylidene)-hydrazide, L5 = benzoic acid pyridine-2-yl methylene-hydrazide) were characterized on the basis of their FT-IR, 1H and 13C NMR, and molar conductivity. The crystal structures of HL1 and [MnCl2(H2O)L5] have been determined. The results suggest that the Schiff bases HL1, HL2, HL3, and HL4 coordinate as univalent anions with their tridentate O,N,O donors derived from the carbonyl and phenolic oxygen and azomethine nitrogen. L5 is a neutral tridentate Schiff base with N,N,O donors. ESI-MS for the complexes Mn-L2,3,5 provided evidence for the presence of multinuclear complexes in solution. Catalytic ability of Mn-L1-5 complexes were examined and found that highly selective epoxidation (>95%) of cyclohexene was performed by iodosylbenzene in the presence of these complexes and imidazole in acetonitrile.  相似文献   

10.
The acyclic Schiff-base ligands (2-(OH)-5-(R3)C6H2-1,3-(HCNC(R1)(R2)CO2H), derived from the dialdehyde 2-hydroxy-5-R-1,3-benzenedicarboxaldehyde (R = Me or t-Bu) and two equivalents of the amino acids glycine, 2,2-diphenylglycine or phenylalanine, have been reacted with the metal acetates M(OAc)2 (M = Cu, Zn) in the presence of triethylamine, affording the complexes [HNEt3][M2(CH3CO2)2(2-(O)-5-(t-Bu)C6H2-1,3-(HCNC(R1)(R2)CO2)2] (M = Cu, R1 = R2 = C6H5, R3 = Me (1); M = Zn, R1 = R2 = H, R3 = t-Bu (2); M = Zn, R1 = R2 = C6H5, R3 = t-Bu (3); M = Zn, R1 = H, R2 = CH2C6H5, R3 = t-Bu (4)) in good yields. The crystal structures of 1·MeCN, 2·, 3·2MeOH, and 4·3MeOH have been determined.  相似文献   

11.
The synthesis, crystal structures and magnetic properties of two different copper(II) complexes of formula [Cu(L1)(dca)]n · nClO4 (1) and [Cu(L2)]2(dca)(ClO4) (2) [L1 = N,N-dimethylethylene-N′-(pyridine-2-carbaldiiminato), HL2 = N,N-dimethylethylene-N′-salicylaldiiminato, dca = dicyanamide anion] are described. Spectroscopic and electrochemical properties have also been discussed. A one-dimensional chain structure with single, symmetrical, μ1,5-dca bridges is found in compound 1. The copper atom in 1 has a square pyramidal geometry. A tridentate Schiff base ligand, having NNN donor sites, and one nitrogen atom from dca occupy the basal plane. N(18) of a neighbouring unit occupies the apical site. The Schiff base used in compound 2 is a tridentate anion with NNO donor sites, which changes the structure in a dinuclear unit of copper atoms bridged by single end-to-end dicyanamide ion. The environment around copper in 2 is square planar. Magnetic susceptibility measurements for 1 and 2 reveal the occurrence of weak antiferromagnetic interaction through the dca ligand.  相似文献   

12.
The first structurally characterised oxomolybdenum(V) complexes with thienyl carboxylate ligands were prepared by the reaction of [Mo2O3(C5H7O2)4] or (NH4)2[MoOCl5] with the corresponding acid (2-thiophenecarboxylic, 5-methyl-2-thiophenecarboxylic or 3-(3-thienyl)acrylic acid). Complexes [Mo2O3(μ-OC2H5)(μ-O2CR)(C5H7O2)2](R = -C4H3S (1), -C4H2S(CH3) (2) or -CHCHC4H3S (3)) were obtained upon substitution of two acetylacetonate ligands from [Mo2O3(C5H7O2)4] with RCOO in dry ethanol. Reactions of (NH4)2[MoOCl5] with the corresponding thienyl carboxylic acid in the presence of γ-picoline (C6H7N) yielded complexes (C6H7NH)[Mo2O4(μ-O2CR)Cl2(C6H7N)2] (R = -C4H3S (4), -C4H2S(CH3) (5) or -CHCHC4H3S (6)). All of the six new complexes were characterised as dinuclear. The molecular structures of 1, 3, 4·0.5CH3CN and 5 were determined by the single crystal X-ray diffraction method. In the complexes the two molybdenum atoms are doubly bridged either by one oxygen and one ethoxy-oxygen, or alternatively by two oxo-oxygens, and are additionally bridged by the thienyl carboxylate ion in a didentate bridging manner. All complexes were further characterised by means of chemical analysis, IR spectroscopy, TG and in some cases by the one and two-dimensional NMR method.  相似文献   

13.
New transition metal complexes of CoII, CuII, NiII and VIVO with the Schiff base, HL, 3-acetylcoumarin-N(4)-phenylthiosemicarbazone have been prepared. Characterisation of the HL ligand and its complexes is also reported. Mass spectra and NMR assignments for the ligand, using COSY, NOESY homonuclear and HMQC and HMBC heteronuclear correlation techniques were carried out. Electronic and magnetic moments of the complexes indicate that the geometries of the metal centres are either distorted octahedral, square pyramidal, square planar or tetrahedral. The structures are consistent with the IR, UV-Vis, ESR, as well as conductivity and magnetic moments measurements. Cyclopropanation reactions of unactivated olefins by ethyldiazoacetate (EDA) in the presence of LCuIICl as catalyst proceed with excellent TON (up to 9625).  相似文献   

14.
The hydrazone ligands derived from salicylaldehyde and aliphatic carbonic acid hydrazides react with equimolecular amounts of ammonium metavanadate and 8-hydroxyquinoline in refluxing methanol to yield oxovanadium(V) complexes. The synthesis can alternatively be performed starting from [VO(acac)2] followed by aerial oxidation to form the corresponding oxovanadium(V) complexes. The molecular structures determined by X-ray crystallography feature in all cases a oxovanadium(V) moiety in an distorted octahedral arrangement with an oxygen and nitrogen rich environment. The obtained compounds posses very good solubility in organic solvents, permitting electrochemical investigation. Square wave voltammetric measurements revealed two reversible one-electron reduction steps at 0.355 and −1.638 V. The reduction of the oxovanadium(V) complexes to the corresponding vanadium(IV) species occurs at relatively positive potential, which is independently verified by ESR spectroscopy. While the second reduction step appears to be accompanied by a pre-wave exhibiting an unusual frequency dependence which can be attributed to ligand addition/elimination equilibria related to the 8-hydroxyquinoline coligand. The oxovanadium(V) complexes can be converted into the corresponding cis-dioxovanadium(V) compounds by reaction with aqueous NaOH. 51V NMR monitoring of this reaction reveals that one equivalent of base results in a full conversion with the cis-dioxovanadium(V) complex being the only species present in solution.  相似文献   

15.
Two dinuclear copper(II) thioether-oxime complexes ([Cu(DtdoH)]2(ClO4)2 and [Cu(DtudH)]2(ClO4)2 · 2CH3OH) have been synthesized. [Cu(DtdoH)]2(ClO4)2 reacted with excess BF3 · OEt2 to yield [Cu(Thyclops)]ClO4, a -macrocyclized di-oxime. [Cu(DtdoH)]2(ClO4)2 and [Cu(DtudH)]2(ClO4)2 · 2CH3OH are the first representatives of copper(II) thioether oximes which exhibit the classical out-of-plane oximate oxygen-metal dimer structure. [Cu(DtdoH)]2(ClO4)2 and [Cu(Thyclops)]ClO4 have been structurally characterized by single-crystal X-ray diffraction. The geometry about each copper(II) in [Cu(DtdoH)]2(ClO4)2 is a distorted square pyramid (τ = 0.14). The average copper-nitrogen(oxime) bond length is 1.984 Å longer (∼0.03 Å) than the average copper-nitrogen(oxime) bonds in copper(II) bis-glyoximates. The geometry of [Cu(Thyclops)]ClO4 reveals an almost perfect square pyramid (τ = 0.03) of N2S2O donors. Solution, cryogenic glass, and powder ESR spectra show a typical axial pattern, except for the powder spectrum of [Cu(DtudH)]2(ClO4)2 · 2CH3OH which displays a small rhombic distortion. Variable-temperature magnetic susceptibility measurements indicate very weak ferromagnetic interactions in [Cu(DtdoH)]2(ClO4)2, where J = +0.52 cm−1 and very weak antiferromagnetic interactions in [Cu(DtudH)]2(ClO4)2 · 2CH3OH, where J = −0.59 cm−1. Electrochemical measurements reveal that the mixed thioether-oxime coordination environment tends to stabilize Cu(II), as all electrochemical reductions were quasi-reversible or irreversible. [Cu(Thyclops)]ClO4 is more oxidizing than [Cu(DtdoH)]2(ClO4)2 by 0.14 V.  相似文献   

16.
A new mononuclear Cu(II) complex, [CuL(ClO4)2] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N′-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography.The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions.Reactions of 1 with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N3)]ClO4 (2), [CuL(SCN)]ClO4 (3) or [CuL(NO2)]ClO4 (4), respectively, all of which have been characterized by X-ray analysis.The geometries of the penta-coordinated copper(II) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (τ) 0.47, 0.45 and 0.58, respectively.In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the O atoms of the nitrite occupy one axial site.Complex 1 shows distinct preference for the anion in the order in forming the complexes 2-4 when treated with a mixture. Electrochemical electron transfer study reveals CuIICuI reduction in acetonitrile solution.  相似文献   

17.
The [ReOX3(AsPh3)(OAsPh3)] (X = Cl or Br) complexes react with two equivalents of 3,5-dimetylopyrazole (3,5-Me2pzH) in acetone at room temperature to give [{Re(O)X2(3,5- Me2pzH)2}2(μ-O)] (1 and 2). In the case of [ReOBr3(AsPh3)(OAsPh3)], a small quantity of the dinuclear rhenium complex [{Re(O)Br(3,5-Me2pzH)}2(μ-O)(μ-3,5-Me2pz)2] (3) has been isolated next to the main product 2. Treatment of [ReOX3(PPh3)2] compounds with two equivalents of 3,5-Me2pzH in acetone at room temperature leads to the isolation of symmetrically substituted dinuclear rhenium complexes [{Re(O)X(PPh3)}2(μ-O)(μ-3,5-Me2pz)2] (4 and 5). Refluxing of [ReO(OEt)X2(PPh3)2] complexes with 3,5-Me2pzH in ethanol affords unsymmetrically substituted dinuclear rhenium [{Re(O)X(PPh3)}(μ-O)(μ-3,5-Me2pz)2{Re(O)X(3,5- Me2pzH)}] complexes (6 and 7). The complexes obtained in these reactions have been characterised by IR, UV-Vis, 1H and 31P NMR. The crystal and molecular structures have been determined for 1, 2, 3, 4, 6 and 7 complexes.  相似文献   

18.
Oxidation plays an important role in the functioning of zinc fingers (ZFs). Electrospray ionization mass spectrometry (ESI-MS) is a very useful technique to study products of ZF oxidation, but its application has been limited largely to qualitative analysis of reaction products. On the other hand, ESI-MS has been applied successfully on several occasions to determine binding constants in metalloproteins. We used a synthetic 37-residue peptide acetyl-DYVICEECGKEFMDSYLMNHFDLPTCDNCRDADDKHK-amide (XPAzf), which corresponds to the Cys4 ZF sequence of human nucleotide excision repair protein XPA, to find out whether ESI-MS might be used quantitatively to study ZF reaction kinetics. For this purpose, we studied oxidation of the Zn(II) complex of XPAzf (ZnXPAzf) by H(2)O(2) using three techniques in parallel: high-performance liquid chromatography (HPLC) of covalent reaction products, 4-(2-pyridylazo)-resorcinol monosodium salt (PAR)-based spectrophotometric zinc release assay, and ESI-MS. Single and double intrapeptide disulfides were detected by ESI-MS to be the sole reaction products. All three techniques yielded independently the same reaction rate, thereby demonstrating that ESI-MS may indeed be used in quantitative kinetic studies of ZF reactions. The comparison of experimental information demonstrated that the formation of the Cys5-Cys8 single disulfide was responsible for zinc release.  相似文献   

19.
[VIVO(acac)2] reacts with the methanol solution of tridentate ONO donor hydrazone ligands (H2L1-4, general abbreviation H2L; are derived from the condensation of benzoyl hydrazine with 2-hydroxyacetophenone and its 5-substituted derivatives) in presence of neutral monodentate alkyl amine bases having stronger basicity than pyridine e.g., ethylamine, diethylamine, triethylamine and piperidine (general abbreviation B) to produce BH+[VO2L] (1-16) complexes. Five of these sixteen complexes are structurally characterized revealing that the vanadium is present in the anionic part of the molecule, [VO2L] in a distorted square pyramidal environment. The complexes 5, 6, 15 and 16 containing two H-atoms associated with the amine-N atom in their cationic part (e.g., diethylammonium and piperidinium ion) are involved in H-bonding with a neighboring molecule resulting in the formation of centrosymmetric dimers while the complex 12 (containing only one hydrogen atom in the cationic part) exhibits normal H-bonding. The nature of the H-bonds in each of the four centrosymmetric dimeric complexes is different. These complexes have potential catalytic activity in the aerial oxidation of l-ascorbic acid and are converted into the [VO(L)(hq)] complexes containing VO3+ motif on reaction with equimolar amount of 8-hydroxyquinoline (Hhq) in methanol.  相似文献   

20.
We synthesized vanadyl (oxidation state +IV) and vanadate (oxidation state +V) complexes with the same hydroxamic acid derivative ligand, and assessed their glucose-lowering activities in relation to the vanadium biodistribution behavior in streptozotocin-induced diabetic mice. When the mice received an intraperitoneal injection of the complexes, the vanadate complex more effectively lowered the elevated glucose levels compared with the vanadyl one. The glucose-lowering effect of the vanadate complex was linearly related to its dose within the range from 2.5 to 7.5 mg V/kg. In addition, pretreatment of the vanadate complex induced a larger insulin-enhancing effect than the vanadyl complex. Both complexes were more effective than the corresponding inorganic vanadium compounds. The vanadyl and vanadate complexes, but not the inorganic vanadium compounds, resulted in almost the same organ vanadium distribution. Consequently, the observed differences in the insulin-like activity between the complexes would reflect the potency of the two compounds in the +IV and +V oxidation states in the subcellular region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号