首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dinuclear ferric complex with the redox-active ligand (LCl2)2- (H2LCl2 = N,N′-dimethyl-bis(3,5-dichloro-2-hydroxybenzyl)-1,2-diaminoethane), was synthesized and characterized. The two iron(III) ions are six-coordinate in a distorted octahedral environment of the donor set of one (LCl2)2− and one amine and one phenolate donor of a second (LCl2)2−, which bridges the two complex halves. The relatively low-symmetric complex 1 crystallizes in the space group R. The crystal structure contains hexagonal, one-dimensional channels parallel to the c axis with diameters of ∼13 Å. The absorption spectrum of 1 exhibits strong characteristic features of pπ  dπ, pπ  dσ, phenolate-to-metal CTs, and π  π ligand transitions. Electrochemical studies on 1 reveal the redox-activity of the coordinated ligand (LCl2)2− by showing irreversible oxidative electron-transfer waves. The reductive electron transfers at negative potentials seem to originate from metal-centered processes. A detailed comparison to complexes with similar donor sets provides new insights into the electrochemical properties of these kinds of complexes.  相似文献   

2.
3.
The ligand 1,3-bis[3-(2-pyridyl)pyrazol-1-yl]propane (L8) has afforded six-coordinate monomeric and dimeric complexes [(L8)CoII(H2O)2][ClO4]2 (1), [(L8)NiII(MeCN)2][BPh4]2 (2), [(L8)NiII(O2CMe)][BPh4] (3), and . The crystal structures of 1, 2 · MeCN, 3, and 4 revealed that the ligand L8 is flexible enough to expand its coordinating ability by fine-tuning the angle between the chelating fragments and hence folds around cobalt(II)/nickel(II) centers to act as a tetradentate chelate, allowing additional coordination by two trans-H2O, cis-MeCN, and a bidentate acetate affording examples of distorted octahedral , , and coordination. The angles between the two CoN2/NiN2 planes span a wide range 23.539(1)° (1), 76.934(8)° (2), and 69.874(14)° (3). In contrast, complex 4 is a bis-μ-1,3-acetato-bridged (syn-anti coordination mode) dicobalt(II) complex [Co?Co separation: 4.797(8) Å] in which L8 provides terminal bidentate pyridylpyrazole coordination to each cobalt(II) center. To our knowledge, this report provides first examples of such a coordination versatility of L8. Absorption spectral studies (MeCN solution) have been done for all the complexes. Complexes 1-3 are uniformly high-spin. Temperature-dependent (2-300 K) magnetic studies on 4 reveal weak ferromagnetic exchange coupling between two cobalt(II) (S = 3/2) ions. The best-fit parameters obtained are: Δ (axial splitting parameter) = −765(5) cm−1, λ (spin-orbit coupling) = −120(3) cm−1, k (orbital reduction factor) = 0.93, and J (magnetic exchange coupling constant) = +1.60(2) m−1.  相似文献   

4.
Reaction between the binuclear hydroxo complex cis-[(PPh3)2Pt(μ-OH)]2X2 (X = NO3, 1a; , 1b) and the model DNA base 9-methyladenine (9-MeAd) leads to the formation of the mononuclear species cis-[(PPh3)2Pt{9-MeAd(-H),N6N7}]X (X = NO3, 2a; PF6, 2b), in which the nucleobase chelates the Pt(II) ion with the N6 and N7 atoms. The coordination mode of the nucleobase has been determinated through a multinuclear (1H, 31P, 13C, 15N and 195Pt) NMR analysis and the nuclearity of the complex has been obtained by E.S.I. mass spectrometry. 2 represents the first example of an isolated platinum complex in which the NH2-deprotonated adenine exhibits this binding mode.  相似文献   

5.
Using a racemic mixture of the tridentate ligand, (((2-pyridyl)ethylamine)methyl)phenolate ion (L) and , NCS, (NC)2N, OAc as coligands, complexes having the formula [Ni(L)(N3)] (1), [Ni(L)(NCS)]2 (2), [Ni2(L)2(OAc)(N(CN)2)]n (3) were prepared and structurally characterized. In 1, Ni(II) has a square planar geometry and phenolate oxygen is involved in dipolar ?Nδ+ interaction with electrophilic central nitrogen atom of coordinated azide ion. Complex 2 is dimeric in nature and nickel(II) is penta-coordinated. Compounds 1 and 2 exist as centrosymmetric dimers made up of a pair of R and S enantiomers of L. In 3, an acetate and phenoxo bridged dinickel complex is present which is further linked to a zig-zag coordination polymer by the dicyanamide ion. In a given chain of 3, both L have same enantiomeric form and either RR or SS dimers are repeated along the chain. The magnetic properties are described.  相似文献   

6.
A series of compounds [FeIIH3LMe]Br·Y·nMeOH ( (1), (2), (3), (4); n = 0 or 1) were synthesized, where H3LMe is a hexadentate N6 tripodal ligand of the neutral form, tris[2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl]amine, and their structures and magnetic properties were investigated. The compounds 13 with counter anions , , and contain methanol as a crystal solvent, and show no SCO behaviors, while the corresponding Cl compounds have no crystal solvent and show a variety of SCO behaviors. The compound [FeIIH3LMe]Br·CF3SO3 (4) has no crystal solvent and has isomorphous structure to the Cl compounds, and shows an abrupt spin transition between the HS (S = 2) and LS (S = 0) states with a hysteresis about 2 K and large frozen-in effect below 72 K. The T1/2↑ and T1/2↓ values are 98 and 96 K, whose values are higher than those of corresponding Cl compound about 15 K and the width of hysteresis is narrower than that of corresponding Cl compound about 2 K. The crystal structures of 4 were determined at 296 and 93 K, where the crystal system and space group showed no change between these temperatures. The structures at both temperatures have a same 2D layered structure, which is composed of NH?Br hydrogen bonds between the Br ion and the imidazole NH groups of three neighboring cations [FeIIH3LMe]2+. This network structure is the same as that of corresponding Cl compound. The 600 nm light irradiation at 5 K induced the LIESST effect.  相似文献   

7.
Three polymeric o-dioxolene chelated manganese(III) complexes, {[MnIII(H2L1)(Cl4Cat)2][MnIII(Cl4Cat)2(H2O)2]} (1) (L1 = N,N′-bis(2-pyridylmethyl)-1,4-butanediamine, Cl4Cat = tetrachlorocatecholate dianion], {[MnIII(H2L1)(Br4Cat)2][MnIII(Br4Cat)2(H2O)2]·4DMF}∞, (2) and {[MnIII(H2L2)(Br4Cat)2][MnIII(Br4Cat)2(DMF)2]} (3) (L2 = N,N′-bis(2-pyridylmethyl)-1,6-hexanediamine, Br4Cat = tetrabromocatecholate dianion) have been synthesized and structures were determined by X-ray crystallography. All the complexes were fully characterized by various spectroscopic techniques and their electronic properties are described. It was found that the simple protonation or deprotonation of the bridging ligand (L1 or L2) coordinated to metal-dioxolene chromophore induce a change in the oxidation state of the coordinated dioxolene ligand without affecting the metal oxidation state. As a result, drastic change in the optical absorption properties of the complexes is observed in the visible and near-IR region as the transformation involves semiquinone-catecholate ligands. Moreover, all three complexes undergo thermally induced valence tautomerism in solution. For all the complexes, on increasing the temperature, the intensity of the lower energy Inter Valence Charge Transfer (IVCT) band at about 1930 nm increases with corresponding decrease of 600 nm band with an isosbestic point at 1820 nm due to the formation of mixed valence species MnII(X4SQ)(X4Cat) from (X = Cl or Br) by the transfer of one electron from Cat2− to MnIII center.  相似文献   

8.
In alkaline aqueous solutions, 3,4-diaminobenzoate (H2(2LPDA)) reacts with PtII to form a 1:2 (Pt:L) complex that intensely absorbs near-infrared (NIR) light at 713 nm (ε = 8.0 × 104 M−1 cm−1). The absorption disappeared at pH < 3 (in DMSO), showing pH-responsive switching of the NIR absorption. By comparing the NIR-absorbing behavior of this complex to that of a complex, [PtII(1LISQ)2]2−, containing the analogous phenylenediamine ligand [(1LISQ)2− = o-diiminobenzosemiquinonate radical], the complex can be formulated as [PtII(2LISQ)2]2−. The assignment of the entity was consistent with the redox and spectroelectrochemical behaviors and electronic spin resonance (ESR) spectroscopy. First, one-electron oxidation of [PtII(2LISQ)2]2− formed an ESR-silent complex assignable to the dimeric complex [{PtII(2LISQ)(2LIBQ)}2]2− [(2LIBQ) = o-iminobenzoquinone form] in which the two radical centers at were antiferromagnetically coupled. Second, the one-electron reduced complex of [PtII(2LISQ)2]2− exhibited an ESR signal attributed to [PtII(2LISQ)(2LPDA)]3−; 34% of the electronic spin was located at the PtII center rather than on the moiety. The pH-responsive switching-off of the NIR absorption was thus rationally explained by oxidation of [PtII(2LISQ)2]2− to [{PtII(2LISQ)(2LIBQ)}2]2− by the increase of the rest potential of the solution in the lower pH region.  相似文献   

9.
The kinetics of the reaction of Cr(CN)5(H2O)2− with NCS and were studied at pH 5.0 and at pH 6.3-7.0, respectively, as a function of the temperature between 25.0 and 55.0 °C, and at various ionic strengths. Anation occurs in competition with aquation of CN, with rate constants that exhibit less-than-first-order dependence on the concentration of the entering anions. The results are interpreted in terms of ligand interchange in a context of association of the two reacting anions mediated by the Na+ or Ca2+ counterions. The degree of aggregation depends mainly on the total cationic charge rather than on the ionic strength, and is ca. 2-fold larger for than for NCS. Within the associated species, is a better entering ligand than NCS by a factor of 4.5. The Cr(CN)5(NCS)3− and Cr(CN)5(N3)3− complexes were also synthesized, and the rates of aquation of NCS and were measured at pH 5.0 and between 55.0 and 80.0 °C, over the same range of ionic strengths. The ionic strength enhances the anation rates but has little effect on the aquation rates. The average activation enthalpies of the interchange step are 80 ± 3 and 76 ± 3 kJ mol−1 for entry of NCS and , respectively. Those of the corresponding aquation reactions are 94 ± 4 and 107 ± 4 kJ mol−1. Within error limits, all ΔH values are independent of the ionic strength. The results are consistent with an Id mechanism for substitution in Cr(CN)5Xz complexes.  相似文献   

10.
Using an anionic precursor [(Tp)FeIII(CN)3] (1) as a building block, two cyano-bridged centrosymmetric heterotrinuclear complexes, (2) and (3) (en = ethylenediamine), have been synthesized and structurally characterized. In each complex, [TpFe(CN)3] acts as a monodentate ligand toward a central [Mn(C2H5OH)4]2+ or [Ni(en)2]2+ core through one of its three cyanide groups, the other two cyanides remaining terminal. The intramolecular Fe-Mn and Fe-Ni distances are 5.2354(4) and 5.0669(11) Å, respectively. The magnetic properties of complexes 2 and 3 have been investigated in the temperature range of 2.0-300 K. A weak antiferromagnetic interaction between the Mn(II) and Fe(III) ions has been found in complex 2. The magnetic data of 2 can be fitted with the isotropic Hamiltonian: where J and J′ are the intramolecular exchange coupling parameters between adjacent and peripheral spin carriers, respectively. This leads to values of J = −1.37 cm−1 and g = 2.05. The same fitting method is applied to complex 3 to give values of J = 1.2 cm−1 and g = 2.25, showing that there is a ferromagnetic interaction between the Fe(III) and Ni(II) ions.  相似文献   

11.
The coordination between Al(III) and sialic acid (N-acetylneuraminic acid, HL, pKa = 2.58 ± 0.01) was studied by potentiometric titrations at 25 °C in aqueous 0.2 M KCl, by 1H NMR, and by electrospray ionization mass spectrometry (ESI-MS). The potentiometric measurements gave the following aluminium complex stoichiometries and stability constants: , log β(AlLH−2) = −6.34 ± 0.02, and log β(AlL2H−1) = −1.14 ± 0.04. The 1H NMR spectra yielded structural information on species . The ESI-MS data confirmed the metal-ligand stoichiometry of the complexes.The metal-ligand speciation at micromolar Al(III) concentrations (i.e., under in vivo conditions) at physiological pH values reveals that considerable amount of Al(III) is complexed. This suggests that the toxic effect of Al(III) towards cellular membranes might be due to its coordination by protein-bound sialic acid.  相似文献   

12.
The kinetics of the reduction of by Co(dmgBF2)2(H2O)2 in 0.041 M HNO3/NaNO3 was found to be first-order in both the oxidizing and reducing agents and the second-order rate constant is given by kobs = k1 + k2K[Cl], with k1=1.59 × 106 M−1 s−1and k2K = 1.83 × 108 M−2 s−1, at 25 °C. The term that is first-order in [Cl] is attributed to the formation of an ion-pair between and Cl. For k1, the activation parameters ΔH* and ΔS* are 2.22 ± 0.02 kcal mol−1 and −22.7 ± 0.8 cal mol−1 K−1, respectively. The self-exchange rate constant of k22 ≈ 8.7 × 10−3 M−1 s−1 for was estimated using Marcus theory and the known self-exchange rate constant for .  相似文献   

13.
A trinuclear copper(II) complex, [Cu3(2,5-pydc)2(Me5dien)2(BF4)2(H2O)2] · H2O 1, has been constructed from 2,5-pyridine-dicarboxylato bridges (2,5-pydc2−) and N,N,N′,N″,N″-pentamethyl-diethylenetriamine (Me5dien) acting as a blocking ligand. The copper ions, within the centrosymmetric trinuclear cations, are connected by two 2,5-pydc2− bridges, with an intramolecular Cu···Cu separation of 8.432 Å. The central copper ion exhibits an elongated octahedral geometry, with semicoordinated ions, while the terminal ones are pentacoordinated (distorted square-pyramidal geometry). The cryomagnetic investigation of 1 reveals an antiferromagnetic coupling of the copper(II) ions (J = −5.9 cm−1, H = −JSCu1SCu2 − JSCu2SCu1a).  相似文献   

14.
15.
Reaction of the potentially tetradentate N-donor ligand 6,6′-bis(4-methylthiazol-2-yl)-2,2′-bipyridine (L1) with the transition metal dications CoII, NiII, CuII, CdII and HgII results in the formation of mononuclear [M(L1)]2+ complexes, in which a planar ligand coordinates to the metals via all four N-donors. In contrast, reaction of L1 with CuI and AgI monocations, affords dinuclear double stranded helicate species [M2(L1)2]2+ (where M = CuI or AgI), in which partitioning of the ligand into two bis-bidentate pyridyl-thiazole chelating units allows each ligand to bridge both metal centres. X-Ray crystallography, electrospray mass spectroscopy and NMR spectroscopy reveal that the complexes [Mn(L1)m]z+ (where n = 1, m = 1 and z = 2, when M = CoII, NiII, CuII, CdII and HgII; n = 2, m = 2 and z = 2, when M = CuI), retain their solid-state structures in solution. Conversely, whilst 1H NMR studies suggest that combination of equimolar amounts of Ag(X)(where ) and L1 (in either nitromethane or acetonitrile) results in the formation of a helicate in solution, in the solid-state, an anion-templating effect gives rise to either mononuclear or dinuclear helicate structures [Agn(L1)n][X]n (where n = 2 when X = OTf; n = 1 when ).  相似文献   

16.
17.
The complex formation between several trivalent lanthanides (Ln) and 5-sulfosalicylate, (SSA)3−, was investigated by potentiometry, 1H NMR, and time resolved laser-induced fluorescence spectroscopy (TRLIFS). The potentiometric data were used to deduce the stoichiometry and equilibrium constants for the reactions pLn3+ + rL ? LnpHqLr + qH+ at 298 K in an ionic medium with a constant concentration of Na+ equal to 1.00 M. Note that “L” denotes the SSA ligand where all protons are dissociated. Two mononuclear chelating complexes, LnL(aq) and , were identified. Their stability constants obtained by least-squares refinement of the potentiometric data agree well with previously published information. In addition, two additional dinuclear complexes, and , which have very different 1H NMR and fluorescence characteristics, were identified by least-squares refinement in the −log[H+] range of 6.0-10.0. 1H NMR spectra from the ligand in the complex showed separate peaks having two different rates of exchange with free ligand in the bulk solution besides a signal from the free and carboxylate-coordinated ligands. This indicates that the dinuclear complex, , consists of two different types of chelating ligands: μ-{OR}-type chelating ligands between metals to form the {Ln2L2}-type core structure and the bidentate ligands outside the {Ln2L2}-type core. This core structure is different from the An(IV)-SSA case (An(IV): tetravalent actinide), in which hydroxides play the role of forming the {An2(OH)2}-type core structure. TRLIFS measurement gave further information about the dynamics and molecular structures of the complexes.  相似文献   

18.
The reaction of with Co(dmgBF2)2(H2O)2 in 1.0 M HClO4/LiClO4 was found to be first-order in both reactants and the [H+] dependence of the second-order rate constant is given by k2obs = b/[H+], b at 25 °C is 9.23 ± 0.14 × 102 s−1. The [H+] dependence at lower temperatures shows some saturation effect that allowed an estimate of the hydrolysis constant for as Ka = 9.5 × 10−3 M at 10 and 15 °C. Marcus theory and the known self-exchange rate constant for Co(OH2)5OH2+/+ were used to estimate an electron self-exchange rate constant of k22 = 1.7 × 10−4 M−1 s−1 for .  相似文献   

19.
One-pot reaction between MnCl2·4H2O, K2tcpd (tcpd2− = [C10N6]2− = (C[C(CN)2]3)2− = 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide anion) and 2,2′-bipyrimidine (bpym = C8H6N4) in aqueous solution yields the new compound [Mn2(bpym)3(tcpd)2(H2O)2] (1). The molecular structure of 1 consists of a centrosymmetrical binuclear complex which includes unprecedented unidentate tcpd ligands with two bidentate and a bis-chelate bpym units. Examination of the intermolecular distances reveals that the dinuclear units are held together by hydrogen bonds involving coordinated water molecules and two nitrile groups of the tcpd ligand, giving rise to a 2D structure overall. Variable-temperature magnetic susceptibility data show the occurrence of slight antiferromagnetic coupling (J = −0.58 cm−1) between the Mn(II) ions through bridging bpym (the exchange Hamiltonian being defined as ).  相似文献   

20.
Three new ligands, 1-(benzimidazolyl-2-methyl)-1,4,7-triazacyclononane L1, 1,4-bis(benzimidazolyl-2-methyl)-1,4,7-triazacyclonone L2, and 1,4,7-tris-(benzimidazolyl-2-methyl)-1,4,7-triazacyclonane L3, were synthesized by a straightforward one-pot method. Their nickel(II) complexes , [NiL2CH3CN](ClO4)2 · 2CH3OH · H2O (or [NiL2Cl] · ClO4) and [Ni(H−2L3)] · H2O were obtained and characterized by electrospray mass spectrum, 1H NMR, CV and other physical methods. Their crystal structures were determined by X-ray analyses. The crystal structure of the nickel(II) complex of L1 shows that two Ni(II) atoms are bridged by two Cl anions. A ferromagnetic exchange coupling and zero-field splitting effect exist in complex 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号