首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of salicylaldehyde oxime (H2salox) with CuII precursors yielded the known complexes [Cu(Hsalox)2] (1) and [Cu(Hsalox)2]n (2), as well as complexes [Cu3(salox)(L1)(L2)]·MeCN (3·MeCN), [CuCl(L1)] (4) and [Cu2Na(O2CMe)5(HO2CMe)]n (5), where L1 = o-O-C6H4-CHNO-C(CH3)NH and L23− = o-O-C6H4-CHNO-C(o-O-C6H4)N. L1 was formed in situ via the nucleophilic addition of the oximato O-atom of salox2− to the unsaturated nitrile group of the MeCN reaction solvent. L23− is also formed in situ probably through the nucleophilic attack of the oximato O-atom to the unsaturated nitrile group of salicylnitrile; the latter, although not directly added to the reaction mixture, can be produced via the dehydration of salox2−. Compounds 1 and 2 contain Hsalox bound to the metal center in two different coordination modes; they both contain the same mononuclear unit, however a 2D network is generated in 2 due to a relatively long Cu-Ooximato bond. Compound 3 contains three different ligands, i.e. salox2−, L1 and L23−, which act as μ32OO′:κN, κONN′ and μ32O2NO′:κN′, respectively, whereas 4 consists of a square planar CuII atom bound to a κONN′ L1 and a chloride ion. Compound 5 consists of dinuclear [Cu2(O2CMe)5(HO2CMe)] units and Na+ ions assembled into an overall 3D network structure. Magnetic susceptibility measurements from polycrystalline samples of 2 and 5 gave best-fit parameters J = +0.36 cm−1 (H = −J?i?j) and J = −360 cm−1, zj = +20 cm−1 (H = −J?i?j − zJ〈Sz?z), respectively.  相似文献   

2.
Four new zinc(II) cyclams of the composition {Zn(L)(tp2−) · H2O}n (1), {Zn(L)(H2bta2−) · 2H2O}n (2), [Zn2(L)2(ox2−)] 2ClO4 · 2DMF (3), and Zn(L)(H2btc)2 · 2DMF (4), where L = cyclam, tp2− = 1,4-benzenedicarboxylate ion, H2bta2− = 1,2,4,5-benzenetetracarboxylate ion, ox2− = oxalate ion, DMF = N,N-dimethylformamide, and H2btc = 1,3,5-benzenetricarboxylate ion, have been synthesized and structurally characterized by a combination of analytical, spectroscopic and crystallographic methods. The carboxylato ligands in the complexes 1-4 show strong coordination tendencies toward zinc(II) cyclams with hydrogen bonding interactions between the pre-organized N-H groups of the macrocycle and oxygen atoms of the carboxylato ligands. The macrocycles in 1, 2, and 4 adopt trans-III configurations with the appropriate R,R,S,S arrangement of the four chiral nitrogen centers, respectively. However, the complex 3 shows an unusual cis V conformation with the R,R,R,R nitrogen configuration. The finding of strong interactions between the carboxylato ligands and the zinc(II) ions may provide additional knowledge for the improved design of receptor-targeted zinc(II) cyclams in anti-HIV agents.  相似文献   

3.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

4.
The template reaction between salicylaldehyde S-methyl-isothiosemicarbazone and 2-formylpyridine in presence of nickel(II) or copper(II) salts yields two new coordination compounds with general formula [NiL1]2(1) and [CuL2]2(2) (L1 = the dianionic (N1-salicylidene)(N4-(hydroxy(pyridin-2-yl)methyl) S-methyl-isothiosemicarbazide) ligand and L2 = the doubly deprotonated (N1-salicylidene)(N4-(picolinoyl) S-methyl-isothiosemicarbazide) ligand). In the complex 1, the formed L1 ligand appears as result of an addition reaction of the precursors, while for 2 a redox mechanism is implicated in the formation of L2. Despite the fact that the initial organic precursors are the same, the resulting ligands obtained in the template reaction are different. In 1, the Ni(II) metal ion adopts a square-planar geometry and the [NiL1] units are forming dimerized chains through weak Ni···Ni interactions (3.336 and 3.632 Å). In 2, the Cu(II) metal ions adopt a square-pyramidal geometry and form dinuclear species through weak Cu···O (phenoxo) interactions. The magnetic susceptibility measurements of the complexes reveal the diamagnetic nature of 1 as expected for a square planar Ni(II) complex and a paramagnetic behavior for 2 with weak intra-dimer antiferromagnetic interaction (J/kB = −2.1(1) K).  相似文献   

5.
Oxalate- or 4,4′-bipyridine-bridged dimeric copper(II) complexes, [Cu2L2(μ-ox)] (1) and [Cu2L2(μ-bipy)](BF4)2 (2) [where ox = oxalate, bipy = 4,4′-bipyridine, HL = N-(1H-pyrrol-2-ylmethylene)-2-pyridineethanamine, L = HL−H+], have been synthesised and characterised by elemental analysis, IR, UV-Vis and single crystal X-ray diffraction. Crystal structure determinations carried out on 1 and 2 reveal that 1 is an oxalate-bridged centrosymmetrical square pyramidal dimeric copper(II) complex while 2 is a 4,4′-bipyridine-bridged non-centrosymmetric square planar dinuclear copper(II) complex. Comparison of the optimised geometries with the corresponding crystal structures suggests that the B3LYP/LANL2DZ level can reproduce the structures of 1 and 2 on the whole. The electronic spectra of 1 and 2 predicted by B3LYP/LANL2DZ method show some blue shifts compared with their experimental data. Thermal analysis carried out on 1 shows that there is only one exothermal peak at about 260 °C and the residue is presumably Cu2O4N6.  相似文献   

6.
Three Cu(II)-azido complexes of formula [Cu2L2(N3)2] (1), [Cu2L2(N3)2]·H2O (2) and [CuL(N3)]n (3) have been synthesized using the same tridentate Schiff base ligand HL (2-[(3-methylaminopropylimino)-methyl]-phenol), the condensation product of N-methyl-1,3-propanediamine and salicyldehyde). Compounds 1 and 2 are basal-apical μ-1,1 double azido bridged dimers. The dimeric structure of 1 is centrosymmetric but that of 2 is non-centrommetric. Compound 3 is a μ-1,1 single azido bridged 1D chain. The three complexes interconvert in solution and can be obtained in pure form by carefully controlling the synthetic conditions. Compound 2 undergoes an irreversible transformation to 1 upon dehydration in the solid state. The magnetic properties of compounds 1 and 2 show the presence of weak antiferromagnetic exchange interactions mediated by the double 1,1-N3 azido bridges (J = −2.59(4) and −0.10(1) cm−1, respectively). The single 1,1-N3 bridge in compound 3 mediates a negligible exchange interaction.  相似文献   

7.
A dicyanamide bridged 2D polynuclear complex of copper(II) having molecular formula [Cu2(L)(μ1,5-dca)2]n (1) has been synthesized using the Schiff base ligand N,N′-bis(salicylidene)-1,3-diaminopentane, (H2L) and sodium dicyanamide (dca). The complex presents a 2D hexagonal structure formed by 1,5-dca singly bridged helical chains connected through double 1,5-dca bridges. The chelating characteristics of the H2L Schiff base ligand results in the formation of copper(II) dimer with a double phenoxo bridge presenting a very strong antiferromagnetic coupling in the copper(II) derivative (1) (J = −510 cm−1). The dimeric asymmetric unit of 1 is very similar to the active site of the catechol oxidase and, as expected, also presents catalytic activity for the oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone in presence of O2, as demonstrated by kinetic studies of this oxidation reaction monitored by absorption spectroscopy resulting in high turnover number (Kcat = 259 h−1).  相似文献   

8.
The reaction of trans(N)-[Co(d-pen)2] (pen = penicillaminate) with HgCl2 or HgBr2 in the molar ratios of 1:1 gave the sulfur-bridged heterodinuclear complex, [HgX(OH2){Co(d-pen)2}] (X = Cl (1a) or Br (1b)). A similar reaction in the ratio of 2:1 produced the trinuclear complex, [Hg{Co(d-pen)2}2] (1c). The enantiomers of 1a and 1c, [HgCl(OH2){Co(l-pen)2}] (1a′) and [Hg{Co(l-pen)2}2] (1c′), were also obtained by using trans(N)-[Co(l-pen)2] instead of trans(N)-[Co(d-pen)2]. Further, the reaction of cis · cis · cis-[Co(d-pen)(l-pen)] with HgCl2 in the molar ratio of 1:1 resulted in the formation of [HgCl(OH2){Co(d-pen)(l-pen)}] (2a). During the formations of the above six complexes, 1a, 1b, 1c, 1a′, 1c′, and 2a, the octahedral Co(III) units retain their configurations. On the other hand, the reaction of cis · cis · cis-[Co(d-pen)(l-pen)] with HgCl2 in the molar ratio of 2:1 gave not [Hg{Co(d-pen)(l-pen}2] but [Hg{Co(d-pen)2}{Co(l-pen)2}] (2c), accompanied by the ligand-exchange on the terminal Co(III) units. The X-ray crystal structural analyses show that the central Hg(II) atom in 1c takes a considerably distorted tetrahedral geometry, whereas that in 2c is of an ideal tetrahedron. The interconversion between the complexes is also examined. The electronic absorption, CD, and NMR spectral behavior of the complexes is discussed in relation to the crystal structures of 1c and 2c.  相似文献   

9.
Two polymorphic crystal structures of the title compound, dibromo[(−)-sparteine-N,N]copper(II), 1, were determined. The structures of two isomorphs of 1, 1a [orthorhombic, P212121, a=11.0463(9) Å, b=11.9839(15) Å and c=12.7835(19) Å] and 1b [orthorhombic, P212121, a=7.6779(9) Å, b=12.0927(14) Å and c=18.090(2) Å], are composed of the same basic structural unit, Cu(C15H26N2)Br2. The bond distances in the molecular structures of 1a and 1b are identical to each other within the esds. However, there are slight differences in the bond angles around the Cu(II) center and considerable differences in their packing structure. Crystal 1a exhibits weak anti-ferromagnetism (J=−1.89 cm−1) as opposed to the magnetically isolated paramagnetism observed for the analogous dichloro[(−)-sparteine]copper(II), 2. The results of a magneto-structural investigation of 1a and 2, and other supporting evidence, suggest that the pathway for the weak antiferromagnetic super-exchange in 1a might be through a Cu-Br ? Br-Cu contact.  相似文献   

10.
The dinuclear dicarboxylato-bridged copper(II) complexes [Cu2(TPA)2(μ-tp)](ClO4)2 · H2O (1), [Cu2(TPA)2(μ-fum)](ClO4)2 · 2H2O (2) and [Cu2(pmedien)2(μ-fum)(H2O)2](ClO4)2 (3) (tp = terephthalate dianion, fum = fumarate dianion, TPA = tris(2-pyridylmethyl)amine and pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine) were synthesized and structurally characterized by X-ray crystallography. The structures of the TPA complexes 1 and 2 consist of μ-tp or μ-fum bridging two Cu(II) centers in a bis(monodentate) bonding fashion. The coordination geometry around the Cu(II) ions in these compounds has a distorted trigonal bipyamidal geometry, TBP with four nitrogen atoms from the TPA ligand and a coordinated oxygen atom supplied by the carboxylate group of the bridged dicarboxylato ligand. Complex 3 has a distorted square pyramidal geometry achieved by the three N-atoms of the pmedien, one fum-carboxylate-oxygen and by an oxygen atom from a coordinated water molecule. The intradimer Cu…Cu distances in these complexes are 11.078(3), 8.663(4) and 9.520(3) Å for 1, 2 and 3, respectively. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Cu(II) centers. Also, analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(mondentate) coordination mode for the bridged dicarboxylato ligands in compounds 1 and 2. The susceptibility measurements at variable temperature over the 2-300 K range are reported. For 1-3, it has been observed slight antiferromagnetic coupling with J values of −0.8, −3.0 and −2.9 cm−1, respectively.  相似文献   

11.
The ligand 1,3-bis[3-(2-pyridyl)pyrazol-1-yl]propane (L8) has afforded six-coordinate monomeric and dimeric complexes [(L8)CoII(H2O)2][ClO4]2 (1), [(L8)NiII(MeCN)2][BPh4]2 (2), [(L8)NiII(O2CMe)][BPh4] (3), and . The crystal structures of 1, 2 · MeCN, 3, and 4 revealed that the ligand L8 is flexible enough to expand its coordinating ability by fine-tuning the angle between the chelating fragments and hence folds around cobalt(II)/nickel(II) centers to act as a tetradentate chelate, allowing additional coordination by two trans-H2O, cis-MeCN, and a bidentate acetate affording examples of distorted octahedral , , and coordination. The angles between the two CoN2/NiN2 planes span a wide range 23.539(1)° (1), 76.934(8)° (2), and 69.874(14)° (3). In contrast, complex 4 is a bis-μ-1,3-acetato-bridged (syn-anti coordination mode) dicobalt(II) complex [Co?Co separation: 4.797(8) Å] in which L8 provides terminal bidentate pyridylpyrazole coordination to each cobalt(II) center. To our knowledge, this report provides first examples of such a coordination versatility of L8. Absorption spectral studies (MeCN solution) have been done for all the complexes. Complexes 1-3 are uniformly high-spin. Temperature-dependent (2-300 K) magnetic studies on 4 reveal weak ferromagnetic exchange coupling between two cobalt(II) (S = 3/2) ions. The best-fit parameters obtained are: Δ (axial splitting parameter) = −765(5) cm−1, λ (spin-orbit coupling) = −120(3) cm−1, k (orbital reduction factor) = 0.93, and J (magnetic exchange coupling constant) = +1.60(2) m−1.  相似文献   

12.
The complexes [Cu2(ox)(phen)2(H2O)2](NO3)2 (1), [Cu2(sq)(pmdien)2(H2O)2](ClO4)2 (2) and {[Cu3(pdc)3(4,4′-bipy)1.5(H2O)2.25] · 2.5(H2O)}n (3) [phen = 1,10-phenanthroline; pmdien = N,N,N′,N′,N″-pentamethyldiethylenetriamine; 4,4′-bipy = 4,4′-bipyridine; ox = oxalate dianion; sq = squarate dianion and pdc = pyridine 2,6-dicarboxylate] have been synthesized and characterized by X-ray single crystal structure determination, low temperature magnetic measurement and thermal study. Structure determination reveals that 1 and 2 are dinuclear copper(II) complexes bridged by oxalate and squarate dianions, respectively, while 3 is a hexanuclear species formed by three Cu(pdc)(H2O)-(4,4′-bipy)-Cu(pdc)(H2O) fragments, connected through long Cu-O(pdc) bonds in a centrosymmetric arrangement. In complex 1 H-bonds occurring between the coordinated water molecules and lattice nitrate anions result in eight-membered ring clusters with the concomitant formation of 1D supramolecular chain. The adjacent chains undergo π-π stacking forming a 2D architecture. In the crystal of 3 an extensive H-bonding scheme gives rise to a 3D supramolecular network. Low temperature magnetic study shows a strong antiferromagnetic coupling in 1 (J = −288 ± 2 cm−1, g = 2.21 ± 0.01, R = 1.2 × 10−6); and a very weak interaction in 2 and 3, the best-fit parameters being: J = −0.21 cm−1, g = 2.12 ± 0.01, R = 1.1 × 10−6 (2) and J = −1.34 cm−1 ± 0.1, g = 2.14 ± 0.01, R = 1.2 × 10−6 (3) (R defines as .  相似文献   

13.
Two phenoxo bridged dinuclear Cu(II) complexes, [Cu2L2(NO2)2] (1) and [Cu2L2(NO3)2] (2) have been synthesized using the tridentate reduced Schiff-base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol (HL). The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The structures of the two compounds are very similar having the same tridentate chelating ligand (L) and mono-dentate anionic ligand nitrite for 1 and nitrate for 2. In both complexes Cu(II) is penta-coordinated but the square pyramidal geometry of the copper ions is severely distorted (Addison parameter (τ) = 0.33) in 1 while the distortion is quite small (average τ = 0.11) in 2. These differences have marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = −140.8 and −614.7 cm−1 for 1 and 2, respectively) show that the coupling is much stronger in 2.  相似文献   

14.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

15.
Herein, we report the syntheses, spectral and structural characterization, and magnetic behavior of four new dinuclear terephthalato-bridged copper(II) complexes with formulae [Cu2(trpn)2(μ-tp)](ClO4)2 · 2H2O (1), [Cu2(aepn)2(μ-tp)(ClO4)2] (2), [Cu2(Medpt)2(μ-tp)(H2O)2](ClO4)2 (3) and [Cu2(Et2dien)2(μ-tp)(H2O)](ClO4)2 (4) where tp = terephthalate dianion, trpn = tris(3-aminopropyl)-amin, aepn = N-(2-aminoethyl)-1,3-propanediamine, Medpt = 3,3′-diamino-N-methyldipropylmine and Et2dien = N,N-diethyldiethylenetriamine. The structures of these complexes consist of two μ-tp bridging Cu(II) centers in a bis(monodentate) bonding fashion. The coordination geometry of the Cu(II) ions in these compounds may be described as close to square-based pyramid (SP) with severe significant distortion towards trigonal bipyramid (TBP) stereochemistry in 1. The visible spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Cu(II) centers. Also, the solid infrared spectral data for the stretching frequencies of the tp-carboxalato groups, the ν(COO) reveals the existence of bis(monodentate) coordination mode for the bridged terephthalate ligand. The susceptibility measurements at variable temperature over the range 2-300 K are reported. Despite the same bonding mode of the tp bridging ligand, there has been observed slight antiferromagnetic coupling for the compounds 1 and 4 with J values of −0.5 and −2.9 cm3 K mol−1, respectively, and very weak ferromagnetic coupling for 2 and 3 with J values of 0.8 and 10.1 cm3 K mol−1, respectively. The magnetic results are discussed in relation to other related μ-terephthalato dinuclear Cu(II) published compounds.  相似文献   

16.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

17.
Bidentate ligands 2,2′-biquinoline (biq) and 6,6′-dimethyl-2,2′-bipyridine (dmbpy) with steric hindrance substituents cis to the nitrogen atoms have been used in the synthesis of transition metal complexes. Six new doubly end-on azido-bridged binuclear complexes [M2(biq)21,1-N3)2(N3)2] (M = Ni (1), M = Co (2)), [M2(biq)21,1-N3)2Cl2] (M = Ni (3), M = Co (4)), [M2(dmbpy)21,1-N3)2(N3)2] (M = Ni (5), M = Co (6)) and one end-to-end thiocyanato-bridged polymeric [Ni(dmbpy)(μ1,3-SCN)(NCS)]n (7) have been synthesized and characterized by single crystal X-ray diffraction analysis and magnetic studies. Complexes 1-6 comprise five-coordinate M(II) ions bridged by two end-on azide ligands. The bridging M-N-M bond angles are in the small range 104.1-105.2°. Complex 7 consists of a singly thiocyanate-bridged Ni(II) chain in which Ni(II) ions are five-coordinate. This research suggests that the bulky ligands play a key role in the formation of five-coordinate coordination structure. All complexes display intramolecular intermetallic ferromagnetic coupling with JNiNi and JCoCo of ca. 23 or 13 cm−1 based on the Hamiltonian (S1 = S2 = 1 for Ni2, or 3/2 for Co2). The singly SCN-bridged chainlike complex 7 shows intrachain ferromagnetic interaction with J = 3.96(2) cm−1 and D = −4.55(8) cm−1 (. Magneto-structural correlationship has been investigated.  相似文献   

18.
A new perylene-pendent tridentate ligand, N-(3-perylenylmethyl)-N,N-bis(2-pyridylmethyl)amine (perbpa) 1 and its Cu(II) complex, [Cu(perbpa)Cl2] (2) were prepared and structurally characterized by the X-ray diffraction method. In the packing structure of ligand 1, perylene groups were aggregated to form a π-π stacked layer of dimerized pelylene moieties similar to the packing of pristine perylene. This result suggests both that the π-π interactions among the perylene moieties predominate for the arrangement of perbpa molecules in the crystal and that this ligand is a good candidate for constructing electron conducting path. A complex 2 was prepared from the ligand 1 and a copper(II) chloride dehydrate. Complex 2 had a mononuclear and 5-coordinate distorted square pyramidal structure with a perbpa and two coordinated chloride ions. The chemical oxidation of 2 by iodine resulted in the unprecedented binuclear Cu(II) species, [Cu2(μ-Cl)2(perbpa)2](I3)2, 3·(I3)2. An X-ray crystal structure analysis of 3·(I3)2 revealed the binuclear structure bridged by the chloride ions. A temperature dependent magnetic susceptibility measurement of 3 showed a weak ferromagnetic exchange interaction with S = 1 ground state, g = 2.12 and J = +1.17 cm−1, based on H = −2JS1 · S2. The UV-Vis absorption and the EPR spectra of 3 showed that the perylene groups are not oxidized. These results indicate a couple of Cu(II) constructed S = 1 ground state with intermolecular ferromagnetic interaction. The electrochemical study suggested that the crystallization of 3·(I3)2 was initiated by the oxidation of the N,N-bis-(2-pyridylmethyl)amino (bpa) groups of 2 by I2.  相似文献   

19.
Two new one-dimensional azido-bridged chiral copper(II) coordination polymers, [(μ-1,1,3-N3)2{Cu2(R-L)2(N3)2}]n (1) (R-L = R-2-(N-(2-hydroxybutyl)carbaldimino) pyridine) and [(μ-1,1,3-N3)2{Cu2(S-L)2(N3)2}]n (2) (S-L = S-2-(N-(2-hydroxybutyl)carbaldimino)pyridine) have been synthesized and structurally characterized. Complexes 1 and 2 crystallize in the monoclinic chiral space group P21. For 1, with a = 6.9565(17) Å, b = 20.675(5) Å, c = 9.859(2) Å, β = 105.944(5)° and Z = 2. In the case of compound 2, a = 6.9650(17) Å, b = 20.705(5) Å, c = 9.878(2) Å, β = 105.941(4)° and Z = 2. Both complexes consist of one-dimensional chiral structures in which the copper(II) ions with a distorted octahedral geometry are interlinked by the unusual μ-1,1,3 azido ligands. Circular dichroism spectra demonstrate that 1 and 2 are a pair of enantiomers. Their magnetic properties have been studied. Fitting of the susceptibility data for 1 and 2 using the Bleany-Bowers expression derived from the isotropic spin-exchange Hamiltonian H = −2JS1S2 leads to the parameters g = 2.21, J = −2.06 cm−1, zJ′ = −0.0309 cm−1 and R = 4.0 × 10−4.  相似文献   

20.
A new series of dinuclear squarato-bridged nickel(II) and copper(II) complexes [Ni2(2,3,2-tet)21,3-C4O4)(H2O)2](ClO4)2 (1), [Ni2(aepn)21,3-C4O4)(H2O)2](ClO4)2 (2), [Cu2(pmedien)21,3-C4O4)(H2O)2](ClO4)2.4H2O (3) and [Cu2(DPA)21,2-C4O4)(H2O)2](ClO4)2 (4) where is the dianion of 3,4-dihydroxycyclobut-3-en-1,2-dione (squaric acid), 2,3,2-tet = 1,4,8,11-tetraazaundecane, aepn = N-(2-aminoethyl)-1,3-propanediamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine and DPA = di(2-pyridylmethyl)amine were synthesized and structurally characterized by X-ray crystallography. The spectral and structural characterization as well as the magnetic behaviour of these complexes is reported. In this series, structures consist of the groups as counter ions and the bridging the two M(II) centers in a μ-1,3- (1-3) and in a μ-1,2-bis(monodentate) (4) bonding fashions. The coordination geometry around the Ni(II) ions in 1 and 2 is six-coordinate with distorted octahedral environment achieved by N atoms of the amines and by one or two oxygen atoms from coordinated water molecules, respectively. In the Cu(II) complexes 3 and 4, a distorted square pyramidal geometry is achieved by the three N-atoms of the aepn or DPA and by an oxygen atom from a coordinated water molecule. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the M(II) centers. The complexes show weak antiferromagnetic coupling with ∣J∣ = 1.8-4.2 cm−1 in the μ-1,3- bridged squarato compounds 1-3, and J = −16.1 cm−1 in the corresponding μ-1,2- bridged squarato complex 4. The magnetic properties are discussed in relation to the structural data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号