首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of [MoVI(TpMe,Me)(O)2Cl] with a variety of pyridine-based ligands [pyridine (py), 4,4′-bipyridine (bpy), 4-phenylpyridine (phpy) and 1,2′-bis(4-pyridyl)ethene (bpe)] in toluene in the presence of Ph3P affords the mononuclear oxo-Mo(IV) complexes [Mo(TpMe,Me)(O)Cl(L)] (L=py, phpy or monodentate bpy; abbreviated as Mo(py), Mo(phpy) and Mo(bpy), respectively) and the dinuclear complexes [{Mo(TpMe,Me)(O)Cl}2(μ-L)] (L=bpy, bpe; abbreviated as Mo2(bpy), Mo2(bpe), respectively). The complex Mo2(bpy), together with the by-product [{Mo(TpMe,Me)(O)Cl}2(μ-O)], have been crystallographically characterised. Electrochemical studies on the oxo-Mo(IV) complexes reveal the presence of reversible Mo(IV)/Mo(V) couples at around −0.3 V versus ferrocene/ferrocenium in every case. For the dinuclear complexes Mo2(bpy) and Mo2(bpe) these redox processes are coincident, indicating that they are largely metal-centred and not significantly delocalised across the bridging ligand. In contrast, Mo2(bpe) alone shows two reversible reductions, separated by 320 mV; these could be described as ligand-centred reductions of the bpe bridge, or as Mo(IV)/Mo(III) couples which—because of their separation—are substantially delocalised onto the bridging ligand. UV-Vis spectroelectrochemical studies using an OTTLE cell at 243 K revealed that oxidation of the complexes results in spectral changes (collapse of the Mo(IV) d-d transitions, loss in intensity of the Mo→pyridine MLCT transition) consistent with the formation of a Mo(V) state following metal-centred oxidation, but that one-electron reduction of Mo2(bpe) results in appearance of numerous intense transitions more characteristic of a ligand radical following ligand-centred reduction.  相似文献   

2.
Two hitherto unknown mixed-ligand tris chelated complexes containing 2-aminothiophenolate, [Et4N]2[MIV(NH-(C6H4)-S)(mnt)2] (M = Mo, 1a; W, 2a) and two mixed-ligand tris chelate complex containing N,N-diethyldithiocarbamate, [Et4N]2[MIV(Et2NS2)(mnt)2] (M = Mo, 1b; W, 2b) have been synthesized and characterized structurally. Although these complexes are supposed to be quite similar to the well-known symmetric tris chelate complexes of maleonitriledithiolate (mnt), [Et4N]2[MIV(mnt)3] (M = Mo, 1c; W, 2c), but display both trigonal prismatic and distorted trigonal prismatic geometry in their crystal structure indicating the possibility of an equilibrium between these two structural possibilities in solution. Unlike extreme stability of 1b, 2b, 1c and 2c, both 1a and 2a are highly unstable in solution. In contrast to one reversible reduction in case of 1b and 2b, 1a and 2a exhibited no possible reduction up to −1.2 V and two sequential oxidation steps which have been further investigated with EPR study. Differences in stability and electrochemical behavior of 1a, 1b, 2a and 2b have been correlated with theoretical calculations at DFT level in comparison with long known 1c and 2c.  相似文献   

3.
By controlling the reaction temperature, pH value of the system and the polyanion templates, three inorganic-organic hybrid materials based on Keggin polyoxometalate building blocks combined with CuI/II and 4-amino-1,2,4-triazole (4atrz) have been obtained by hydrothermal methods, namely, [Cu33-OH)(4atrz)6][SiW12O40]·I·3H2O (1), [Cu4(4atrz)6][SiW12O40] (2) and [Cu6(4atrz)6][PMo12O40]2·H2O (3). Crystal structure analysis reveals that the CuI/II/4atrz complexes in the three materials show tri-, tetra- and hexanuclear models, respectively. In compound 2, the copper clusters link the polyoxometalates into the chains by weak Cu-O bonds; while in the compounds 1 and 3, the copper clusters and the polyoxometalates stack by the ionic interactions. These compounds are further characterized by powder XRD, elemental analyses, FT-IR and thermogravimetric (TG) analyses. The electrochemical behavior of 3-CPE has been studied in the 1 M H2SO4 solution. The results exhibit that there are four pairs of redox waves attributable to the four consecutive two-electron processes of Mo(VI/V) couples and the redox process is surface-controlled.  相似文献   

4.
The reaction of FcCOCl (Fc = (C5H5)Fe(C5H4)) with benzimidazole or imidazole in 1:1 ratio gives the ferrocenyl derivatives FcCO(benzim) (L1) or FcCO(im) (L2), respectively. Two molecules of L1 or L2 can replace two nitrile ligands in [Mo(η3-C3H5)(CO)2(CH3CN)2Br] or [Mo(η3- C5H5O)(CO)2(CH3CN)2Br] leading to the new trinuclear complexes [Mo(η3-C3H5)(CO)2(L)2Br] (C1 for L = L1; C3 for L = L2) and [Mo(η3-C5H5O)(CO)2(L)2Br] (C2 for L = L1; C4 for L = L2) with L1 and L2 acting as N-monodentade ligands. L1, L2 and C2 were characterized by X-ray diffraction studies. [Mo(η3-C5H5O)(CO)2(L1)2Br] was shown to be a trinuclear species, with the two L1 molecules occupying one equatorial and one axial position in the coordination sphere of Mo(II). Cyclic voltammetric studies were performed for the two ligands L1 and L2, as well as for their molybdenum complexes, and kinetic and thermodynamic data for the corresponding redox processes obtained. In agreement with the nature of the frontier orbitals obtained from DFT calculations, L1 and L2 exhibit one oxidation process at the Fe(II) center, while C1, C3, and C4 display another oxidation wave at lower potentials, associated with the oxidation of Mo(II).  相似文献   

5.
Coordination of CoCl2 solutions to the silica polyamine composite, WP-1, made with the branched polymer polyethylenimine (PEI) shows irreversible binding resulting from surface oxidation of the Co2+-Co3+. This is not the case for the silica polyamine composite BP-1 made with the linear polymer polyallylamine where reversible binding and no oxidation is observed. These observations suggested that oxidation of the cobalt was related to the greater coordination number available with the branched polyamine relative to the linear polyamine. A study of the kinetics of cobalt binding to WP-1 indicated initial loading of Co2+ at relatively low coordination number followed by desorption of Co2+ leading to oxidation and irreversible binding. Exclusion of oxygen from the composite-cobalt solution mixtures resulted in irreversible binding at a level that was 14% of the initial experiments. These observations prompted us to undertake a study to elucidate the coordination number around cobalt in the case of the branched polymer PEI. Towards this end, we have synthesized the model complexes [(tren)Co(H2O)2]3+3Cl (tren = tris(2,2′,2″aminoethyl)amine) and [(dien)Co(H2O)3]3+3Cl (dien = diethylenetriamine). The UV-Vis spectra of these model complexes were compared with Co3+ coordinated to PEI in solution and it was concluded that the UV-Vis spectrum of the tren complex was closer to that observed for the solution UV-Vis spectrum of Co3+-PEI. These data indicated that coordination of four amines was needed to drive surface oxidation under ambient conditions. In order to further elucidate the coordination number of a metal coordinated to the surfaces of WP-1 and BP-1, we reacted these composites with the probe molecule [Ru(CO)3(TFA)3]K+ (TFA = trifluoroacetate) (1) where the carbonyl stretching frequencies could be used as a measure of coordination number and geometry of the adsorbed complex. The IR of this complex on WP-1 indicated a monocarbonyl species while the IR of this complex on BP-1 indicated the presence of dicarbonyl species on the surface. These data are consistent with a coordination number of four amines in the case of WP-1 and the coordination of two amines in the case of BP-1 based on our previous studies of the solution coordination chemistry of the 1. Subsequent 13C CPMAS solid-state NMR on 13CO enriched samples of the 1 adsorbed onto BP-1 and WP-1 were consistent with the IR data.  相似文献   

6.
A new organic-inorganic hybrid solid with 3-D framework, [Mn(DMF)3]2[Re6Se8(CN)6] (1), has been synthesized and transformed to [H][Mn(salen)]3[Re6Se8(CN)6] (2) by a ligand exchange. Hexarhenium chalcocyanide clusters are closest packed in cubic symmetry for 1 and rhombohedral symmetry for 2. The manganese complexes in the interstitial sites are three-coordinated to the rhenium cluster in 1 and two-coordinated in 2.  相似文献   

7.
Bis(pyridine) complexes of molybdenum and tungsten, [M(η3-allyl)Cl(CO)2(NC5H5)2] (M=Mo; 3-Mo, M=W; 3-W), reacted with an equimolar amount of lithiated amidinate, Li[(PhN)2CR] (R=H; 4a-Li, R = CH3; 4b-Li), to yield corresponding amidinato(pyridine) complexes, [M(η3-allyl){(PhN)2CR}(CO)2(NC5H5)] (M=Mo, R=H; 5a-Mo, M=Mo, R=CH3; 5b-Mo, M=W, R=H; 5a-W), as a yellow solid. The dissociation of pyridine ligand from the central metal in complexes 5a was observed in a polar solvent such as acetonitrile. In these cases, although the formation of amidinato(acetonitrile) complexes, [M(η3-allyl){(PhN)2CH}(CO)2(NCMe)] (M=Mo; 6a-Mo, M=W; 6a-W), was suggested spectroscopically, isolation of complexes 6a was not successful but the re-formation of pyridine complexes 5a was observed. In the reactions of complexes 5a with PEt3 and with P(OMe)3, the substitution reactions easily took place to give [M(η3-allyl){(PhN)2CH}(CO)2(PEt3)] (M=Mo; 7a-Mo, M=W; 7a-W) and [M(η3-allyl){(PhN)2CH}(CO)2{P(OMe)3}] (M=Mo; 8a-Mo, M=W; 8a-W), respectively. These complexes were characterized spectroscopically as well as, in some cases, by X-ray analyses.  相似文献   

8.
Complexes of the type (η4-BuC5H5)Fe(CO)2(P) (P = PPh2Py 3, PPhPy24, PPy35; Py = 2-pyridyl) were satisfactorily prepared. Upon treatment of 3 with M(CO)3(EtCN)3 (M = Mo, 6a; W, 6b), the pyridyl N-atom could be coordinated to the metal M, which then eliminates a CO ligand from the Fe-centre and induced an oxidative addition of the endo-C-H of (η4-BuC5H5). This results in a bridged hydrido heterodimetallic complex [(η5-BuC5H4)Fe(CO)(μ-P,N-PPh2Py)(μ-H)M(CO)4] (M = Mo, 7a, 81%; W, 7b, 76%). The reaction of 4 or 5 with 6a,b did not give the induced oxidative addition, although these complexes contain more than one pyridyl N-atom. The reaction of 4 with M(CO)4(EtCN)2 (M = Mo, 9a; W, 9b) produced heterodimetallic complexes [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′-PPhPy2)M(CO)4] (M = Mo, 10a, 81%; W, 10b, 83%). Treatment of 5 with 6a,b gave [(η4-BuC5H5)Fe(CO)2(μ-P:N,N′,N″-PPy3)M(CO)3] (M = Mo, 12a, 96%; W, 12b, 78%).  相似文献   

9.
Four new ligands containing a pyridine or thiazole group and one or more N-(diphenylphosphinomethyl)amine functions have been prepared and employed for the synthesis of Mo(0) and W(0) carbonyl and dinitrogen complexes. For comparison coordination of the literature-known ligand N,N-bis(diphenylphosphinomethyl)-methylamine (PNP, 1) to such systems has been investigated as well. Two new ligands are N,N-bis(diphenylphosphinomethyl)-2-aminopyridine (pyNP2, 2) and N,N′-bis(diphenylphosphinomethyl)-2,6-diaminopyridine (PpyP, 3). In a third new ligand, N-diphenylphosphinomethyl-2-aminothiazole (thiazNP, 4), the pyridine group is replaced by thiazol. Finally, the pentadentate ligand N,N,N′,N′-tetrakis(diphenylphosphinomethyl)-2,6-diaminopyridine (pyN2P4, 5) has been synthesized. Coordination of ligands 2, 3 and 4 to low-valent metal centers is investigated on the basis of the three molybdenum carbonyl complexes [Mo(CO)3(NCCH3)(pyNP2)] (6), [Mo(CO)4(PpyP)] (7) and [Mo(CO)4(thiazNP)] (8), respectively, all of which are structurally characterized. Moreover, employing ligands 1 and 2 the two dinitrogen complexes [W(N2)2(dppe)(PNP)] (9) and [Mo(N2)2(dppe)(pyNP2) (10), respectively, are prepared. Both systems are investigated by vibrational and NMR spectroscopy; in addition, complex 10 is structurally characterized.  相似文献   

10.
The reactions of [Mo(CO)6] towards a 2,6-di(imino)pyridine L1 and related ligands were studied. The reaction with L1 afforded two new complexes, [Mo(CO)4L1] (1) and [Mo(CO)4L2] (2), where L2 is the 2-amino-6-iminopyridine ligand arising from the hydrogenation of one imine function of L1; similar reaction with a 2-acetyl-6-iminopyridine ligand L3 afforded [Mo(CO)4L3] (3). Compounds 1, 2 and 3 have been fully characterised by IR, 1H NMR and X-ray crystallography; they present a metal ion in a pseudo-octahedral environment, the three organic ligands acting with bidentate N2 coordination modes. One of the imine functions in 1, the amine function in 2, and the ketone function in 3 are uncoordinated.  相似文献   

11.
Two new inorganic-organic hybrid materials - [{M(C5H5N)4}2]V4O12 (M = Cu, 1; M = Co, 2) have been synthesized and characterized by spectroscopic methods, X-ray powder diffraction, thermogravimetry, magnetometry and complete single crystal structure analysis. The structures of 1-2 are comprised of layers containing centrosymmetric {V4O12} rings connected to {M(C5H5N)4} units by V-O-M bridges (M = Cu, 1; M = Co, 2). The layers are parallel to the (1 0 1) crystal planes and there are pyridine stacking interactions between layers. The effective magnetic moment, μeff, values for 1 and 2 are 1.9 μB and 3.9 μB, respectively, indicating some orbital contributions in each case. Both compounds exhibit Curie-Weiss magnetic behavior over the entire range above the critical temperature.  相似文献   

12.
Hydrothermal reactions were used in the preparation of a series of bimetallic organic-inorganic hybrid materials of the M(II)/VxOy/organonitrogen ligand class. Compound 1, [{Cu2(bpa)2(C2O4)}2V4O12]·H2O, is molecular, while [{Cu(terpy)}2V6O17] (2), [Cu2(bpyrm)V4O12] (4) and [{Cu(phen)(H2O)2}VOF4(H2O)]·2H2O (5) are two-dimensional, three-dimensional and one-dimensional, respectively (bpa = 2,2′-bipyridylamine; terpy = 2,2′:6,2″-terpyridine; bpyrm = 2,2′-bipyrimidine; phen = 1,10-phenanthroline). In contrast to the 2-D structure of 2, the Ni(II) analogue [{Ni(terpy)}2V4O12]·2H2O (3) is one-dimensional. The {V4O12}4− cluster is a building block of structures 1, 3, and 4 while 2 is constructed from {V6O17}4− rings.  相似文献   

13.
The reactions of the Keplerate super cluster [Mo132O372(CH3CO2)30(H2O)72]42− with a Cu(II) source and an organonitrogen donor in methanol/DMF solutions yielded a series of bimetallic organic-inorganic oxide hybrid materials, including the molecular species [Cu(phen)2MoO4] (1) and [{Cu(terpy)}2(MoO4)2] (2) and a series of materials constructed from the tetranuclear building block {Mo4O10(OMe)6}2−: the molecular [{Cu2(phen)2(O2CCH3)2 (MeOH)}Mo4O10(OMe)6] (3), [{Cu(terpy)(O2CCH3)}2Mo4O10(OMe)6] (4) and [{Cu(terpy)Cl}2Mo4O10(OMe)6] (5), the one-dimensional phases [{Cu(bpy)(HOMe)2}Mo4O10(OMe)6] (6), [{Cu(bpy)(DMF)2}Mo4O10(OMe)6] (7), [{Cu(bpa)(DMF)2}Mo4O10(OMe)6] (8), [{Cu(phen)(DMF)2}Mo4O10(OMe)6] (9) and [{CuCl(dpa)}2Mo4O10(OMe)6] (10), and the two-dimensional material [{Cu2(DMF)2(pdpa)}{Mo4O10(OMe)6}2] (11). When methanol is replaced by the tridentate alkoxide tris-methoxypropane (trisp), the {Mo2O4(trisp)2}2− cluster building block is observed for [Cu(phen)Mo2O4(trisp)2] (12), [Cu(bpa)(DMF)Mo2O4(trisp)2] (13) and [{Cu(bpy)(NO3)}2Mo2O4(trisp)2] (14).  相似文献   

14.
By changing the substituents on 1,2,4-triazole ring, six novel organic-inorganic hybrid complexes constructed from tetranuclear copper(I) 1,2,4-triazolate clusters and octamolybdates, [{Cu4(L)x}Mo8O26] (L = 3,5-diamino-1,2,4-triazole (datrz) and x = 4 for 1; L = 3-amino-1,2,4-triazole (3atrz) and x = 4 for 2; L = 3,5-dimethyl-1,2,4-triazole (dmtrz) and x = 4 for 3; L = 3,5-dimethyl-4-amino-1,2,4-triazole (dmatrz) and x = 6 for 4; L = 3,5-diethyl-4-amino-1,2,4-triazole (deatrz) and x = 4 for 5; L = 3,5-di(n-propyl)-4-amino-1,2,4-triazole (dpatrz) and x = 3 for 6), were obtained. The tetranuclear Cu(I) cluster in compound 1 acts as charge-compensating unit, which is the first polynuclear metal 1,2,4-triazole structure only with N1, N2 bridging mode. Compounds 2, 4, 5 and 6 are of polymeric 1D chains and 3 is of a 2D layer structure. In 2, three distinct Cu(I)-coordination geometries, distorted tetrahedral, T-shaped and V-shaped linear Cu(I), are observed in the same structure. The first extended hybrid structure constructed by δ-octamolybdates is founded in 4. A novel [Mo8O26]4− anion is found in 5, which contains only three crystallographically independent Mo atoms. In compounds 5 and 6, terminal oxo groups of octamolybdate cluster act as μ3-oxo bridges to link the copper(I) coordination complexes; such an unusual linking manner is unique in the coordination chemistry of octamolybdates with transition metal fragments. The influences of substituent on the structures of the tetranuclear units are also discussed in details.  相似文献   

15.
《Inorganica chimica acta》2002,327(1):169-178
New complexes [MI(CO)2(dppe){S2P(OEt)2}] (M=W, 1a; M=Mo, 1b), [MI(CO)2(dppm){S2P(OEt)2}] (M=W, 2a; M=Mo, 2b) and [W(CO)(dppe){S2P(OEt)2}2][O2dppe] (3a), were synthesised from [MI2(CO)3(NCMe)2] (M=Mo, W), after treatment with ammonium diethyldithiophosphate and phosphine under different conditions. The structure of the tungsten complexes was determined by single crystal X-ray diffraction. During the synthesis of 3a, oxidation of the phosphine took place and a molecule of oxidised phosphine occupies channels in the crystal. DFT/B3LYP calculations on models of 1a and 2a showed the capped octahedron structure, observed in most dicarbonyl complexes of this family, to be preferred by 1.4 and 2.6 kcal mol−1 for the dppm and the dppe complexes, respectively. Strong steric repulsions can reverse this trend, as happens with the rigid dppm ligand. Complex 1a adopts a pentagonal bipyramidal geometry, which is often found in related monocarbonyl complexes.  相似文献   

16.
Four analogs with 3′-O-alkyl groups (9a: CH3, 9b: C2H5, 9c: C13H27 or 9d: CH2Ph) instead of the 3′-O-sulfate anion in salacinol (1), a naturally occurring potent α-glucosidase inhibitor, were synthesized by the coupling reaction of 1,4-dideoxy-1,4-epithio-d-arabinitols (18a and 18b) with appropriate epoxides (10a-10d). These analogs showed equal or considerably higher inhibitory activity against rat small intestinal α-glucosidases than the original sulfate (1), and one of them (9d) was found more potent than currently used α-glucosidase inhibitors as antidiabetics. Thus, introduction of a hydrophobic moiety at the C3′ position of this new class of inhibitor was found beneficial for onset of stronger inhibition against these enzymes.  相似文献   

17.
Three substituted-pyridyl functionalized bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) derivatives 1-3 and their corresponding Ni(II) and Co(II) complexes have been synthesized and characterized. Their electrochemical properties in CH2Cl2 solution have been investigated by cyclic voltammetry and two reversible single-electron oxidation waves for the TTF moiety are observed. Crystal structure analyses were carried out for compound 2 as well as for the Co(II) complex of 1 (7).  相似文献   

18.
Metathesis reaction between equimolar amount of [Et4N][GaCl4] and Na2edt in methanol resulted in the formation of the dichloro complex [Et4N][Ga(edt)Cl2] (1), whereas reaction of [Et4N][GaCl4] with two equivalents of Na2edt in methanol gave the complex [Et4N][Ga(edt)2] (2) which can act as a metalloligand. Treatment of 2 with M(PPh3)2NO3 in DMF/CH2Cl2 afforded the heterobimetallic complexes [Ga(edt)2M-(PPh3)2] (M = Cu 3, Ag 4) in moderate yields. The structures of 1-4 were determined by single-crystal X-ray diffraction analyses. Both [Ga(edt)Cl2] and [Ga(edt)2] anions have a distorted tetrahedral geometry. The former consists of one five-membered ring formed by chelating dithiolate and two terminal chloride atoms while the latter consists of two five-membered rings formed by two the chelating dithiolates. Complexes 3 and 4 consist of metalloligand [Ga(edt)2] anion chelated to [M(PPh3)2]+via the sulfur atoms. Both tetrahedrally coordinated Ga and Cu(Ag) atoms are bridged by two sulfur atoms, forming a planar “GaS2M” (M = Cu, Ag) core. Thermogravimetry analysis revealed that heterobimetallic complexes 3 and 4 decomposed to give the corresponding ternary metal sulfide materials.  相似文献   

19.
Wenxiang diagram is a new two-dimensional representation that characterizes the disposition of hydrophobic and hydrophilic residues in α-helices. In this research, the hydrophobic and hydrophilic residues of two leucine zipper coiled-coil (LZCC) structural proteins, cGKIα1−59 and MBSCT35 are dispositioned on the wenxiang diagrams according to heptad repeat pattern (abcdefg)n, respectively. Their wenxiang diagrams clearly demonstrate that the residues with same repeat letters are laid on same side of the spiral diagrams, where most hydrophobic residues are positioned at a and d, and most hydrophilic residues are localized on b, c, e, f and g polar position regions. The wenxiang diagrams of a dimetric LZCC can be represented by the combination of two monomeric wenxiang diagrams, and the wenxiang diagrams of the two LZCC (tetramer) complex structures can also be assembled by using two pairs of their wenxiang diagrams. Furthermore, by comparing the wenxiang diagrams of cGKIα1−59 and MBSCT35, the interaction between cGKIα1−59 and MBSCT35 is suggested to be weaker. By analyzing the wenxiang diagram of the cGKIα1−59.·MBSCT42 complex structure, most affected residues of cGKIα1−59 by the interaction with MBSCT42 are proposed at positions d, a, e and g of the LZCC structure. These findings are consistent with our previous NMR results. Incorporating NMR spectroscopy, the wenxiang diagrams of LZCC structures may provide novel insights into the interaction mechanisms between dimeric, trimeric, tetrameric coiled-coil structures.  相似文献   

20.
The rigid, π-conjugated dicarboxylic acid 1,4-bis-[2-(4-carboxyphenyl)ethynyl]-2,5-dihexylbenzene {HO2C[PEP(hexyl)2EP]CO2H} has been used to synthesise the new crystalline coordination polymers {Zn(O2C[PEP(hexyl)2EP]CO2)(DMF)2} (1) and {Zn(O2C[PEP(hexyl)2EP]CO2)(DEF)2} (2) in N,N-dimethylformamide (DMF) and N,N-diethylformamide (DEF), respectively, under mild conditions. Single-crystal X-ray crystallography revealed that 1 and 2 are isostructural and consist of uncharged zigzag coordination chains in which [Zn(formamide)2]2+ fragments are bridged by (O2C[PEP(hexyl)2EP]CO2)2− ligands. The zigzag chains possess different intra-chain Zn?Zn?Zn angles due to the different volumes of the coordinating formamide molecules and subtle differences in the hydrophobic inter-chain interactions. Upon heating 1 and 2 to 200 °C, removal of the coordinating formamide molecules occurs, yielding the formamide-free compounds 1-DMF and 2-DEF of composition {Zn(O2C[PEP(hexyl)2EP]CO2)}. According to powder X-ray diffraction and FT-IR spectroscopy studies, these materials are not crystalline but still possess partial ordering of intact, yet modified coordination chains in a structural arrangement which appears to be related to the respective parent compounds. Compounds 1, 2, 1-DMF and 2-DEF exhibit blue photoluminescence. The emission maxima of 1-DMF and 2-DEF are red-shifted by ca. 25 nm with respect to λmax of 1 and 2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号