首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Five new silver(I)-saccharinate complexes [Ag2(sac)2(tmen)2] (1), [Ag2(sac)2(deten)2] (2), [Ag2(sac)2(dmen)2] (3), [Ag(sac)(N,N-eten)] (4), and [Ag(sac)(dmpen)]n (5); (sac = saccharinate, tmen = N,N,N′,N′-tetramethylethylenediamine, deten = N,N′-diethylethylenediamine, dmen = N,N′-dimethylethylenediamine, N,N-eten = N,N-diethylethylenediamine and dmpen = 1,3-diamino-2,2-dimethylpropan) have been synthesized and characterized by elemental analyses, IR, thermal analyses, single crystal X-ray diffraction and antimicrobial activities. The crystallographic analyses show that all the complexes crystallize in monoclinic space group P21/c. In 1, the sac ligand acts as a bridge to connect the silver centres through its imino N and carbonyl O atoms forming an eight-membered bimetallic ring in a chair conformation. Complex 2 has also a dimeric structure in which the monomeric [Ag(sac)(deten)] units are linked by Ag?Ag interactions. In 3, saccharinate ligand acts as a bridging bidentate ligand between two silver(I) centres through sulfonyl group and imino N atom, forming an alternating polymeric chain through the direction [0 1 0]. In 4, the inter-molecular N-H?O hydrogen bonds form one-dimensional polymeric chains through the a axis, and these linear chains are inter-connected to each other by N-H?O hydrogen bonds, which produce a chain of edge-fused and rings along [1 0 0]. Complex 5 is a coordination polymer in which the monomeric [Ag(dmpen)(sac)]n units are linked by Ag?Ag interactions, and the dmpen ligand acts as a bridge between the silver(I) ions, forming a two-dimensional network parallel to the (1 0 0) plane.  相似文献   

2.
Reactions of silver(I) perchlorate with tetraphenyl-cyclopentadiene (Ph4H2C5) have isolated two novel silver(I) bridged tetraphenyl-pyrylium complexes: [Ag(ClO4)(Ph4HC5O+)](ClO4) (1) and (2), depending on moisture-content of the reactants. Structure studies using single-crystal X-ray diffraction have showed that complex 1 contains a distorted tetrahedral metal center bridging two neighboring peripheral phenyl rings of one pyrylium cation and two perchlorate anions, whereas 2 involves a three-coordinate metal ion interacting with a pair of phenyl rings and one water molecule, leaving two perchlorate anions free from coordination. For both complexes, the precursor ligand Ph4H2C5 undergoes a ring-enlargement reaction, forming a six-membered pyrylium cation. The fundamentals of the synthesis, structure characterization and some properties are discussed.  相似文献   

3.
Mononuclear and dinuclear silver(I) complexes bearing 1,8-naphthyridine (napy) were prepared. The crystal structures of [Ag(napy-κN)2](PF6) (1) and [Ag2(μ-napy)2](PF6)2 · 3CH3CN (2 · 3CH3CN) were determined by X-ray diffraction studies. In complex 1, intermolecular π-π interaction of napy ligands between neighboring molecules forms left-handed hexagonal columns in the solid state. On the other hand, two napy ligands bridging two Ag ions in the dinuclear complex 2 shape a face-to-face π-π stacking with those of the neighboring molecule to form the dimeric unit. Besides, two of four napy ligands, which are located in a diagonal position in the dimeric unit, build intermolecular back-to-back π-π stackings with those of the adjacent dimeric unit, and a ladder-like stairway structure is generated in the solid state. Irrespective of such characteristic structures of 1 and 2 in the solid state, both complexes show very rapid dynamic behavior in solutions. No conversion between 1 and 2 took place even in the presence of excess amounts of Ag+ or napy in solutions.  相似文献   

4.
The meagre (structurally defined) array of 1:2 silver(I) (pseudo-)halide:unidentate nitrogen base adducts is augmented by the single-crystal X-ray structural characterization of the 1:2 silver(I) thiocyanate:piperidine (‘pip’) adduct. It is of the one-dimensional ‘castellated polymer’ type previously recorded for the chloride: ?Ag(pip)2(μ-SCN)Ag(pip)2? a single bridging atom (S) linking successive silver atoms. By contrast, in its copper(I) counterpart, also a one-dimensional polymer, the thiocyanate bridges as end-bound SN-ambidentate: ?CuSCNCuSCN? A study of the 1:1 silver(I) bromide:quinoline (‘quin’) adduct is recorded, as the 0.25 quin solvate, isomorphous with its previous reported ‘saddle polymer’ chloride counterpart.Recrystallization of 1:1 silver(I) iodide:tris(2,4,6-trimethoxyphenyl)phosphine (‘tmpp’) mixtures from py and quinoline (‘quin’)/acetonitrile solutions has yielded crystalline materials which have also been characterized by X-ray studies. In both cases the products are salts, the cation in each being the linearly coordinated silver(I) species [Ag(tmpp)2]+, while the anions are, respectively, the discrete [Ag5I7(py)2]2− species, based on the already known but unsolvated [Cu5I7]2− discrete, and the polymeric, arrays, and polymeric . The detailed stereochemistry of the [Ag(tmpp)2]+ cation is a remarkably constant feature of all structures, as is its tendency to close-pack in sheets normal to their P-Ag-P axes.The far-IR spectra of the above species and of several related complexes have been recorded and assigned. The vibrational modes of the single stranded polymeric AgX chains in [XAg(pip)2](∞|∞) (X = Cl, SCN) are discussed, and the assignments ν(AgX) = 155, 190 cm−1 (X = Cl) and 208 cm−1 (X = SCN) are made. The ν(AgX) and ν(AgN) modes in the cubane tetramers [XAg(pip)]4 (X = Br, I) are assigned and discussed in relation to the assignments for the polymeric AgX:pip (1:2) complexes, and those for the polymeric [XAg(quin)](∞|∞) (X = Cl, Br) compounds. The far-IR spectra of [Ag(tmpp)2]2[Ag5I7(py)2] and its corresponding 2-methylpyridine complex show a single strong band at about 420 cm−1 which is assigned to the coordinated tmpp ligand in [Ag(tmpp)2]+, and a partially resolved triplet at about 90, 110 and 140 cm−1 which is assigned to the ν(AgI) modes of the [Ag5I7L2]2− anion. An analysis of this pattern is given using a model which has been used previously to account for unexpectedly simple ν(CuI) spectra for oligomeric iodocuprate(I) species.  相似文献   

5.
Syntheses and room-temperature single crystal X-ray structural characterizations are recorded for a variety of silver(I) oxyanion (perchlorate, nitrate and trifluoroacetate (‘tfa’) (increasing basicity)) adducts, AgX, with a number of pyridine (‘py’) bases, L, functionalized in the 2-position with N- or O-donor groups, namely 2-amino-, 2-amino-6-methyl-, 2-aminomethyl-, 2-hydroxy-, 2-methoxy- and 2-acetyl- pyridines, ‘2np’, ‘nmp’, ‘amp’, ‘ohp’, ‘mop’, and ‘acp’. A variety of stoichiometries and associated structural types are defined: [Ag(chelate)2]X, L/X = amp,acp/ClO4, [XAg(chelate)2], L/X = acp/tfa, of 1:2 AgX:L stoichiometry; for 1:1 stoichiometry, although a discrete mononuclear complex [(chelate)Ag(O2NO)] is defined for AgNO3: acp (1:1), all others are polymers, successive silver atoms being linked by N,N′-bridging ligands singly (L/X = 2np/ClO4 (?HAgHTAgTHAgH?), amp/ClO4, NO3 (?HTAgHTAg?) (‘H’ ≡ head, ‘T’ = tail)) or pairwise, ?L2AgX2AgL2Ag? (L/X = 2np/tfa, nmp/NO3). More complex polymeric arrays are found with L/X = ohp/NO3, tfa, where interaction with the metal takes place via the O-donor only, the py functionality being protonated, and in adducts of more complex stoichiometry AgNO3:mop (2:3) and AgNO3:2np (3:4).  相似文献   

6.
Six hydrogen-bonded silver(I) complexes, Ag(4-abaH)2(NO3) (1), [Ag(4-abaH)2(NO3)]n (2), {[Ag(4-aba)(4-abaH)] · H2O}n (3), {[Ag(4,4-bipy)(H2O)](4-aba)0.5(NO3)0.5 · (H2O)0.5}n (4), [Ag[(3-abaH0.5)2] (5), and {[Ag(3-aba)] · H2O}n (6) (4-abaH=4-aminobenzoic acid, 3-abaH=3-aminobenzoic acid), have been synthesized and characterized by single-crystal X-ray diffraction analyses. In 1, 4-abaH serves as a monodentate ligand coordinating to Ag(I) through its nitrogen atom, while uncoordinated carboxylic group links (4-abaH)-Ag-(4-abaH) into a one-dimensional metallic carboxylic synthon. 2 may be regarded as an extension of 1 into a two-dimensional carboxylic synthon through NO3 − bridging two adjacent Ag(I) centers. In 3, 4-abaH in a monodentate mode and 4-aba in a μ-N,O bridging mode link three-coordinated Ag(I) to form a one-dimensional swallow-like chain, which is further extended into a two-dimensional layer structure through inter-chain hydrogen bonding interactions. The alternating Ag(I) and 4,4-bipy in 4 give rise to a slightly distorted linear chain, which is further extended into a two-dimensional layer through the completely overlapping and off-set stacking interactions. The hydrogen bonds involving in weakly coordinated aqueous molecules and 4-aba further extend it into a three-dimensional framework. In 5, the inter-molecular hydrogen bonding and π-π stacking interactions extend Ag[(3-abaH0.5)2] into a two-dimensional supramolecular architecture. In 6, 3-aba in a μ3-N,O,O coordination mode links three three-coordinated Ag(I) into a two-dimensional network. Uncoordinated aqueous molecules and the adjacent 3-aba oxygen atoms form intermolecular hydrogen bonds.  相似文献   

7.
Three new copper(II) complexes of 5,5-diethlybarbiturate (barb), [Cu(barb)2(dmen)]·0.5H2O (dmen = N,N-dimethylethylenediamine) 1, [Cu(barb)2(bapa)] (bapa = bis(3-aminopropyl)amine) 2, and [Cu(barb)(apen)](barb)·2H2O (apen = N,N′-bis(3-aminopropyl)ethylenediamine) 3, have been synthesized and characterized by chemical, spectroscopic and thermal methods. Single crystal X-ray diffraction studies revealed that all complexes are mononuclear. The copper(II) ion exhibits a square-pyramidal coordination geometry in 1 and 3, but a trigonal-bipyramidal geometry in 2. The barb ligand shows different coordination modes. 1 presents the unequal coordination of the barb ligands: one is monodentate (N) and the other one is bidentate (N, O). In 2, both barb ligands are N-coordinated, whereas in 3, one barb ligand is N-coordinated, while the second barb ligand behaves as a counter-ion. The dmen, bapa and apen ligands act as bi-, tri- and tetradentate ligands, respectively. All complexes display a hydrogen-bonded network structure. The IR spectroscopic analysis shows that the ν(CO) stretching frequencies do not correlate predictably with the coordination mode of the barb ligand in 1. Thermal analysis data for 1-3 are in agreement with the crystal structures.  相似文献   

8.
Six new complexes, [Cu4I4(PPh2Cy)4]·2H2O (1), [CuI(PPhCy2)2] (2), [CuCl(PPhCy2)2] (3), and [CuBr(PPh3)3]·CH3CN (4), [Ag(PPhCy2)2(NO3)] (5), [Ag(PCy3)(NO3)]2 (6) [where Ph = phenyl, Cy = cyclohexyl], have been synthesized and structurally characterized by X-ray diffraction, IR absorption spectra and NMR spectroscopic studies (except complex 4). The X-ray diffraction analysis of complex (1), pseudo polymorph of complex [Cu4I4(PPh2Cy)4], reveals a stella quadrangula structure. The four corners of the cube are occupied by copper(I) atoms and four I atoms are present at the alternative corners of the cube, further more the copper(I) atoms are coordinated to a monodentate tertiary phosphine. Complexes (2) and (3) are isostructural with trigonal planar geometry around the copper(I) atom. The crystal structure of complex (4) is a pseudo polymorph of complex [CuBr(PPh3)3] and the geometrical environment around the copper(I) centre is distorted tetrahedral. In the AgI complexes (5) and (6), the central metal atoms have pseudo tetrahedral and trigonal planar geometry, respectively. Spectroscopic and microanalysis results are consistent with the single crystal X-ray diffraction studies.  相似文献   

9.
Two new linear and V-shaped tetradentate ligands, namely 1,4-bis(2-hexahydropyrimidyl)benzene (L) and 1,3-bis(2-hexahydropyrimidyl)benzene (L), and their silver(I) complexes, [Ag2L(μ-ONO2)](NO3) · 2H2O (1), [Ag2L(μ-pn)](NO3)2 (2), [Ag2L(μ-pn)](ClO4)2 (3) and [Ag4L2(H2O)](NO3)4 · 5H2O (4) (pn=1,3-diaminopropane) have been synthesized in situ and structurally characterized by single-crystal X-ray diffraction. 1 and 2 were obtained from the same reaction solution but different crystallization conditions. 1 is an one-dimensional chain featuring cuboid tetranuclear silver(I) units interconnected through monoatomic nitrate bridges. Both 2 and 3 are ribbon-like helical compounds in which each L ligand acts in a tetradentate bridging mode to interconnect four metal atoms, and each pn ligand functions in a bidentate bridging mode to link a pair of metal atoms. 4 shows a truncated square-pyramidal tetranuclear motif arose by the V-shaped L ligand. Close Ag?Ag separations (2.901-2.939 Å) assisted by bis(hexahydropyrimidine) bridges were observed in 1 and 4, indicating metal-metal interactions. Photoluminescence of 1-4 has also been observed in the solid state and solution at room temperature and low temperature, respectively.  相似文献   

10.
The complexes [Cu(PCHO)2(NCMe)][BF4] (1) and [Cu(PCHO)3][BF4] (2) have been prepared by treating [Cu(NCMe)4][BF4] with two and three equivalents of Ph2P(o-C6H4)C(O)H (abbreviated as PCHO) at room temperature, respectively. The reaction of 1 and (Ph2PC5H4)2Fe (abbreviated as DPPF) affords [Cu(PCHO)(DPPF)][BF4] (3). The molecular structures of 1-3 have been determined by an X-ray diffraction study. The aldehyde groups in 1 are pendant, while one of the formyl groups in 2 is weakly coordinated to the copper ion through the oxygen atom. On the other hand, the copper atom in 3 is strongly chelated by both DPPF and PCHO ligands.  相似文献   

11.
At ambient temperature, two silver(I) complexes [Ag4(SO4)2(dppm)4]·5CH3CH2OH·1/2H2O (1) and [Ag2(SO4)(dppm)2(2-ampz)]·CH3OH·H2O (2) (dppm = bis(diphenylphosphino)methane, 2-ampz = 2-aminopyrazine) were obtained by the reaction of Ag2SO4 with dppm in the presence of pyrazine or 2-aminopyrazine. They are characterized by IR, X-ray crystallography, luminescence and 1H, 31P NMR spectroscopy. Complex 1 is a tetranuclear cluster. In complex 2, the units [Ag2(SO4)(dppm)2] are connected by 2-aminopyrazine to form a 1D linear polymer. Due to the subtle interactions of different nitrogen heterocyclic ligands with silver ions, two SO42− anions in 1 adopt μ3-O, O′, O′ and unique μ4-O, O, O′, O′ bonding modes respectively, while SO42− anion in 2 adopts μ-O, O′ bonding mode.  相似文献   

12.
Synthetic, single crystal X-ray structural characterizations and vibrational spectroscopic studies are recorded for a number of adducts of 1:2 stoichiometry of silver(I) oxyanion salts for oxyanions of differing basicity (perchlorate, nitrate, carboxylate (as trifluoroacetate (≡‘tfa’))), with a variety of pyridine (≡‘py’) or piperidine (≡‘pip’) bases hindered in the 2- (and, sometimes, 6-) position(s) by methyl or non-coordinating functionalities of other types, the ligands employed being 2-methylpyridine (‘2mp’), 2,6-dimethylpyridine (‘lut’), 2,4,6-trimethylpyridine (‘coll’), quinoline (‘quin’), 2,2,6,6-tetramethylpiperidine (‘tmp’), 2-amino-,6-methylpyridine (‘nmp’), 2-methoxypyridine (‘mop’) and 2-cyanomethylpyridine (‘pcn’); studies are also recorded of adducts with the parent, ‘py’, base and with 4-cyanopyridine (‘cnp’). In the majority of the complexes, the NAgN motif predominates, as might be expected, variously distorted from linearity in response to changes in (competing) basicities of the nitrogen base and any nearby anion or solvent molecule; an unusual variation is found in the highly hindered tmp/tfa adduct which is a monohydrate with interacting water displacing the rather basic anion, the converse being the case in the corresponding nitrate, also a monohydrate. With the less-hindered base mpy, both nitrate and trifluoroacetate are binuclear, with O and OCO bridges corresponding to centrosymmetric four- and eight-membered rings, respectively; the quin/nitrate adduct is more complex, also binuclear but with bis(chelating) nitrate. AgNO3:py (1:3) is found to be binuclear, while with Agtfa/py, a 3:2 adduct [Ag(py)2][Ag2(tfa)3](∞|∞) is found with a novel, polymeric, strongly interacting anion. A further pair of 1:3 adducts, AgNO3:2np (2np = 2-aminopyridine) and Agtfa:nmp, both mononuclear [AgL3]+X are described, differing in the modes of interaction of silver with the three N-bases. In all simple NAgN systems with aromatic ligands, the pair of ligand ‘planes’ is disposed quasi-parallel.The far-IR spectra of [AgL2]Y (L = lut, coll; Y = ClO4, NO3, tfa) and of [Ag(py)n](ClO4) (n = 2,4) have been recorded and the ν(AgN) bands assigned in the range 80-240 cm−1. For the L = lut, coll complexes, there is a clear trend of decreasing ν(AgN) following increasing r(AgN) as the interaction with the counterion increases along the series Y = ClO4, NO3, tfa.  相似文献   

13.
Silver(I) derivatives [Ag(L)(PiBu3)] (L = H2B(tz)2 (dihydrobis(1H-1,2,4-triazol-1-yl)borate), HB(tz)3 (hydrotris(1H-1,2,4-triazol-1-yl)borate), Tp (hydrotris(1H-pyrazol-1-yl)borate), Tp∗ (hydrotris(3,5-dimethyl-1H-pyrazol-1-yl)borate), TpMe (hydrotris(3-methyl-1H-pyrazol-1-yl)borate), TpCF3 (hydrotris(3-trifluoromethyl-1H-pyrazol-1-yl)borate), Tp4Br (hydrotris(4-bromo-1H-pyrazol-1-yl)borate), HB(btz)3 (hydrotris(1H-1,2,4-benzotriazol-1-yl)borate), Tm (hydrotris(3-methy-1-imidazolyl-2-thione)borate), pzTp (tetrakis(1H-pyrazol-1-yl)borate), pz0TpMe (tetrakis(3-methyl-1H-pyrazol-1-yl)borate) have been synthesized from the reaction of [Ag(NO3)(PiBu3)2] with ML (M = Na or K) and characterized both in solution (1H- and 31P{1H} NMR, ESI MS spectroscopy, conductivity) and in the solid state (IR, single crystal X-ray structure analysis). These complexes are air-stable and light-sensitive and non-electrolytes in CH2Cl2 and acetone in which they slowly decompose, even with the strict exclusion of oxygen and light, yielding metallic silver and/or azolate (Az) species of formula [Ag(Az)(PiBu3)x] upon breaking of the bridging B-N(azole) bond. The solid state structures of [Ag(Tp)(PiBu3)], [Ag(TpMe)(PiBu3)], [Ag(TpCF3)(PiBu3)], [Ag{HB(btz)3}(PiBu3)], and [Ag(Tm)(PiBu3)] show that the silver atom adopts a distorted tetrahedral coordination geometry. [Ag(L)(PPh3)] can be easily obtained from the reaction of [Ag(L)(PiBu3)] with excess PPh3, whereas from the reverse reaction of [Ag(L)(PPh3)] with PiBu3a mixture of [Ag(L)(PiBu3)] and [Ag(L)]2 and [Ag(L)(PPh3)] was recovered. 31P{1H} NMR variable temperature NMR studies showed that in the pz0Tpx derivatives the scorpionate ligand acts as a bidentate donor, whereas tridentate coordination is found for all tris(azolyl)borate derivatives, both in solution and in the solid state. ESI MS data suggest the existence in solution of species such as [Ag(PiBu3)2]+ upon dissociation of the L ligand, and also the formation of dimeric species of the form [Ag2(L)(PiBu3)2]+.  相似文献   

14.
Two new polymeric silver(I)-fluconazole complexes: [Ag(HFlu)(NO3)]n (1) and {[Ag(HFlu)2](ClO4)}n (2), have been synthesized and structurally characterized. The crystal structure of 1 consists of infinite 1D single strand helical coordination arrays with alternative …PMPM… arrangements, which are interlinked through hydrogen bonding interactions to generate a 3D network. The shortest intrachain Ag?Ag distance bridged by HFlu ligand is 8.287(1) Å. In 2, each Ag(I) ion is coordinated by four triazole N atoms from four HFlu ligands to form a 2D coordination layer, which has a helical arrangement along the [1 0 0] direction. The results of anti-fungal studies demonstrate that both silver(I) complexes are more active in comparison to the fluconazole drug.  相似文献   

15.
The reaction of [Ag4(hfac)4(THF)2] (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate, THF = tetrahydrofurrane) with 2,2′-bipyrimidine (bpm) leads to single crystals. They crystallise in the triclinic system, space group . Their structure consists of [Ag4(hfac)42-bpm)3] tetranuclear complexes. In this complex, Ag(I) ions adopt distorted square planar and trigonal prismatic geometries. When [Ag4(hfac)4(THF)2] is replaced by monohydrated silver(I) perchlorate, a one-dimensional (1D) compound with a formula of [[Ag(μ2-bpm)]+]n, is obtained as single crystals. They crystallise in the monoclinic system, space group P21/c. Their structure consists of [[Ag(μ2-bpm)]+]n chains separated by non-coordinated perchlorate ions. In the chains, the Ag(I) centres adopt a square planar geometry. Finally, starting from [[Ag(μ2-bpm)]+]n, and sodium oxalate , another 1D compound with a formula of [Ag(μ2-bpm)(μ2-ox)]n, 4nH2O is obtained as single crystals. They crystallise in the triclinic system, space group . In these chains, bipyrimidine and oxalate are alternate. They generate a square planar geometry around the Ag(I) cations.  相似文献   

16.
Three new Mn(II) complexes [Mn(HnicO)2(H2O)2] (1), [Mn2(HnicO)2SO4(H2O)2]n (2), and [NaMn(HnicO)3]n (3) (H2nicO = 2-hydroxynicotinic acid) have been synthesized and determined by X-ray diffraction. For complex 1, the mononuclear units with two bidentate HnicO ions and two water molecules are assembled into a 3D architecture via hydrogen bonding and π-π interactions. For 2, Mn(II) ions are connected by μ3-HnicO and bridging ligands, producing a 2D (6,3) coordination network. For 3, binuclear Na(I)-Mn(II) units with three carbonyl oxygen bridges are interlinked by carboxylate groups, resulting in a 3D 6-connected coordination network with distorted α-Po topology. The magnetic properties of 2 are discussed.  相似文献   

17.
A tetrameric [Ag(μ-3,5-tBu2pz)]4 · CH2Cl2 (1 · CH2Cl2) has been prepared and structurally characterized. The four Ag-atoms are in an approximate rhombic arrangement with pyrazolato bridges alternating on either side of the Ag4-plane. A 1H NMR study shows partial decomposition of 1 to the mononuclear [Ag(3,5-tBu2pzH)2]+ in solution.  相似文献   

18.
Jing Xu 《Inorganica chimica acta》2009,362(11):4002-4008
Three new coordination polymers {[Cu(HL)(H2O)]·H2O}n (1), [Ag(H2L)]n (2), and {[Co(HL)(phen)(H2O)]·8H2O}n (3) [H3L = 5-(1H-imidazol-4-ylmethyl)aminoisophthalic acid, phen = 1,10-phenanthroline] have been synthesized under hydrothermal conditions. The results of X-ray diffraction analysis revealed that complex 1 displays (3, 3)-connected 2D network with (4, 82) topology, while complexes 2 and 3 have infinite 1D chain structure, in which one of the two carboxylic groups of H2L/HL2− is uncoordinated. The 2D layers of 1 or the 1D chains of 2 and 3 are further linked together by hydrogen bonds and π-π interactions to form 3D supramolecular frameworks. Moreover, the electrochemical properties of complexes 1 and 2 have been studied by modified glassy carbon electrodes of 1 (Cu-GCE) and 2 (Ag-GCE), and the results indicate that the Cu-GCE and Ag-GCE show one-electron redox peaks. In addition, both Cu-GCE and Ag-GCE have good electrocatalytic activities toward the reduction of H2O2 in phosphate buffer (pH 5.5) solution.  相似文献   

19.
Treatment of a suspension of AgNO3 and AgCl in MeOH with a solution of N,N,N′,N′-tetra(diphenylphosphanylmethyl)ethylene diamine (dppeda) in CHCl3 afforded a binuclear complex [Ag2(dppeda)Cl](NO3)·2MeOH (1). The analogous reactions using AgSCN and dppeda in EtOH/CH2Cl2 gave rise to a polymeric complex [Ag2(dppeda)(SCN)2]n (2). Both compounds were fully characterized by elemental analyses, IR spectra, 1H(31P) NMR, and single-crystal X-ray crystallography. The cation of 1 shows an interesting molecular basket framework in which dppeda adopts a side-by-side coordination mode. Compound 2 possesses an unique 2D (6,3) layer network with 34-membered metallomacrocycles in which dppeda takes a end-to-end coordination mode. The 2D topological framework of 2 is rare in the chemistry of tetraphosphines. The photoluminescent properties of 1 and 2 in solid state at ambient temperature were investigated.  相似文献   

20.
Mixed-ligand complexes of the formula [Ag(PPh3)(L)Br]2 were obtained by treatment of various heterocyclic thiones L {L=pyridine-2-thione (py2SH), pyrimidine-2-thione (pymtH), benz-1,3-imidazoline-2-thione (bzimtH2), benz-1,3-thiazoline-2-thione (bztztH), 1-methyl-1,3-imidazoline-2-thione (meimtH) and 5-methoxy-benz-1,3-imidazoline-2-thione (5MeObzimtH2)} with equivalent quantities of silver(I) bromide and triphenylphosphine in dry acetone. The compounds were characterized by their IR, far-IR, UV–Vis and 1H NMR spectroscopic data. The crystal structure of [Ag(PPh3)(pymtH)Br]2 was determined by single-crystal X-ray diffraction methods. The complex exhibits a planar Ag2Br2 moiety in which each of the doubly bromine-bridged Ag(I) centres is further bonded to one phosphine P and one thione S atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号