首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of [Cu(I)(2,2′-biquinoline)(L)](ClO4) complexes (L = bis(diphenylphosphino)methane (bppm), 1,2-bis(diphenylphosphino)ethane (bppe), 1,4-bis(diphenylphosphino)butane (bppb)) have been synthesized and characterized by elemental analysis, conductivity, ESI-mass, NMR and UV-Vis spectroscopies, cyclic voltammetry, X-ray diffraction ([Cu(I)(2,2′-biquinoline)(bppe)](ClO4)) and DFT calculations. These compounds are monometallic species in a distorted tetrahedral arrangement, in contrast with related compounds found as dinuclear according to diffraction studies. The spectroscopic properties are not directly correlated with the length of alkyl chain bridge between the bis-diphenylphosphine groups. In this way, the chemical shift of some 2,2′-biquinoline protons and the metal to ligand charge transfer (Cu to 2,2′-biquinoline) follows the order [Cu(2,2′-biquinoline)(bppm)](ClO4), [Cu(2,2′-biquinoline)(bppb)](ClO4), [Cu(2,2′-biquinoline)(bppe)](ClO4). The same dependence is followed by the potentials to Cu(II)/Cu(I) couple. These results are discussed in terms of inter-phosphorus alkane chain length and tetrahedral distortions on copper.  相似文献   

2.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

3.
Three mono-nuclear copper(II) complexes [Cu(tepza)X]ClO4 (X = Cl, 1; X = NCS, 2; X = dca, 3) and two dinuclear bridging complexes [Cu2(tepza)2(μ-C4O4)](ClO4)2·H2O(4) and [Cu2(tepza)2(μ-C5O5)](ClO4)2(5) where tepza = tris[2-ethyl(1-pyrazolyl)]amine, dca = dicyanamide, C4O42− = 3,4-dihydroxycyclobut-3-ene-1,2-dionate (squarate dianion) and C5O52− = 4,5-dihydroxycyclopent-4-ene-1,2,3-trionate (croconate dianion) were synthesized and structurally characterized by IR and UV-Vis spectroscopy as well as by single X-ray crystallography. In the solid state, the geometry of copper(II) centers in these complexes are as follows: close to SP in 2, distorted TBP in 3, predominant SP in 4, and distorted octahedral in 5, whereas in solution distorted SP geometry was generally found. The squarato and the croconato dianions in complexes 4 and 5 are bridging the two copper(II) centers in cis-bis-monodentate and bis-bidentate bonding modes, respectively. Magnetic susceptibility measurements at variable temperatures (2-300 K) reveal the weak antiferromagnetic coupling in the two bridging dinuclear complexes 4 (= −24.9 cm−1) and 5 (= −3.1 cm−1).  相似文献   

4.
A series of Ni(II) and Cu(II) complexes of the hexaaza macrocycles, 3,6,9,17,20,23-hexaazatricyclo[23.3.1.111,15]triaconta-1(29),11(30),12,14,25,27-hexaene (L1) and 3,6,9,16,19,22-hexaazatricyclo[22.2.2.211,14]triaconta-1(26),11(29),12,14(30),24(28),25-hexaene (L2), have been prepared and the crystal structures determined for [Ni2L1(O2CCH3)2(H2O)2](ClO4)2 (1), [Ni2L2(DMF)6](ClO4)4 · 2H2O (2), {[Cu2L2Br(O2CCH3)](ClO4)2}n (3), [Cu2L2(μ-CO3)(H2O)2]2(ClO4)4 · 8H2O (4), [Cu2L2(O2CCH3)2](BF4)2 (5), and [Cu2L1(μ-imidazolate)Br]2Br4 · 6H2O (6). In these complexes, two metal centers are bound per ligand; in 1 and 3-6, the N3 subunits of L1 or L2 coordinate meridionally to the metal centers, whilst in 2, each N3 subunit in L2 adopts a facial mode of coordination. The binuclear cations in 1 and 2 have chair-like conformations, with the distorted octahedral Ni(II) coordination spheres completed by terminal water and a bidentate acetate ligand in 1 and three DMF ligands in 2. The Cu(II) centers in 3-6 generally reside in square planar environments, although a weakly binding ligand enters the coordination sphere in some cases, generating a distorted square pyramidal geometry. The binuclear [Cu2L2]4+ units in 3, 4 and 5 adopt similar bowl-shaped conformations, stabilized by H-bonding interactions between pairs of amine groups from L2 and a perchlorate or tetrafluoroborate anion. In 3, the binuclear units are linked through acetate groups, bridging in a syn-anti fashion, to produce a zig-zag polymeric chain structure, whilst 4 incorporates a tetrameric cation consisting of two binuclear units linked via a pair of carbonate bridges. Compound 6 features an imidazolate bridge between the two Cu(II) centers bound by L1. Pairs of [Cu2L1(μ-imidazolate)]3+ units are then weakly linked through a pair of bromide anions.  相似文献   

5.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

6.
A linear tri-nuclear oxamato bridged copper(II) complex [Cu3(pba)(dpa)2(H2O)(ClO4)](ClO4)·H2O (1) (pbaH4 = 1,3-propanediylbis(oxamic acid), dpa = 2,2′-dipyridylamine) was isolated from the reaction mixture of Na2[Cu(pba)]·3H2O, copper perchlorate hexahydrate and dipyridylamine in methanol. On reaction with dpa or DMF in basic medium (KOH) at ambient temperature complex 1 changed to dinuclear oxalate bridged copper(II) derivatives, [Cu2(μ-C2O4)(dpa)4](ClO4)2 (2) and [Cu2(μ-C2O4)(dpa)2(DMF)2](ClO4)2 (3), respectively. The complexes 1, 2 and 3 have been characterized by physicochemical and spectroscopic tools, and also by the X-ray single crystal analysis. The hydrolysis of 1 in basic medium and thermo-gravimetric analysis has been studied. Absorption and emission spectral studies showed that complex 1 interacts with calf thymus-DNA (CT-DNA) with a binding constant (Kb) of 4.01 × 104 M−1 and linear Stern-Volmer quenching constant (Ksv) of 6.9 × 104. A strong anti-ferromagnetic interaction with a coupling constant JCuCu of 320.0 ± 0.3 cm−1 was observed from the study of magnetic behavior of complex 1 in the temperature range of 2-300 K. Electrochemical equivalency of three copper(II) ions in 1 was identified by getting only one quasi reversible cyclic voltammogram.  相似文献   

7.
Manganese(II) complexes, Mn2L13(ClO4)4, MnL1(H2O)2(ClO4)2, MnL2(H2O)2(ClO4)2, and {(μ-Cl)MnL2(PF6)}2 based on N,N′-bis(2-pyridinylmethylene) ethanediamine (L1) and N,N′-bis(2-pyridinylmethylene) propanediamine (L2) ligands have been prepared and characterized. The single crystal X-ray diffraction analysis of Mn2L23(ClO4)4 shows that each of the two Mn(II) ion centers with a Mn-Mn distance of 7.15 Å are coordinated by one ligand while a common third ligand bridges the metal centers. Solid-state magnetic susceptibility measurements as well as DFT calculations confirm that each of the manganese centers is high-spin S = 5/2. The electronic structure obtained shows no orbital overlap between the Mn(II) centers indicating that the observed weak antiferromagentism is a result of through space interactions between the two Mn(II) centers. Under different reaction conditions, L1 and Mn(II) yielded a one-dimensional polymer, MnL1(H2O)2(ClO4)2. Ligand L2 when reacted with manganese(II) perchlorate gives contrarily to L1 mononuclear MnL2(H2O)2(ClO4)2 complex. The analysis of the structural properties of the MnL2(H2O)2(ClO4)2 lead to the design of dinuclear complex {(μ-Cl)MnL2(PF6)} where two chlorine atoms were utilized as bridging moieties. This complex has a rhomboidal Mn2Cl2 core with a Mn-Mn distance of 3.726 Å. At room temperature {(μ-Cl)MnL2(PF6)} is ferromagnetic with observed μeff = 4.04 μB per Mn(II) ion. With cooling, μeff grows reaching 4.81 μB per Mn(II) ion at 8 K, and then undergoes ferromagnetic-to-antiferromagnetic phase transition.  相似文献   

8.
Two new linear and V-shaped tetradentate ligands, namely 1,4-bis(2-hexahydropyrimidyl)benzene (L) and 1,3-bis(2-hexahydropyrimidyl)benzene (L), and their silver(I) complexes, [Ag2L(μ-ONO2)](NO3) · 2H2O (1), [Ag2L(μ-pn)](NO3)2 (2), [Ag2L(μ-pn)](ClO4)2 (3) and [Ag4L2(H2O)](NO3)4 · 5H2O (4) (pn=1,3-diaminopropane) have been synthesized in situ and structurally characterized by single-crystal X-ray diffraction. 1 and 2 were obtained from the same reaction solution but different crystallization conditions. 1 is an one-dimensional chain featuring cuboid tetranuclear silver(I) units interconnected through monoatomic nitrate bridges. Both 2 and 3 are ribbon-like helical compounds in which each L ligand acts in a tetradentate bridging mode to interconnect four metal atoms, and each pn ligand functions in a bidentate bridging mode to link a pair of metal atoms. 4 shows a truncated square-pyramidal tetranuclear motif arose by the V-shaped L ligand. Close Ag?Ag separations (2.901-2.939 Å) assisted by bis(hexahydropyrimidine) bridges were observed in 1 and 4, indicating metal-metal interactions. Photoluminescence of 1-4 has also been observed in the solid state and solution at room temperature and low temperature, respectively.  相似文献   

9.
The dinuclear terephthalato-bridged nickel(II) complexes [Ni2(cyclen)2(μ-tp)](ClO4)2 (1) [Ni2(trpn)2(μ-tp)(H2O)2](ClO4)2 (2) and [Ni2(3,3,3-tet)2(μ-tp)(H2O)2](ClO4)2 · 2H2O (3), where tp = terephthalate dianion, cyclen = 1,4,7,10-tetraazacyclododecane, trpn = tris(3-aminopropyl)amine and 3,3,3-tet = 1,5,9,13-tetraazatridecane, were synthesized and structurally characterized by X-ray crystallography. Their magnetic susceptibilities were also determined at variable temperatures over the range 2-300 K. The structures of these complexes consist of μ-tp bridging two Ni(II) centers in a bis(bidentate) bonding fashion in 1 and in bis(monodentate) bonding fashion in 2 and 3. The coordination geometry around the Ni(II) ions in these compounds has a distorted octahedral geometry with four nitrogen atoms from the amine ligand (cyclen, trpn or 3,3,3-tet) and two coordinated oxygen atoms supplied by the chelated carboxylate group of the bridged terephthalate ligand in 1, and by one tp-carboxylate-oxygen in 2 and 3. The sixth coordination site in the last two complexes 2 and 3 is achieved via an oxygen atom from a coordinated water molecule. The intradimer Ni…Ni distances in these complexes are 10.740, 11.428 and 11.537 Å for 1, 2 and 3, respectively. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Ni(II) centers. Also, the analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(bidentate) and bis(monodentate) coordination modes for the bridged terephthalate ligand in 1, 2 and 3, respectively. Despite the different coordination modes of the tp bridging ligand in these complexes, they all exhibit very weak antiferromagnetic coupling. The coupling constants J were found to be −2.2, −0.6 and −1.5 cm3 K mol−1 for the complexes 1, 2 and 3, respectively. The structural and magnetic results of 1-3 are discussed in relation to the other related published μ-terephthalato dinuclear Ni(II) compounds.  相似文献   

10.
Three new Cu(II) complexes, [Cu2(C3H2O4)(phen)2(H2O)3](NO3)2(H2O)2 (1) (C3H2O4 = malonate, phen = 1,10-phenanthroline), [Cu2(C4H4O4)(phen)2(H2O)2](NO3)2 (2) (C4H4O4 = succinate), and {[Cu2(phen)2(H2O)(NO3)]2(C5H6O4)2}(NO3)2 (3) (C5H6O4 = glutarate) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. The X-ray analysis reveals that the structures of 1 and 2 are of dinuclear copper(II) complexes bridged by malonate and succinate dianions, respectively, and 3 is a tetranuclear species formed by two {[Cu2(phen)2(H2O)(NO3)](C5H6O4)} fragments. The copper ions in 1 and 3 show square-pyramidal coordination geometry, while the copper ions in 2 exhibit a square planar geometry. In each complex, the dicarboxylate ligand is coordinated to copper ions as a chelate and monodentate (1), bis-monodentate (2), and bis-bridging ligand toward the copper ions with syn-syn coordination mode (3).  相似文献   

11.
In aqueous solution, the reaction of Cu(ClO4)2 and di(2-pyridylmethyl)amine, DPA with the disodium salt of pyrazole-3,5-dicarboxylate (Na2Hpzdc) in presence of sodium azide afforded the azido complex [Cu3(DPA)3(μ-pzdc)(μ-N3)](ClO4)2·2H2O (1) whereas when reaction was conducted in absence of sodium azide the perchlorato complex [Cu3(DPA)3(μ-pzdc)(μ-ClO4)](ClO4)2·3H2O (2) was obtained. The complexes were structurally characterized by physicochemical techniques and by single crystal X-ray crystallography in case of 1. The coordination sphere of the two complexes which are iso-structural polymeric 1D systems consist of three independent Cu(DPA) units, one pzdc bridging ligand and one end-on bridging azido group in 1 or one bridging perchlorato group in 2. The three Cu(II) centers in both complexes may be described as axially elongated octahedral. Magnetic susceptibility measurements reveal the weak anti-ferromagnetic coupling in the two complexes (= −23.2 cm−1 for 1 and −14.8 cm−1 for 2).  相似文献   

12.
The preparation and magnetic properties of three copper(II) compounds of formulae [Cu2(bpcam)2(H2O)2(C2O4)] (1), [Cu2(bpcam)2(H2O)4(C4O4)] · 10 H2O (2) and Cu2(bpcam)2(C5O5)(H2O)3 (3) [bpcam = bis(2-pyrimidyl)amidate, and are reported. The structures of two of them (1 and 2) have been solved by single crystal X-ray diffraction and consists of centrosymmetric discrete copper(II) dinuclear units bridged by bis-bidentate oxalate (1) and bis-monodentate squarate (2), with the bpcam group acting as a terminal tridentate ligand. Each copper atom in 1 exhibits a distorted elongated octahedral coordination geometry. Three bpcam nitrogen atoms and one oxalate oxygen define the basal plane while the other oxalate oxygen and a water molecule take up the axial positions. Each copper atom in 2 is in an elongated octahedral surrounding with three bpcam nitrogen atoms and one squarate oxygen in the equatorial plane and two water molecules in the axial positions. The intramolecular copper-copper separations are 5.677(1) (1) and 7.819(53) Å (2). Magnetic susceptibility measurements for 1-3 in the temperature range 1.9-290 K show the occurrence of weak ferromagnetic interactions through oxalato (J = +0.75 cm−1) and squarato (J = +1.26 cm−1), the Hamiltonian being defined by . These values are analyzed and discussed in the light of the available magneto-structural data for analogous systems. The quasi-Curie law observed in 3 (θ = −1.15 K) contrasts with the significant antiferromagnetic interaction through bis-chelating croconate in other structurally characterized croconate-bridged copper(II) complexes and rules out the presence of bridging croconate in this compound.  相似文献   

13.
Bin Hu 《Inorganica chimica acta》2010,363(7):1348-6199
Four transition metal complexes of 3,8-di(thiophen-2′,2″-yl)-1,10-phenanthroline (dtphen), formulated as [Ni(dtphen)2(H2O)2]·(ClO4)2 (1), [Zn(dtphen)2(H2O)]·(ClO4)2 (2) [Cu(dtphen)2(H2O)]·(ClO4)2 (3), [Cu(dtphen)(phen)2]·(ClO4)2 (4) (phen = 1,10-phenanthroline) with different metal-to-ligand ratios, were synthesized and characterized herein. The X-ray single-crystal diffraction studies of 1-4 exhibit that different molecular configurations for the dtphen ligand can be observed where the side thiophene rings adopt the trans/trans, trans/cis, trans/disorder and cis/cis conformations relative to the central 1,10-phenanthroline unit in different compounds. Fluorescence emission spectra of 1-4 in methanol show that the fluorescence emission of 2 is much stronger than the other three metal complexes, which is mainly due to its full d10 electronic configuration of Zn(II) ion.  相似文献   

14.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

15.
Four new coordination complexes, NiII(L)2 (1), [CoIII(L)2]ClO4 (2), [Zn(HL)(L)]ClO4 · H2O (3) and [Zn(L)2][Zn(L)(HL)]ClO4 · 7H2O (4) (where L is a monoanion of a Schiff base ligand, N′-[(2-pyridyl)methylene]salicyloylhydrazone (HL) with NNO tridentate donor set), have been synthesised and systematically characterised by elemental analysis, spectroscopic studies and room temperature magnetic susceptibility measurements. Single crystal X-ray diffraction analysis reveals that 1 is a neutral complex, while 2-4 are cationic complexes. Among them, 4 is a rare type of cationic complex with two molecules in the asymmetric unit. The ligand chelates the metal centre with two nitrogen atoms from the pyridine and imino moieties and one oxygen atom coming from its enolic counterpart. All the reported complexes show distorted octahedral geometry around the metal centres, with the two metal-N (imino) bonds being significantly shorter than the two metal-N (Py) bonds.  相似文献   

16.
Two novel dinuclear nickel(II) complexes [Ni2(ntb)2(μ-tp)(H2O)1.61(CH3OH)0.39](NO3)2·5.13CH3OH·2.25H2O (1) and [Ni2(ntb)2(μ-fum)(H2O)(CH3OH)](NO3)2·6CH3OH·H2O (2) (tp = terephthalate dianion, fum = fumarate dianion, ntb = tris(2-benzimidazolylmethyl)amine) containing tetradentate poly-benzimidazole ligand were synthesized and structurally characterized by IR spectra, UV-Vis, elemental analysis and X-ray crystallography. The Ni(II) ions in 1 and 2 have distorted octahedral geometry with four nitrogen atoms of ntb, one oxygen atom of water and one oxygen atom supplied by the carboxylate group of the bridged dicarboxylato ligand. Complexes 1 and 2 consist of terephthalato- and fumarato-bridged dinickel(II) centers in bis(monodentate) bonding fashion. The Ni?Ni distances are 11.333 Å for 1 and 8.966 Å for 2. The magnetic susceptibility measurements at variable temperature show that two complexes exhibit weak antiferromagnetic interactions between nickel(II) ions with J values of −0.25 cm−1 and −0.36 cm−1, respectively.  相似文献   

17.
The syntheses and structural characterization of four cobalt(II)-salicylate complexes, [(TPA)CoII(HSA)](ClO4) (1), [(isoBPMEN)CoII(HSA)](BPh4) (2), [(TPzA)CoII(HSA)](ClO4) (3) and [(6Me3TPA)CoII(HSA)](BPh4) (4) [TPA = tris(2-pyridylmethyl)amine, isoBPMEN = N1,N1-dimethyl-N2,N2-bis(2-pyridylmethyl)ethane-1,2-diamine, TPzA = tris((3,5-dimethyl-1H-pyrazole-1-yl)methyl)amine and 6Me3TPA = tris(6-methyl-2-pyridylmethyl)amine] are described. While 2, 3 and 4 are unreactive towards dioxygen, 1 reacts slowly with molecular oxygen to a cobalt(III)-salicylate complex, [(TPA)CoIII(SA)](ClO4) (1a). Two different crystalline forms, 1a and 1a·4H2O were isolated depending upon the condition of oxidation and crystallization. The solid-state structures of cobalt(III)-salicylate unit in both 1a and 1a·4H2O show a six-coordinate distorted octahedral coordination geometry at the cobalt(III) center ligated by the tetradentate ligand (TPA) where the dianionic salicylate (SA) binds in a bidentate fashion through one carboxylate and one phenolate oxygen. The hydrated form 1a·4H2O reveals a hexameric water cluster formation in the inorganic lattice host. The complex cation and the perchlorate counterion are involved in stabilizing the (H2O)6 cluster in a rare ‘pentamer planar+1’ conformation. A one-dimensional water tape consisting of edge-shared water hexamers is observed. The water tape represents a subunit of ice structure.  相似文献   

18.
A dinuclear copper(II) complex [Cu2(PD)(DPP)2](ClO4)2 (1) incorporating a constrained binucleating hexadenate ligand, PD (1,3-bis{bis[(2-pyridyl)ethyl]amino}benzene), and coligand, DPP (diphenylphosphate) was synthesized and characterized, with a specific outlook towards evaluating spectroscopic and H2O2 reactivity relevant to the active-sites of noncoupled dinuclear copper enzymes, DβM and PHM. In solution, complex 1 exhibits a broad 1H NMR in the range −25 to +60 ppm and has a solution magnetic moment (μ) of ∼2.0 B.M./Cu(II), typical of a noninteracting dicopper(II) center. The room temperature H2O2 reactivity of 1 monitored by UV-Vis spectroscopy reveals the formation of a copper(II)-dioxygen intermediate 1a, which in turn leading to a arene ligand hydroxylation (PD-O) and thus provide a new doubly-bridged dicopper(II) complex, [Cu2(PD-O)(DPP)](ClO4)2 (2). The dioxygen intermediate produces OPPh3 on treatment with PPh3 revealing it is an electrophilic hydroperoxide oxidant. Solution magnetic moment of 1.61 B.M./Cu(II) indicates the product complex 2 is a moderately interacting dicopper(II) center and its 1H NMR spans between −20 and +180 ppm. A comparison of the optical absorption features of complex 1a with related dinuclear hydroperoxo-copper(II) complexes is discussed.  相似文献   

19.
The copper(II) and nickel(II) complexes of three new 1,2-bis(1,4,7-triazacyclononane) ligands containing unsaturated four carbon bridging groups is studied by continuous variation UV-Vis spectroscopic and pH potentiometric equilibrium experiments. The cis-butene-2 (LC) linked ligand may form monomeric MN6-type complexes while the trans-butene-2 (LT) and butyne-2 (LY) ligands are prevented by their stereochemistry from forming monomeric complexes and form oligomeric complexes. It is determined that the stability of the CuLC2+ complex is not appreciably different from the oligomeric complexes of LT and LY. Single-crystal X-ray structure determinations are made on three square pyramidal Cu2L4+ complexes: [Cu2LCCl4] (1), [Cu2LYCl4] (2), and [Cu2LT(NO3)2(H2O)2](NO3)2 (3). The structure of [Ni2(LC)2](ClO4)4 · 2H2O (4) is a binuclear dimer that contains two nickel(II) ions sandwiched between two ligands, indicating that bis([9]aneN3) ligands with four linker atom chains may form either monomeric or oligomeric structures.  相似文献   

20.
The use of succinamic acid (H2sucm) in Cu(ClO4)2·6H2O/N,N′-donor [2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4′-dimethyl-2,2′-bipyridine (dmbpy), 4,4′-bipyridine (4,4′-bpy)] reaction mixtures yielded compounds [Cu2(Hsucm)3(bpy)2](ClO4)·0.5MeOH (1·0.5MeOH), [Cu2(Hsucm)(OH)(H2O)(bpy)](ClO4)2 (2), [Cu4(Hsucm)5(dmbpy)4]n(ClO4)3n·nH2O ·0.53nMeOH (3·nH2O·0.53nMeOH), [Cu2(Hsucm)2(dmbpy)2(H2O)2](ClO4)2·2H2O (4·2H2O), [Cu2(Hsucm)2(phen)2(H2O)2](ClO4)2·1.8MeOH (5·1.8MeOH), [Cu2(Hsucm)2(phen)2(MeOH)2](ClO4)2·MeOH (6·MeOH) and [Cu(Hsucm)2(H2O)(4,4′-bpy)]n (7). The succinamate(−1) ligand exists in five different coordination modes in the structures of 1-7, i.e. the common syn, syn μ2OO′ in 1-6, the μ22O in 1, the μ22OO′ in 1, the μ32O2O′ in 3, and the monodentate κO in 7. The primary amide group of Hsucm remains uncoordinated and participates in intra- and intermolecular hydrogen bonding interactions leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of representative complexes was monitored by TG/DTG and DTA measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号