首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The sensation of respiratory muscle force was compared in seven normal subjects before and after inspiratory muscle strength training. Subjects performed 20 sustained maximal inspiratory maneuvers daily for 6-18 wk. Maximal inspiratory pressures (MIP) increased from 124 +/- 10 to 187 +/- 9 (SE) cmH2O (P less than 0.005). Exponents of the power function relationships between mouth pressure (Pm) and the intensity of the sensation of force, corrected for inspiratory duration, during magnitude scaling of resistive and elastic ventilatory loads were the same before and after training (P greater than 0.05). However, absolute sensation intensity (S) during resistive and elastic loading was reduced significantly after strength training but returned toward baseline levels greater than or equal to 8 wk after the cessation of training when the MIP had fallen to 150 +/- 5 cmH2O. The absolute S at a given Pm during ventilatory loading changed inversely with changes in MIP (P less than 0.001). Furthermore the relationship between absolute S and Pm expressed as a proportion of the MIP (Pm/MIP) was constant over testing periods. These results suggest that the sensation of respiratory muscle force reflects the proportion of the maximum force utilized in breathing and may be based on the level of respiratory motor command signals.  相似文献   

2.
The prevalence of activity-related breathlessness increases with age, particularly in women, but the specific underlying mechanisms have not been studied. This novel cross-sectional study was undertaken to examine the effects of age and sex, and their interaction, on the perceptual and ventilatory responses to incremental treadmill exercise in 73 healthy participants (age range 40-80 yr old) with normal pulmonary function. Age-related changes at a standardized oxygen uptake (Vo(2)) during exercise included significant increases in breathlessness ratings (Borg scale), ventilation (Ve), ventilatory equivalent for carbon dioxide, and the ratio of tidal volume (Vt) to dynamic inspiratory capacity (IC) (all P < 0.05). These changes were quantitatively similar in women (n = 39) and in men (n = 34). For the group as a whole, exertional breathlessness ratings increased as resting static inspiratory muscle strength diminished (P = 0.05), as exercise ventilation increased relative to capacity (P = 0.013) and as the Vt/IC ratio increased (P = 0.003) during exercise. Older women (60-80 yr old, n = 23) reported greater (P < 0.05) intensity of exertional breathlessness at a standardized Vo(2) and Ve than age-matched men (n = 16), despite similar age-related changes in ventilatory demand and dynamic ventilatory mechanics. These increases in breathlessness ratings in older women disappeared when sex differences in baseline maximal ventilatory capacity were accounted for. In conclusion, although increased exertional breathlessness with advancing age is multifactorial, contributory factors included higher ventilatory requirements during exercise, progressive inspiratory muscle weakness, and restrictive mechanical constraints on Vt expansion related to reduced IC. The sensory consequences of this age-related respiratory impairment were more pronounced in women, who, by nature, have relatively reduced maximal ventilatory reserve.  相似文献   

3.
Respiratory muscle dysfunction limits exercise endurance in severe chronic airflow obstruction (CAO). To investigate whether inspiring O2 alters ventilatory muscle recruitment and improves exercise endurance, we recorded pleural (Ppl) and gastric (Pga) pressures while breathing air or 30% O2 during leg cycling in six patients with severe CAO, mild hypoxemia, and minimal arterial O2 desaturation with exercise. At rest, mean (+/- SD) transdiaphragmatic pressure (Pdi) was lower inspiring 30% O2 compared with air (23 +/- 4 vs. 26 +/- 7 cmH2O, P less than 0.05), but the pattern of Ppl and Pga contraction was identical while breathing either gas mixture. Maximal transdiaphragmatic pressure was similar breathing air or 30% O2 (84 +/- 30 vs. 77 +/- 30 cmH2O). During exercise, Pdi increased similarly while breathing air or 30% O2, but the latter was associated with a significant increase in peak inspiratory Pga and decreases in peak inspiratory Ppl and expiratory Pga. In five out of six patients, exercise endurance increased with O2 (671 +/- 365 vs. 362 +/- 227 s, P less than 0.05). We conclude that exercise with O2 alters ventilatory muscle recruitment and increases exercise endurance. During exercise inspiring O2, the diaphragm performs more ventilatory work which may prevent overloading the accessory muscles of respiration.  相似文献   

4.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

5.
Little is known about respiratory muscle function in acute undernutrition, although an inadequate caloric intake is common in numerous disease states. Twelve young-adult, healthy female volunteers performed two familiarization experiments and were then studied after 7 days of consuming 40% of normal daily caloric intake as well as after 1 wk of normal caloric intake. In each experiment subjects performed tests of resting pulmonary function, inspiratory muscle strength, and ventilatory endurance, the last of which involved two 60-s and two 6-min isocapnic maximum voluntary ventilation maneuvers. Subjects then walked to exhaustion in 8-20 min on a treadmill. The caloric restriction did not affect performance of any breathing test but did lower endurance time in severe treadmill exercise (P less than 0.05). Basal metabolic rate was lowered, resting blood levels of free fatty acids and beta-hydroxybutyrate elevated, and glucose lowered following the caloric restriction (P less than 0.05). Blood lactate levels were lower during and after exercise following caloric restriction (P less than 0.05). We conclude that ventilatory muscle strength and endurance are fully preserved in caloric restriction severe enough to cause mild ketoacidosis and hypoglycemia, lowered basal metabolic rate, and decreased endurance in severe treadmill exercise.  相似文献   

6.
We mimicked important mechanical and ventilatory aspects of restrictive lung disorders by employing chest wall strapping (CWS) and dead space loading (DS) in normal subjects to gain mechanistic insights into dyspnea causation and exercise limitation. We hypothesized that thoracic restriction with increased ventilatory stimulation would evoke exertional dyspnea that was similar in nature to that experienced in such disorders. Twelve healthy young men [28 +/- 2 (SE) yr of age] completed pulmonary function tests and maximal cycle exercise tests under four conditions, in randomized order: 1) control, 2) CWS to 60% of vital capacity, 3) added DS of 600 ml, and 4) CWS + DS. Measurements during exercise included cardiorespiratory parameters, esophageal pressure, and Borg scale ratings of dyspnea. Compared with control, CWS significantly reduced the tidal volume response to exercise, increased dyspnea intensity at any given work rate or ventilation, and thus limited exercise performance. DS stimulated ventilation but had minimal effects on dyspnea and exercise performance. Adding DS to CWS further increased dyspnea by 1.7 +/- 0.6 standardized Borg units (P = 0.012) and decreased exercise performance (total work) by 21 +/- 6% (P = 0.003) over CWS alone. Across conditions, increased dyspnea intensity correlated best with decreased resting inspiratory reserve volume (r = -0.63, P < 0.0005). Dyspnea during CWS was described primarily as "inspiratory difficulty" and "unsatisfied inspiration," similar to restrictive disorders. In conclusion, severe dyspnea and exercise intolerance were provoked in healthy normal subjects when tidal volume responses were constrained in the face of increased ventilatory drive during exercise.  相似文献   

7.
We studied mechanical ventilatory constraints in 13 aerobically trained (Tr) and 11 untrained (UT) prepubescent children by plotting the exercise flow-volume (F-V) loops within the maximal F-V loop (MFVL) measured at rest. The MFVL allowed to determine forced vital capacity (FVC) and maximal expiratory flows. Expiratory and inspiratory reserve volumes relative to FVC (ERV/FVC and IRV/FVC, respectively) were measured during a progressive exercise test until exhaustion. Breathing reserve (BR) and expiratory flow limitation (expFL), expressed in percentage of tidal volume (V(T)) and defined as the part of the tidal breath meeting the boundary of the MFVL, were measured. Higher FVC and maximal expiratory flows were found in Tr than UT (P < 0.05) at rest. Our results have shown that during exercise, excepting one subject, all Tr regulated their V(T) within FVC similarly during exercise, by breathing at low lung volume at the beginning of exercise followed breathing at high lung volume at strenuous exercise. In UT, ERV/FVC and IRV/FVC were regulated during exercise in many ways. The proportion of children who presented an expFL was nearly the same in both groups (approximately 70% with a range of 14 to 65% of V(T)), and no significant difference was found during exercise concerning expFL. However, higher ventilation (V(E)), ERV/FVC, and dyspnea associated with lower BR, IRV/FVC, and SaO2 were reported at peak power in Tr than UT (P < 0.05). These results suggest that, because of their higher Ve level, trained children presented higher ventilatory constraints than untrained. These may influence negatively the SaO2 level and dyspnea during strenuous exercise.  相似文献   

8.
The presence of obesity in COPD appears not to be a disadvantage with respect to dyspnea and weight-supported cycle exercise performance. We hypothesized that one explanation for this might be that the volume-reducing effects of obesity convey mechanical and respiratory muscle function advantages. Twelve obese chronic obstructive pulmonary disease (COPD) (OB) [forced expiratory volume in 1 s (FEV(1)) = 60%predicted; body mass index (BMI) = 32 ± 1 kg/m(2); mean ± SD] and 12 age-matched, normal-weight COPD (NW) (FEV(1) = 59%predicted; BMI = 23 ± 2 kg/m(2)) subjects were compared at rest and during symptom-limited constant-work-rate exercise at 75% of their maximum. Measurements included pulmonary function tests, operating lung volumes, esophageal pressure, and gastric pressure. OB vs. NW had a reduced total lung capacity (109 vs. 124%predicted; P < 0.05) and resting end-expiratory lung volume (130 vs. 158%predicted; P < 0.05). At rest, there was no difference in respiratory muscle strength but OB had greater (P < 0.05) static recoil and intra-abdominal pressures than NW. Peak ventilation, oxygen consumption, and exercise endurance times were similar in OB and NW. Pulmonary resistance fell (P < 0.05) at the onset of exercise in OB but not in NW. Resting inspiratory capacity, dyspnea/ventilation plots, and the ratio of respiratory muscle effort to tidal volume displacement were similar, as was the dynamic performance of the respiratory muscles including the diaphragm. In conclusion, the lack of increase in dyspnea and exercise intolerance in OB vs. NW could not be attributed to improvement in respiratory muscle function. Potential contributory factors included alterations in the elastic properties of the lungs, raised intra-abdominal pressures, reduced lung hyperinflation, and preserved inspiratory capacity.  相似文献   

9.
Sleep-related reduction in geniohyoid muscular support may lead to increased airway resistance in normal subjects. To test this hypothesis, we studied seven normal men throughout a single night of sleep. We recorded inspiratory supraglottic airway resistance, geniohyoid muscle electromyographic (EMGgh) activity, sleep staging, and ventilatory parameters in these subjects during supine nasal breathing. Mean inspiratory upper airway resistance was significantly (P less than 0.01) increased in these subjects during all stages of sleep compared with wakefulness, reaching highest levels during non-rapid-eye-movement (NREM) sleep [awake 2.5 +/- 0.6 (SE) cmH2O.l-1.s, stage 2 NREM sleep 24.1 +/- 11.1, stage 3/4 NREM sleep 30.2 +/- 12.3, rapid-eye-movement (REM) sleep 13.0 +/- 6.7]. Breath-by-breath linear correlation analyses of upper airway resistance and time-averaged EMGgh amplitude demonstrated a significant (P less than 0.05) negative correlation (r = -0.44 to -0.55) between these parameters in five of seven subjects when data from all states (wakefulness and sleep) were combined. However, we found no clear relationship between normalized upper airway resistance and EMGgh activity during individual states (wakefulness, stage 2 NREM sleep, stage 3/4 NREM sleep, and REM sleep) when data from all subjects were combined. The timing of EMGgh onset relative to the onset of inspiratory airflow did not change significantly during wakefulness, NREM sleep, and REM sleep. Inspiratory augmentation of geniohyoid activity generally preceded the start of inspiratory airflow. The time from onset of inspiratory airflow to peak inspiratory EMGgh activity was significantly increased during sleep compared with wakefulness (awake 0.81 +/- 0.04 s, NREM sleep 1.01 +/- 0.04, REM sleep 1.04 +/- 0.05; P less than 0.05). These data indicate that sleep-related changes in geniohyoid muscle activity may influence upper airway resistance in some subjects. However, the relationship between geniohyoid muscle activity and upper airway resistance was complex and varied among subjects, suggesting that other factors must also be considered to explain sleep influences on upper airway patency.  相似文献   

10.
Increases in functional residual capacity (FRC) decrease inspiratory muscle efficiency; the present experiments were designed to determine the effect of FRC change on the ventilatory response to exercise. Six well-trained adults were exposed to expiratory threshold loads (ETL) ranging from 5 to 40 cmH2O during steady-state exercise on a bicycle ergometer at 40-95% VO2max. Inspiratory capacity (IC) was measured and changes of IC interpreted as changes of FRC. ETL did not consistently limit exercise performance. At heavy work (greater than 92% VO2max) minute ventilation decreased with increasing ETL; at moderate work (less than 58% VO2max) it did not. Decreases in ventilation were due to decreases in respiratory frequency with prolongation of the duration of expiration being the most consistent change in breathing pattern. At moderate work levels, FRC increased with ETL; at maximum work it did not. Changes in FRC were dictated by constancy of tidal volume and a fixed maximum end-inspiratory volume of 80-90% of the inspiratory capacity. When tidal volume was such that end-inspiratory volume was less than this value, FRC increased with ETL. Mouth pressure measured during the first 0-1 s of inspiratory effort against an occluded airway (P0-1) was increased by ETL equals 30 cmH2O, in spite of the fact that ventilation was decreased. We concluded that changes in FRC due to ETL had no effect on the ventilatory response to exercise and that changes in P0-1 induced by ETL did not reflect changes of inspiratory drive so much as changes of the pattern of inspiration.  相似文献   

11.
The influence of nasal airflow, temperature, and pressure on upper airway muscle electromyogram (EMG) was studied during steady-state exercise in five normal subjects. Alae nasi (AN) and genioglossus EMG activity was recorded together with nasal and oral airflows and pressures measured simultaneously by use of a partitioned face mask. At constant ventilations between 30 and 50 l/min, peak inspiratory AN activity during nasal breathing (7.2 +/- 1.4 arbitrary units) was greater than that during oral breathing (1.0 +/- 0.3 arbitrary units; P less than 0.005). In addition, the onset of AN EMG activity preceded inspiratory flow by 0.38 +/- 0.03 s during nasal breathing but by only 0.17 +/- 0.04 s during oral breathing (P less than 0.04). When the subject changed from nasal to oral breathing, both these differences were apparent on the first breath. However, peak AN activity during nasal breathing was uninfluenced by inspiration of hot saturated air (greater than 40 degrees C), by external inspiratory nasal resistance, or by changes in the expiratory route. The genioglossus activity did not differ between nasal and oral breathing (n = 2). Our findings do not support reflex control of AN activity sensitive to nasal flow, temperature, or surface pressure. We propose a centrally controlled feedforward modulation of phasic inspiratory AN activity linked with the tonic drive to the muscles determining upper airway breathing route.  相似文献   

12.
Ventilatory responses to progressive exercise, with and without an inspiratory elastic load (14.0 cmH2O/l), were measured in eight healthy subjects. Mean values for unloaded ventilatory responses were 24.41 +/- 1.35 (SE) l/l CO2 and 22.17 +/- 1.07 l/l O2 and for loaded responses were 24.15 +/- 1.93 l/l CO2 and 20.41 +/- 1.66 l/l O2 (P greater than 0.10, loaded vs. unloaded). At levels of exercise up to 80% of maximum O2 consumption (VO2max), minute ventilation (VE) during inspiratory elastic loading was associated with smaller tidal volume (mean change = 0.74 +/- 0.06 ml; P less than 0.05) and higher breathing frequency (mean increase = 10.2 +/- 0.98 breaths/min; P less than 0.05). At levels of exercise greater than 80% of VO2max and at exhaustion, VE was decreased significantly by the elastic load (P less than 0.05). Increases in respiratory rate at these levels of exercise were inadequate to maintain VE at control levels. The reduction in VE at exhaustion was accompanied by significant decreases in O2 consumption and CO2 production. The changes in ventilatory pattern during extrinsic elastic loading support the notion that, in patients with fibrotic lung disease, mechanical factors may play a role in determining ventilatory pattern.  相似文献   

13.
Influence of lung volume on oxygen cost of resistive breathing   总被引:2,自引:0,他引:2  
We examined the relationship between the O2 cost of breathing (VO2 resp) and lung volume at constant load, ventilation, work rate, and pressure-time product in five trained normal subjects breathing through an inspiratory resistance at functional residual capacity (FRC) and when lung volume (VL) was increased to 37 +/- 2% (mean +/- SE) of inspiratory capacity (high VL). High VL was maintained using continuous positive airway pressure of 9 +/- 2 cmH2O and with the subjects coached to relax during expiration to minimize respiratory muscle activity. Six paired runs were performed in each subject at constant tidal volume (0.62 +/- 0.2 liters), frequency (23 +/- 1 breaths/min), inspiratory flow rate (0.45 +/- 0.1 l/s), and inspiratory muscle pressure (45 +/- 2% of maximum static pressure at FRC). VO2 resp increased from 109 +/- 15 ml/min at FRC by 41 +/- 11% at high VL (P less than 0.05). Thus the efficiency of breathing at high VL (3.9 +/- 0.2%) was less than that at FRC (5.2 +/- 0.3%, P less than 0.01). The decrease in inspiratory muscle efficiency at high VL may be due to changes in mechanical coupling, in the pattern of recruitment of the respiratory muscles, or in the intrinsic properties of the inspiratory muscles at shorter length. When the work of breathing at high VL was normalized for the decrease in maximum inspiratory muscle pressure with VL, efficiency at high VL (5.2 +/- 0.3%) did not differ from that at FRC (P less than 0.7), suggesting that the fall in efficiency may have been related to the fall in inspiratory muscle strength. During acute hyperinflation the decreased efficiency contributes to the increased O2 cost of breathing and may contribute to the diminished inspiratory muscle endurance.  相似文献   

14.
To test the hypothesis that during unsupported arm exercise (UAE) some of the inspiratory muscles of the rib cage partake in upper torso and arm positioning and thereby decrease their contribution to ventilation, we studied 11 subjects to measure pleural (Ppl) and gastric (Pga) pressures, heart rate, respiratory frequency, O2 uptake (VO2), and tidal volume (VT) during symptom-limited UAE. We used leg ergometry (LE) as a reference. Exercise duration was shorter for UAE vs. LE (207 +/- 67 vs. 514 +/- 224 s, P less than 0.05) even though the end-exercise VO2 was lower for UAE (9.3 +/- 1.1 vs. 30.8 +/- 3.2 ml.kg-1.min-1, P less than 0.05). Eight subjects had positive Ppl-Pga slopes and less negative end-inspiratory Ppl during UAE vs. LE (-11.8 +/- 6 vs. -19 +/- 7 cmH2O, P less than 0.05). This was not due to the lower VT's achieved during UAE, since at a similar VT, UAE resulted in a rightward and downward displacement of the Ppl-Pga slopes. Three of the subjects had irregular breathing rhythm and negative Ppl-Pga slopes as early as 1 min after initiation of UAE. They had shorter UAE duration and more dyspnea than the eight with positive Ppl-Pga slopes. In most subjects UAE decreases the ventilatory contribution of some of the inspiratory muscles of the rib cage as they have to partake in nonventilatory functions. This results in a shift of the dynamic work to the diaphragm and abdominal muscles of exhalation. In a few subjects UAE results in an irregular breathing pattern and very short exercise tolerance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Our purpose was to assess compensatory breathing responses to airway resistance unloading in ponies. We hypothesized that the carotid bodies and hilar nerve afferents, respectively, sense chemical and mechanical changes caused by unloading, hence carotid body-denervated (CBD) and hilar nerve-denervated ponies (HND) might demonstrate greater ventilatory responses when decreasing resistance. At rest and during treadmill exercise, resistance was transiently reduced approximately 40% in five normal, seven CBD, and five HND ponies by breathing gas of 79% He-21% O2 (He-O2). In all groups at rest, He-O2 breathing did not consistently change ventilation (VE), breathing frequency (f), tidal volume (VT), or arterial PCO2 (PaCO2) from room air-breathing levels. During treadmill exercise at 1.8 mph-5% grade in normal and HND ponies, He-O2 breathing did not change PaCO2 but at moderate (6 mph-5% grade), and heavy (8 mph-8% grade) work loads, absolute PaCO2 tended to decrease by 1 min of resistance unloading. delta PaCO2 calculated as room air minus He-O2 breathing levels at 1 min demonstrated significant changes in PaCO2 during exercise resistance unloading (P less than 0.05). No difference between normal and HND ponies was found in exercise delta PaCO2 responses (P greater than 0.10); however, in CBD ponies, the delta PaCO2 during unloading was greater at any given work load (P less than 0.05), suggesting finer regulation of PaCO2 in ponies with intact carotid bodies. During heavy exercise VE and f increased during He-O2 breathing in all three groups of ponies (P less than 0.05), although there were no significant differences between groups (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The purpose of this study was to elucidate the influence of inspiratory muscle fatigue on muscle sympathetic nerve activity (MSNA) and blood pressure (BP) response during submaximal exercise. We hypothesized that inspiratory muscle fatigue would elicit increases in sympathetic vasoconstrictor outflow and BP during dynamic leg exercise. The subjects carried out four submaximal exercise tests: two were maximal inspiratory pressure (PI(max)) tests and two were MSNA tests. In the PI(max) tests, the subjects performed two 10-min exercises at 40% peak oxygen uptake using a cycle ergometer in a semirecumbent position [spontaneous breathing for 5 min and with or without inspiratory resistive breathing for 5 min (breathing frequency: 60 breaths/min, inspiratory and expiratory times were each set at 0.5 s)]. Before and immediately after exercise, PI(max) was estimated. In MSNA tests, the subjects performed two 15-min exercises (spontaneous breathing for 5 min, with or without inspiratory resistive breathing for 5 min, and spontaneous breathing for 5 min). MSNA was recorded via microneurography of the right median nerve at the elbow. PI(max) decreased following exercise with resistive breathing, whereas no change was found without resistance. The time-dependent increase in MSNA burst frequency (BF) appeared during exercise with inspiratory resistive breathing, accompanied by an augmentation of diastolic BP (DBP) (with resistance: MSNA, BF +83.4%; DBP, +23.8%; without resistance: MSNA BF, +19.2%; DBP, -0.4%, from spontaneous breathing during exercise). These results suggest that inspiratory muscle fatigue induces increases in muscle sympathetic vasomotor outflow and BP during dynamic leg exercise at mild intensity.  相似文献   

17.
To study respiratory timing mechanisms in patients with occlusive apnea, inspiratory and expiratory times (TI and TE) were calculated from the diaphragmatic electromyogram obtained in seven patients during non-rapid-eye-movement (NREM) sleep. Peak diaphragmatic activity (EMGdi) had a curvilinear relationship with TI during the ventilatory and occlusive phases such that TI shortened as EMGdi decreased during the ventilatory phase (r = 0.87, P less than 0.05) and it prolonged as EMGdi increased during the occlusive phase (r = 0.89, P less than 0.02). However, EMGdi vs. TI for the occlusive phase was shifted to the right of that for the ventilatory phase, reflecting the relatively longer TI during upper airway occlusion. TI also had a linear relationship with pleural pressure (r = 0.94, P less than 0.001) that remained unchanged during the ventilatory and occlusive phases such that it prolonged as negative inspiratory pressure increased. These results indicate that respiratory timing is continuously modified in patients with occlusive apnea as inspiratory neural drive fluctuates during NREM sleep and suggest that this modification is due to the net effects of changing inspiratory neural drive and afferent input predominantly from upper airway mechanoreceptors.  相似文献   

18.
To determine whether the intensity of dyspnea at a given level of respiratory motor output depends on the nature of the stimulus to ventilation, we compared the sensation of difficulty in breathing during progressive hypercapnia (HC) induced by rebreathing, during incremental exercise (E) on a cycle ergometer, and during isocapnic voluntary hyperventilation (IVH) in 16 normal subjects. The sensation of difficulty in breathing was rated at 30-s intervals by use of a visual analog scale. There were no differences in the level of ventilation or the base-line intensity of dyspnea before any of the interventions. The intensity of dyspnea grew linearly with increases in ventilation during HC [r = 0.98 +/- 0.02 (SD)], E (0.95 +/- 0.03), and IVH (0.95 +/- 0.06). The change in intensity of dyspnea produced by a given change in ventilation was significantly greater during HC [0.27 +/- 0.04 (SE)] than during E (0.12 +/- 0.02, P less than 0.01) and during HC (0.30 +/- 0.04) than during IVH (0.16 +/- 0.03, P less than 0.01). The difference in intensity of dyspnea between HC and E or HC and IVH increased as the difference in end-tidal PCO2 widened, even though the time course of the increase in ventilation was similar. No significant differences were measured in the intensity of dyspnea that occurred with changes in ventilation between E and IVH. These results indicate that under nearisocapnic conditions the sensation of dyspnea produced by a given level of ventilation seems not to depend on the method used to produce that level of ventilation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Inspiratory muscle forces and endurance in maximum resistive loading   总被引:1,自引:0,他引:1  
The ability of the respiratory muscles to sustain ventilation against increasing inspiratory resistive loads was measured in 10 normal subjects. All subjects reached a maximum rating of perceived respiratory effort and at maximum resistance showed signs of respiratory failure (CO2 retention, O2 desaturation, and rib cage and abdominal paradox). The maximum resistance achieved varied widely (range 73-660 cmH2O X l-1 X s). The increase in O2 uptake (delta Vo2) associated with loading was linearly related to the integrated mouth pressure (IMP): delta Vo2 = 0.028 X IMP + 19 ml/min (r = 0.88, P less than 0.001). Maximum delta Vo2 was 142 ml/min +/- SD 68 ml/min. There were significant (P less than 0.05) relationships between the maximum voluntary inspiratory pressure against an occluded airway (MIP) and both maximum IMP (r = 0.80) and maximum delta Vo2 (r = 0.76). In five subjects, three imposed breathing patterns were used to examine the effect of different patterns of respiratory muscle force deployment. Increasing inspiratory duration (TI) from 1.5 to 3.0 and 6.0 s, at the same frequency of breathing (5.5 breaths/min) reduced peak inspiratory pressure and increased the maximum resistance tolerated (190, 269, and 366 cmH2O X l-1 X s, respectively) and maximum IMP (2043, 2473, and 2913 cmH2O X s X min-1, but the effect on maximum delta Vo2 was less consistent (166, 237, and 180 ml/min). The ventilatory endurance capacity and the maximum O2 uptake of the respiratory muscles are related to the strength of the inspiratory muscles, but are also modified through the pattern of force deployment.  相似文献   

20.
Lung volumes in sex-, age-, height-, and weight-matched Black subjects are 10-15% lower than those in Caucasians. To determine whether this decreased lung volume affected the ventilatory adaptation to exercise, minute ventilation (VE), its components, frequency (f) and tidal volume (VT), and breathing pattern were observed during incremental cycle-ergometer exercise. Eighteen Caucasian (age 8-30 yr) and 14 Black (age 8-25 yr) subjects were studied. Vital capacity (VC) was lower (P less than 0.001) in the Black subjects [90.6 +/- 8.6 (SD) vs. 112.9 +/- 9.9% predicted], whereas functional residual capacity/total lung capacity was higher (P less than 0.05). VE, mixed expired O2 and CO2, VT, f, and inspiratory (TI), expiratory (TE), and total respiratory cycle (TT) duration were measured during the last 30 s of each 2-min load. Statistical comparisons with increasing power output were made at rest and from 0.6 to 2.4 W/kg in 0.3-W/kg increments. VE was higher in Blacks at all work loads and reached significance (P less than 0.05) at 0.6 and 1.5 W/kg. VE/VO2 was also higher throughout exercise, reaching significance (P less than 0.01) at 1.2, 1.5, and 1.8 W/kg. The Black subjects attained any given level of VE with a higher f (P less than 0.001) and lower VT. TI and TE were shortened proportionately so that TI/TT was not different. Differences in lung volume and the ventilatory response to exercise in these Black and Caucasian subjects suggest differences in the respiratory pressure-volume relationships or that the Black subjects may breathe higher on their pressure-volume curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号