首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The male pregnancy of pipefishes and seahorses has led to the inference that females compete most intensely for access to mates, because males limit female reproduction. However, recent work has shown that in different species either sex may be the predominant competitor for mates. In this family, there is an apparent association between the mating pattern and the sex roles: polygamous species show reversed sex roles whereas monogamous species exhibit 'conventional' sex roles. These studies emphasize that sex role reversal is not synonymous with male parental care.  相似文献   

2.
Abstract Is the cost of reproduction different between males and females? On the one hand, males typically compete intensely for mates, thus sexual selection theory predicts higher cost of reproduction for males in species with intense male‐male competition. On the other hand, care provisioning such as incubating the eggs and raising young may also be costly, thus parental care theory predicts higher mortality for the care‐giving sex, which is often the female. We tested both hypotheses of reproductive costs using phylogenetic comparative analyses of sex‐specific adult mortality rates of 194 bird species across 41 families. First, we show that evolutionary increases in male‐male competition were associated with male‐biased mortalities. This relationship is consistent between two measures of mating competition: social mating system and testis size. Second, as predicted by the parental cost hypothesis, females have significantly higher adult mortalities (mean ± SE, 0.364 ± 0.01) than males (0.328 ± 0.01). However, the mortality cost of parental care was only detectable in males, when the influence of mating competition was statistically controlled. Taken together, our results challenge the traditional explanation of female‐biased avian mortalities, because evolutionary changes in female care were unrelated to changes in mortality bias. The interspecific variation in avian mortality bias, as we show here, is driven by males, specifically via the costs of both mating competition and parental care. We also discuss alternative hypotheses for why most birds exhibit female‐biased mortalities, whereas in mammals male‐biased mortalities predominate.  相似文献   

3.
4.
Defining sex roles has been driven by differences in mating systems at the extreme: polygyny and polyandry. Roles may reverse depending on which sex limits the reproductive rate of the other, and it is generally the female that limits the male. Males therefore compete for female mates. But in species in which the male limits the reproductive rate of the female, the female competes for male mates and assumes the masculine role. Complications arise, however, in species with typical roles when males are temporarily limiting, and females then briefly compete for and display to males. Problems also occur among tightly monogamous species with biparental care, where the mates have equal reproductive rates; both males and females compete intrasexually for mates. Despite this, monogamous species have masculine and feminine roles, typically manifested as the male dominating the female. Some monogamous species are nevertheless sex-role reversed. The pervasive behavioral mechanism characterizing the masculine role is dominance through aggression, size, or both. Attending more to behavioral mechanisms will enrich our understanding of sex-role reversal.  相似文献   

5.
Heike Pröhl  Olaf Berke 《Oecologia》2001,129(4):534-542
In many species with a resource-based mating system, males defend resources to increase their attractiveness to females. In the strawberry poison frog, Dendrobates pumilio, suitable tadpole-rearing sites appear to be a limited resource for females. Territorial males have been suggested to defend tadpole-rearing sites to increase their access to females. In this study we investigate the spatial association between tadpole-rearing sites and the sexes as well as the spatial association of males and females. If strawberry poison frogs have resource defense polygyny, we expect males and females to be associated with tadpole-rearing sites and that females will deposit their offspring in tadpole-rearing sites inside the territories of their mates. To test this hypothesis, home range and core area sizes were calculated for both sexes and the association patterns were compared in two areas that differed in their abundance of tadpole-rearing sites. Home ranges and core areas of females were much larger than male home ranges. Females showed a clumped distribution in the vicinity of tadpole-rearing sites. Males were not clumped and were less associated with tadpole-rearing sites. Females generally did not use tadpole-rearing sites in the territory of their mates and we therefore conclude that males did not defend tadpole-rearing sites for females. Our data are consistent with the general assumption that female distribution is influenced by resource distribution and that male distribution depends on female distribution. Nevertheless, the distribution of D. pumilio females was also influenced by male spacing patterns. Males probably initially establish their core areas where female density is high and then females move among territories to sample males. Males compete vigorously for places with high female density, the defense of which is likely important for enhancing their mating success. In general, the spacing patterns did not differ between populations but the sex ratio was strongly female biased in the habitat with more tadpole-rearing sites, reflecting the direct reliance of females on these resources.  相似文献   

6.
In the pipefish Syngnathus typhle , pregnant males provide all parental care. Females are able to produce more eggs than males can brood, and consequently females compete more intensely for mates than do males, a phenomenon defined as sex-role reversal. As the genetic mating system influences the operation of sexual selection, we investigate variation in one phenotypic component of mate quality, female body size, as a possible proximate influence on mating system variation in S. typhle . Breeding trials were employed, each consisting of a single receptive male with four adult females. In each replicate, a focal male was paired either with a set of small or with a set of large females. Males were allowed to mate freely, and after several weeks of brood development, maternity of the progeny was resolved using three microsatellite loci. Males with access either to small or to large females successfully mated with a mean of 2.1 or 1.3 females, respectively, a significant difference. Results indicate that variation in female size can affect the mating system and thereby influence sexual selection in pipefish. Thus, the high rate of multiple mating by S. typhle males in the wild may be explained in part by the extensive size variation in naturally occurring, sexually mature females.  相似文献   

7.
In most animals, males gain a fitness benefit by mating with many females, whereas the number of progeny per female is unlikely to increase as a function of additional mates. Furthermore, males of internally fertilizing species run the risk of investing in offspring of other males if they provide parental care. Nevertheless, males of many avian species and a minority of mammalian species provide parental care, and females of various species mate with multiple males. I investigate a two-locus genetic model for evolution of male parental care and female multiple mating in which females gain a direct benefit by multiple mating from the paternal care they thereby elicit for their offspring. The model suggests that, first, male parental care can evolve when it strongly enhances offspring survival and the direct costs of female multiple mating (e.g., loss of energy, risk of injury, exposure to infectious diseases) are greater than its indirect benefit (e.g., acquisition of good genes, increased genetic diversity among offspring); second, female multiple mating can evolve when paternal care is important for offspring survival or the indirect benefit of multiple mating is larger than its direct cost; and, finally, male parental care and female multiple mating can co-occur.  相似文献   

8.
Most species of pycnogonids are sexually dimorphic and all have exclusive male care of the offspring, characteristics that make them essential for studies on sex-roles, sexual selection, and parental investment. However, sea spiders have been understudied because of their small size, cryptic coloration, and often patchy distribution, and little is known about their courtship and mating behaviors. The mating habits of both male and female Achelia simplissima (Hilton 1939) were studied experimentally and observationally. This species mates year-round and females commonly initiate courtship by actively ‘pumping’ their bodies near a male. When both nonparental and parental males were present, females mated significantly more often with males that were not carrying egg masses. Each mating event resulted in a single egg mass. Most often, males placed the first egg mass on their right oviger and then alternated between ovigers with subsequent matings. The newest (least developed) egg mass was always placed at the tip of the oviger. Both males and females routinely mated multiple times and had multiple mates; in the field, males were found carrying up to twelve egg masses simultaneously. This is the first experimental study to describe both the male and female mating system of a pycnogonid, and the first observations of courtship and mating for any species with the ammotheid type of ovigers.  相似文献   

9.
Males gain a fitness benefit by mating with many females, whereas the number of progeny per female does not increase as a function of additional mates. Furthermore, males run the risk of investing in the offspring of other males if they provide parental care. Nevertheless, in various species, males provide parental care, and females mate with multiple males. We investigate a game-theoretical model in which females gain a direct benefit by multiple mating from the paternal care they elicit for their offspring. The parameters that directly favor male parental care, such as small cost of paternal care, have indirect positive effects on the evolution of female multiple mating, while they have negative effects in the opposite case. Both traits are more likely to evolve when the number of matings is smaller. The individual-based model of a diploid two-locus, two-allelic genetic model confirms the result.  相似文献   

10.
Among the factors that may contribute to the evolution of social monogamy are selection for extended mate guarding of females and selection for territorial ‘cooperation’. Many socially monogamous taxa are also territorial, with ‘partners’ sharing a single territory, suggesting that one or both partners may benefit by sharing territorial maintenance. Snapping shrimp (genus Alpheus) are socially monogamous and territorial, living in excavated burrows or with host organisms, with females performing all parental care. The territorial cooperation hypothesis predicts that male and female partners share (1) territorial defence, resulting in a reduction in the risk of eviction from the burrow, (2) burrow construction duties, such that individuals in pairs spend less time in burrow construction relative to solitary individuals, and/or (3) foraging duties, by returning food to the burrow, where it is consumed by both partners. UsingA. angulatus as a model species, a territorial defence experiment revealed that females in pairs were significantly less likely than solitary females to be evicted by female intruders, but males in pairs were not significantly less likely than solitary males to be evicted by male intruders. A subsequent experiment revealed that paired males were significantly less likely to be evicted by an intruding male if paired with sexually receptive females than if paired with nonreceptive females. Another experiment revealed that (1) paired females spent significantly more time in burrow construction than paired males, and (2) both males and females consistently returned food items to the burrow, perhaps incidentally provisioning their mates. These data suggest that social monogamy may have been selected for in part because of the advantages of territorial cooperation, as both males and females are likely to benefit by dividing the labour of territorial defence and maintenance. These tests of the territorial cooperation hypothesis are synthesized with data from tests of the extended mate-guarding hypothesis to place snapping shrimp pairing behaviour into a larger construct incorporating both the influence of ecological pressures (territoriality) and mating interactions between the sexes. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

11.
The Hawaiian picture-winged flies in the genus Drosophila are a spectacular example of rapid evolutionary diversification in which sexual selection is considered an important mechanism for reproductive isolation and speciation. We investigated the behavioral reproductive isolation of two closely related and sympatric Hawaiian picture-winged Drosophila species, D. silvestris and D. heteroneura, which are known to hybridize in nature and produce viable and fertile hybrids. We compared the mating success of parental, F1 and backcross males in pairings with D. heteroneura females. The F1 males were produced by mating D. heteroneura males with D. silvestris females, and the backcross males were produced by mating F1 females with D. heteroneura males. The mating success of backcross males paired with D. heteroneura females were significantly reduced relative to that of parental and F1 males. This reduced mating success occurred primarily at a late stage of courtship where female choice of mate may be important. Two- and three-gene models demonstrate that epistasis involving a few genes could account for the observed variation in male mating success. These results are consistent with negative epistasis in the backcross generation and support the importance of sexual selection and negative epistasis in the evolution and maintenance of these species.  相似文献   

12.
Sexual selection determines parental care patterns in cichlid fishes   总被引:1,自引:0,他引:1  
Despite a massive research effort, our understanding of why, in most vertebrates, males compete for mates and females care for offspring remains incomplete. Two alternative hypotheses have been proposed to explain the direction of causality between parental care and sexual selection. Traditionally, sexual selection has been explained as a consequence of relative parental investment, where the sex investing less will compete for the sex investing more. However, a more recent model suggests that parental care patterns result from sexual selection acting on one sex favoring mating competition and lower parental investment. Using species-level comparative analyses on Tanganyikan cichlid fishes we tested these alternative hypotheses employing a proxy of sexual selection based on mating system, sexual dichromatism, and dimorphism data. First, while controlling for female reproductive investment, we found that species with intense sexual selection were associated with female-only care whereas species with moderate sexual selection were associated with biparental care. Second, using contingency analyses, we found that, contrary to the traditional view, evolutionary changes in parental care type are dependent on the intensity of sexual selection. Hence, our results support the hypothesis that sexual selection determines parental care patterns in Tanganyikan cichlid fishes.  相似文献   

13.
Whenever males can monopolize females and/or resources used by females, the opportunity for sexual selection will be great. The greater the variation among males in reproductive success, the greater the intensity of selection on less competitive males to gain matings through alternative tactics. In the yellow dung fly, Scathophaga stercoraria, males aggressively compete for access to receptive, gravid females on fresh dung. Larger males are better able to acquire mates and to complete copulation successfully and guard the female throughout oviposition. Here we demonstrate that when an alternative resource is present where females aggregate (i.e. apple pomace, where both sexes come to feed), smaller males will redirect their searching for females from dung to the new substrate. In addition, we identify a class of particularly small males on the alternative substrate that appears never to be present searching for females on or around dung. Smaller males were found to have a mating ‘advantage’ on pomace, in striking contrast to the pattern observed on dung, providing further support for the existence of an alternative male reproductive tactic in this species.  相似文献   

14.
Pair‐living and a monogamous mating strategy are rare and theoretically unexpected among mammals. Nevertheless, about 10% of primate species exhibit such a social system, which is difficult to explain in the absence of paternal care. In this study, we investigated the two major hypotheses proposed to explain the evolution of monogamy in mammals, the female defence hypothesis (FDH) and the resource defence hypothesis (RDH), in red‐tailed sportive lemurs (Lepilemur ruficaudatus), a nocturnal primate from Madagascar. We analysed behavioural data from eight male–female pairs collected during a 24‐mo field study to illuminate the determinants of pair‐living in this species. Male and female L. ruficaudatus were found to live in dispersed pairs, which are characterised by low cohesion and low encounter rates within a common home range. Social interactions between pair partners were mainly agonistic and characterised by a complete absence of affiliative interactions – body contact was only observed during mating. During the short annual mating season, males exhibited elevated levels of aggression towards mates, as well as extensive mate guarding and increased locomotor activity. In addition, males were exclusively responsible for the maintenance of proximity between pair partners during this period, and they defended their territories against neighbouring males but not against females. Together, these results point towards the importance of female defence in explaining pair‐living in L. ruficaudatus. We discuss the spatial and temporal distribution of receptive females in relation to the female defence strategies of males and suggest possible costs that prevent male red‐tailed sportive lemurs from defending more than one female.  相似文献   

15.
Courtship displays should be exaggerated enough to attract mates and yet tempered so as not to deter them. We tested this hypothesis in the fighting fish Betta splendens by studying courtship displays and body size and their relationships with male parental quality and female fecundity, as well as the effects of display behavior and body size on mate choice decisions and spawning success. Because of their high degree of parental investment, males are expected to be discriminating in their choice of mates. Males who displayed more frequently built larger nests, a measure of parental quality, but larger males did not. When females were paired with males with high display rates, however, the pair had fewer eggs in their nest, even when accounting for female body mass. In a mate choice test using computer‐generated male stimuli that differed only in display behavior, females showed no preferences for displaying males vs. non‐displaying males, or for males with higher display rates vs. lower display rates. In similar tests in which the computer‐generated males differed only in size, females preferred larger males, but also preferred males that differed with respect to body size (negative assortative mating). Males preferred computer‐generated females that performed courtship displays over non‐displaying females, but showed no preferences for female body size. Neither a female's body size nor her display behavior was a significant predictor of her fecundity as estimated by the number of eggs released during spawning. Thus, our results suggest that female B. splendens must balance male parental quality (nest size) with the risk of potentially disruptive or dangerous behavior during spawning, and that females may minimize these risks through negative size‐assortative mating. Female display behavior, while unrelated to fecundity in our study, may attract males because it indicates reproductive readiness or serves a species‐recognition function.  相似文献   

16.
We investigated the potential roles in behavioral interactions of sexually dichromatic iridescent blue coloration found on the dorsal hindwing of male Pipevine Swallowtails (Battus philenor). Behavioral experiments in a large enclosure addressed whether male dorsal hindwing coloration mediated sexual recognition by males, female choice of mates, or both. Models presented to males in the enclosure produced responses that show that males discriminate females from other males using chemical but not visual cues. In contrast, ablation of male dorsal iridescence significantly reduced male mating success with virgin females in the enclosure. The results support the hypothesis that male-specific iridescent coloration in this species is a signal that is important for females in assessing either male species identity or quality in intersexual interactions.  相似文献   

17.
Dance flies are predaceous insects which often form male mating swarms. In many species males prior to swarming catch an insect prey, which is presented to the female at mating. In Rhamphomyia marginata, females in contrast to males gather to swarm, while males carrying a prey visit swarms for mating. Here I describe the swarming and courtship behavior in R. marginata and provide data on sexual dimorphism and swarming female reproductive status. Females swarm in small clearings in the forests. There was no specific swarm-maker. The swarming period lasted for 2–3 h and peaked around sunset. Identical swarm sites were used each evening and for several years. The mean number of females in swarms (swarm sites with at least one female) was 9.9 ± 9.1 (range, 1–40; n = 107) in 1993 and 7.1 ± 7.0 (range, 1–35; n = 68) in 1994. No obvious competition between females in swarms was observed. The operational sex ratio in swarms was extremely female biased (all swarms, 0.04). Less than one-third of male visits to swarms resulted in mating and males were found more often in larger swarms. Nuptial prey consisted of male midges. Females seem to mate more than once. Swarming females had undeveloped eggs, whereas mated females in swarms had further developed eggs than unmated females. Amount of sperm in the spermatheca was correlated with egg size. Amount of sperm and egg size did not correlate with wet weight, wing length, or wing load, except for egg size and weight. The wing coloration pattern and shape in R. marginata females are unique among dance flies, being greatly enlarged (1.6 times larger than that of males) and bicolored (gray part, 60% of wing area). When females, instead of males, possess extravagant secondary sexual characters, it is predicted from sexual selection theory that females should compete for males and that males should be selective in their choice of partner. A sex-role reversal will evolve when assess to males limit female reproductive success. The dance fly species R. marginata, like Empis borealis, another dance fly species studied earlier and discussed here, seems to fit these predictions.  相似文献   

18.
The evolution of avian parental care   总被引:4,自引:0,他引:4  
A stage model traces key behavioural tactics and life-history traits that are involved in the transition from promiscuity with no parental care, the mating system that typifies reptiles, to that typical of most birds, social monogamy with biparental care. In stage I, females assumed increasing parental investment in precocial young, female choice of mates increased, female-biased mating dispersal evolved and population sex ratios became male biased. In stage II, consortships between mating partners allowed males to attract rare social mates, provided a mechanism for paternity assessment and increased female ability to assess mate quality. In stage III, relative female scarcity enabled females to demand parental investment contributions from males having some paternity certainty. This innovation was facilitated by the nature of avian parental care; i.e. most care-giving activities can be adopted in small units. Moreover, the initial cost of care giving to males was small compared with its benefit to females. Males, however, tended to decline to assume non-partitionable, risky, or relatively costly parental activities. In stage IV, altriciality coevolved with increasing biparental care, resulting in social monogamy. Approaches for testing behavioural hypotheses are suggested.  相似文献   

19.
The mating systems of seven previously unstudied members of the colletid bee genus Hylaeus Fabricius and one of Hyleoides Smith are described. Male mating tactics can be categorized as territorial (perched males defend flowers or other sites that attract receptive females) or non-territorial (patrolling males search for receptive females at flowering plants). The four species in which some territorial males occur are characterized by: 1. grappling fights among males for preferred perches; 2. territorial control by larger males; 3. the possession of prominent spines or other projections on the venter of the abdomen in larger males; and 4. the occurrence of some males that are as large as, or larger than, the largest females of their species (the ‘large-male phenomenon’). In contrast, the four species that lack territorial males are distinctive in that males: 1. do not engage in grappling contests; 2. lack abdominal weaponry; and 3. are smaller than the largest females of their species. In addition, we searched for the large-male phenomenon in museum collections of four species of Hylaeus that exhibit male abdominal spines (presumed to be the weapons used by territorial individuals) and two other species that lack these attributes (presumed non-territorial patrolling species). The results tend to support the sexual-selection-for-fighting-ability hypothesis, which argues that the evolution of unusually large males is a selective consequence of aggressive male—male competition for access to mates. The limitations of the present data set as a comparative test of this hypothesis are discussed.  相似文献   

20.
《Biological Control》2008,46(3):281-287
Hymenopteran parasitoids are usually arrhenotokous parthenogenetic, where females arise from fertilized and males from unfertilized eggs. Therefore, the reproductive fitness of females is a function of egg production and furthermore affected by mating, whereas that of males is mainly determined by the number of daughters they father. Aphidius ervi Haliday is a quasi-gregarious parasitoid of a number of aphid pests on economically important crops such as legumes and cereals. Females are monandrous whereas males are polygynous. Here, we tested how parental age at mating and male mating history affected mating success, fecundity and daughter production in this species. Once-mated males perform significantly better than naïve males with regard to mating success, suggesting that males learn from previous matings. The fecundity of virgin females is not significantly different from that of mated females regardless of parental age at mating and male mating history, indicating that mating does not stimulate egg production or contribute to female nutrient supply. Males can replenish sperm supply after mating, implying that they are at least moderately synspermatogenic. Preference for young over old mates for mating by both sexes may be explained by the fact that aging of both sexes contributes to the reduction of daughter production. Rather than sperm depletion, the reduced daughter production may be attributed to diminishing sperm viability and mobility in aging males and increasing constraints in fertilization process in aging females. Our results also show that female age has a stronger impact on the production of daughters, suggesting that fertilization process in females is more sensitive to aging than sperm vigor in males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号