首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Freshwater ecosystems face multiple threats to their stability globally. Poyang Lake is the largest lake in China, but its habitat has been seriously degraded because of human activities and natural factors (e.g. climate change), resulting in a decline in freshwater biodiversity. Zooplankton are useful indicators of environmental stressors because they are sensitive to external perturbations. DNA metabarcoding is an approach that has gained significant traction by aiding ecosystem conservation and management. Here, the seasonal and spatial variability in the zooplankton diversity were analyzed in the Poyang Lake Basin using DNA metabarcoding. The results showed that the community structure of zooplankton exhibited significant seasonal and spatial variability using DNA metabarcoding, where the community structure was correlated with turbidity, water temperature, pH, total phosphorus, and chlorophyll‐a. These results indicated habitat variations affected by human activities and seasonal change could be the main driving factors for the variations of zooplankton community. This study also provides an important reference for the management of aquatic ecosystem health and conservation of aquatic biodiversity.  相似文献   

2.
Aim Hydrological disconnection of floodplains from rivers is among the top factors threatening river‐floodplain ecosystems. To keep enough floodplain area is of great importance to biodiversity conservation. In the Yangtze River floodplain, most lakes were disconnected from the mainstream by dams in 1950–1970s. By analysing fish diversity data, we aim at determining the effects of river‐lake disconnection on fish diversity, at estimating the minimum protected area of river‐connected lakes and at proposing a holistic strategy for fish conservation in the mid‐lower reaches of the river. Location The Yangtze River floodplain, China. Methods We collected recorded data of fish diversity of 30 Yangtze floodplain lakes. Species–area relationships were analysed and compared between river‐connected and river‐disconnected lakes. Cumulative species–area models were constructed to estimate the minimum protected area of river‐connected lakes. Results River‐lake disconnection reduced fish diversity of Yangtze lakes by 38.1%, so that the river‐connected lakes play an important role in maintaining the floodplain biodiversity. The minimum protected area of river‐connected lakes was estimated to be 14,400 km2. Therefore, we should not only protect the existent connected lakes of 5500 km2, but also reconnect disconnected lakes of at least 8900 km2 in the Yangtze basin. Main conclusions Species–area relationships are of importance in reserve design. We suggest that cumulative species–area model might be more suitable for ecosystems with high connectivity among regions such as floodplains. As the Yangtze River floodplain is an integrative ecosystem, we suggest establishing a holistic nature reserve in the mid‐lower basin for effective conservation of biodiversity.  相似文献   

3.
4.
To develop strategies for the management and protection of aquatic biodiversity in water bodies at the landscape scale, there is a need for information on the spatial organization of diversity in different types of aquatic habitats. In this study, we compared the cladoceran composition and diversity between wheel tracks, pools, ponds, lakes, ditches, and streams, in 18 different areas of Flanders (Belgium). Multivariate analysis revealed significant differences in the composition of cladoceran communities among the different water body types. Average local and total diversity tended to be highest for lakes and lowest for streams. Despite the relatively high number of species supported by lakes, small water bodies seem to contribute considerably more to the total cladoceran richness of an average landscape in Flanders than lakes, because of their high abundance. With respect to biodiversity conservation at the landscape scale, our results point to the importance of maintaining a diversity of water body types of different size, permanence and flow regimes. Guest editors: R. Céréghino, J. Biggs, B. Oertli & S. Declerck The ecology of European ponds: defining the characteristics of a neglected freshwater habitat  相似文献   

5.
  1. Aquatic ecosystems are biodiversity hot spots across many landscapes; therefore, the degradation of these habitats can lead to decreases in biodiversity across multiple scales. Salinisation is a global issue that threatens freshwater ecosystems by reducing water quality and local biodiversity. The effects of salinity on local processes have been studied extensively; however, the effects of salinisation or similar environmental stressors within a metacommunity (a dispersal network of several distinct communities) have not been explored.
  2. We tested how the spatial heterogeneity and the environmental contrast between freshwater and saline habitat patches influenced cladoceran biodiversity and species composition at local and regional scales in a metacommunity mesocosm experiment. We defined spatial heterogeneity as the proportion of freshwater to saltwater patches within the metacommunity, ranging from a freshwater-dominated metacommunity to a saltwater-dominated metacommunity. Environmental contrast was defined as the environmental distance between habitat patches along the salinity gradient in which low-contrast metacommunities consisted of freshwater and low-salinity patches and high-contrast metacommunities consisted of freshwater and high-salinity patches.
  3. We hypothesised that the α-richness of freshwater patches and metacommunity γ-richness would decrease as freshwater patches became less abundant along the spatial heterogeneity gradient in both low- and high-contrast metacommunities, because there would be fewer freshwater patches that could serve as source populations for declining populations. We hypothesised that low-contrast metacommunities would support more species across the spatial heterogeneity gradient than high-contrast metacommunities, because, via dispersal, low-salinity patches can support halotolerant freshwater species that can mitigate population declines in neighbouring freshwater patches, whereas` high-salinity patches will mostly support halophilic species, providing fewer potential colonisers to freshwater patches.
  4. We found that α-richness of freshwater mesocosms and metacommunity γ-richness declined in saline-dominated metacommunities regardless of the environmental contrast between the freshwater and saline mesocosms. We found that environmental contrast influenced freshwater and saline community composition in low-contrast metacommunities by increasing the abundances of species that could tolerate low-salinity environments through dispersal, whereas freshwater and high-salinity communities showed limited interactions through dispersal.
  5. Freshwater mesocosms had a disproportionate effect on the local and regional biodiversity in these experimental metacommunities, indicating that habitat identity may be more important than habitat diversity for maintaining biodiversity in some metacommunities. This study further emphasises the importance in maintaining multiple species-rich habitat patches across landscapes, particularly those experiencing landscape-wide habitat degradation.
  相似文献   

6.
Rapid urbanization throughout the world is expected to cause extensive loss of biodiversity in the upcoming decades. Disturbances associated with urbanization frequently operate over multiple spatial scales such that local species extirpations have been attributed both to localized habitat degradation and to regional changes in land use. Urbanization also may shape stream communities by restricting species dispersal within and among stream reaches. In this patch-dynamics view, anthropogenic disturbances and isolation jointly reduce stream biodiversity in urbanizing landscapes. We evaluated predictions of stream invertebrate community composition and abundance based on variation in environmental conditions at five distinct spatial scales: stream habitats, reaches, riparian corridors and watersheds and their spatial location within the larger three-river basin. Despite strong associations between biodiversity loss and human density in this study, local stream habitat and stream reach conditions were poor predictors of community patterns. Instead, local community diversity and abundance were more accurately predicted by riparian vegetation and watershed landscape structure. Spatial coordinates associated with instream distances provided better predictions of stream communities than any of the environmental data sets. Together, results suggest that urbanization in the study region was associated with reduced stream invertebrate diversity through the alteration of landscape vegetation structure and patch connectivity. These findings suggest that maintaining and restoring watershed vegetation corridors in urban landscapes will aid efforts to conserve freshwater biodiversity.  相似文献   

7.
  1. The round goby (Neogobius melanostomus) is among the fastest-spreading introduced aquatic species in North America and is radiating inland from the Great Lakes into freshwater ecosystems across the landscape. Predicting and managing the impacts of round gobies requires information on the factors influencing their distribution in habitats along the invasion front, yet this information is not available for many recently invaded ecosystems. We evaluated the seasonal habitat use and biomass of round gobies in an inland temperate lake to define the spatiotemporal scope of biological interactions at the leading edge of the round goby invasion.
  2. Using novel statistical approaches, we combined hierarchical models that control for imperfect species detection with flexible smooth terms to describe non-linear relationships between round goby abundance and environmental gradients. Subsequently, we generated accurate detection-corrected estimates of the standing stock biomass of round gobies.
  3. Our results show seasonally differentiated habitat niches, where suitable round goby habitat in summer months is restricted to shallow depths (<18.4 m) with a mixture of vegetative and mussel cover. We found high round goby biomass of 122 kg/ha in occupied habitats during the summer, with a total lake-wide biomass of 766,000 kg. In winter, round gobies migrate to deep offshore habitats and disperse, dramatically altering their scope for biological interactions with resident aquatic species across summer and winter seasons.
  4. The results of this study indicate that the scope of biological interactions in inland lakes may be seasonally variable, with potential for high round goby biomass in shallow lakes or at the periphery of deep lakes in the summer months. Such shallow-water habitats may therefore present higher risk of ecological impacts from round gobies in invaded lentic ecosystems. As round gobies expand inland, consideration of seasonal habitat use will be an important factor in predicting the impacts of this pervasive invader.
  相似文献   

8.
Natural ecosystems are shaped along two fundamental axes, space and time, but how biodiversity is partitioned along both axes is not well understood. Here, we show that the relationship between temporal and spatial biodiversity patterns can vary predictably according to habitat characteristics. By quantifying seasonal and annual changes in larval dragonfly communities across a natural predation gradient we demonstrate that variation in the identity of top predator species is associated with systematic differences in spatio‐temporal β‐diversity patterns, leading to consistent differences in relative partitioning of biodiversity between time and space across habitats. As the size of top predators increased (from invertebrates to fish) habitats showed lower species turnover across sites and years, but relatively larger seasonal turnover within a site, which ultimately shifted the relative partitioning of biodiversity across time and space. These results extend community assembly theory by identifying common mechanisms that link spatial and temporal patterns of βdiversity.  相似文献   

9.
Over the past few decades, a large body of research has examined how biodiversity loss influences the functioning of ecosystems, as well as the cascading impacts on the goods and services ecosystems provide to humanity. The relationship between biodiversity and ecosystem functions quantified in prior experiments suggests that initial losses of biodiversity have relatively small impacts on properties like community biomass production; however, beyond some threshold, increasing losses lead to accelerating declines in function. Some have questioned whether a saturating relationship between diversity and community biomass production is an artifact of overly simplified experiments that manipulate diversity in homogeneous conditions over short time‐scales in which niche differences may not be realized. Others have questioned whether even the modest effects of biodiversity observed in experiments would be discernible in natural systems where they could be over‐ridden by the stronger influence of abiotic factors. Here, we used a biogeographic dataset to assess how the taxonomic richness of aquatic primary producers relates to community biomass in unmanipulated lake ecosystems in the US, and then compared these findings to prior experiments. We used structural equation modeling to evaluate hypotheses about the effects of algal richness on community biomass while accounting for covariance with environmental parameters measured in the USEPA's National Lakes Assessment (NLA), which sampled 1157 freshwater lakes. These analyses converged on a single best‐fit model (χ2= 0.31, p = 0.58) wherein community algal biomass was a function of three explanatory variables – nitrogen, phosphorus, and algal richness. The quantitative magnitude of the algal diversity (x) – biomass (y) relationship in the NLA dataset is statistically greater than that documented in the average biodiversity experiment. It did, however, lie at approximately the 75th percentile of experimental relationships, indicating the diversity–biomass relationship in unmanipulated lakes is within the range that has been characterized experimentally.  相似文献   

10.
Toxic cyanobacterial blooms can strongly affect freshwater food web structures. However, little is known about how the patchy occurrence of blooms within systems affects the spatial distribution of zooplankton communities. We studied this by analysing zooplankton community structures in comparison with the spatially distinct distribution of a toxic Microcystis bloom in a small, shallow, eutrophic lake. While toxic Microcystis was present at all sites, there were large spatial differences in the level of cyanobacterial biomass and in the zooplankton communities; sites with persistently low cyanobacterial biomass displayed a higher biomass of adult Daphnia and higher zooplankton diversity than sites with persistently high cyanobacterial biomass. While wind was the most likely reason for the spatially distinct occurrence of the bloom, our data indicate that it was the differences in cyanobacterial biomass that caused spatial differences in the zooplankton community structures. Overall, our study suggests that even in small systems with extensive blooms ‘refuge sites’ exist that allow large grazers to persist, which can be an important mechanism for a successful re-establishment of the biodiversity in an ecosystem after periods of cyanobacterial blooms.  相似文献   

11.
Data on the biodiversity, structure, and seasonal dynamics of zooplankton communities in hollowpools of raised bogs in Vologda oblast are presented for the first time. The fauna of zooplankton communities in hollow-pools totals 38 species of plankton invertebrates (Rotatoria, 12; Cladocera, 19; and Copepoda, 7), and is mainly presented by acidophilic and sphagnophilic species. The water bodies are characterized by a high abundance and biomass of zooplankton organisms. The diversity and productivity of the zooplankton community increase with an increase in the area and depth of hollow-ponds. The seasonal dynamics of the abundance and biomass of zooplankton is similar in all groups of hollow-pools and depends on changes in the dominant complex of invertebrates.  相似文献   

12.
In the summer of 1994, floodplain habitats of the Atchafalaya River Basin were surveyed for cladocera and copepoda. Collection sites were grouped into three distinct habitat types (black-water, brown-water and green-water) based on a principal components analysis of five hydrographic variables (current velocity, Secchi disk depth, surface percent saturation of dissolved oxygen, dissolved oxygen differential and surface water temperature). An ANOVA of four community indices (total abundance, Shannon–Weiner diversity (H'), richness, and evenness) was performed on both cladoceran and copepod communities among the three floodplain habitats. Common species were compared among habitats (2 goodness-of-fit) to determine where they were most abundant. Green-water habitats had the greatest overall abundance of cladocerans and copepods (dominated by Diaphanosoma birgei, Moina micrura and Mesocyclops edax), but ranked lower in diversity and evenness than black-water and brown-water habitats where Ilyocryptus spinifer, Simocephalus serrulatus, Macrocyclops albidus (black-water) and Bosmina longirostris and Acanthocyclops vernalis (brown-water) were most abundant, respectively. These results indicate that the mosaic of floodplain habitats within large temperate river systems support unique zooplankton communities, and that these habitats are largely a function of seasonal hydrographic features.  相似文献   

13.
The biodiversity in mountainous ecosystems is high but is threatened by rapid environmental change. Urbanization and other anthropogenic factors in the mountains can affect land use and spatial fragmentation. Moreover, patterns of habitat are closely related to elevation and have a major effect on montane biodiversity. The aim of this study was to analyze the effects of spatial fragmentation on the vertical distribution pattern of bird diversity by characterizing the structure of the bird community, species diversity, and landscape factors at different altitudes. From 2016 to 2019, this study made a four years of continuous monitoring of the breeding birds. The result indicated that Mount Tai harbored a high bird diversity. Bird richness, abundance, and Shannon‐Wiener index decreased with latitude in Mount Tai monotonically. Moreover, the structure of bird communities varied along altitudinal gradients, and some special species were supported in different elevational bands due to the environmental filtering. Road density, number of habitat patches, patch density, and the percentage of forest were significantly related to bird diversity. Sufficient habitat and more patches in the low‐mountain belt supported higher bird diversity. The middle‐mountain belt and high‐mountain belt showed contrasting patterns. Our results highlight the effects of on‐going urbanization and human activities on montane biodiversity and emphasize the need for artificial habitats in the mountains to be managed.  相似文献   

14.
Diplonemids are considered marine protists and have been reported among the most abundant and diverse eukaryotes in the world oceans. Recently we detected the presence of freshwater diplonemids in Japanese deep freshwater lakes. However, their distribution and abundances in freshwater ecosystems remain unknown. We assessed abundance and diversity of diplonemids from several geographically distant deep freshwater lakes of the world by amplicon-sequencing, shotgun metagenomics and catalysed reporter deposition-fluorescent in situ hybridization (CARD-FISH). We found diplonemids in all the studied lakes, albeit with low abundances and diversity. We assembled long 18S rRNA sequences from freshwater diplonemids and showed that they form a new lineage distinct from the diverse marine clades. Freshwater diplonemids are a sister-group to a marine clade, which are mainly isolates from coastal and bay areas, suggesting a recent habitat transition from marine to freshwater habitats. Images of CARD-FISH targeted freshwater diplonemids suggest they feed on bacteria. Our analyses of 18S rRNA sequences retrieved from single-cell genomes of marine diplonemids show they encode multiple rRNA copies that may be very divergent from each other, suggesting that marine diplonemid abundance and diversity both have been overestimated. These results have wider implications on assessing eukaryotic abundances in natural habitats by using amplicon-sequencing alone.  相似文献   

15.
This study used stratified random sampling to examine the spatial and temporal distribution of zooplankton communities in a large floodplain river (Mississippi River, USA). Potential mechanisms controlling zooplankton abundance and community structure were considered. Main channel and backwater habitats included in this study differed between a turbid upper pool reach where aquatic macrophytes were sparse and a lower pool reach which was considerably less turbid and had extensive aquatic macrophyte coverage. Samples were collected monthly during the summer over a 2-year period and multivariate analysis was used to examine the spatial and temporal distribution of zooplankton. Significant differences were found in zooplankton density and community composition among habitats and reaches within the pool. Rotifers were the dominant taxa and seasonality was pronounced, with peak densities often occurring in late-spring. Community structure varied by habitat and reach, which suggests that water quality, physical habitat characteristics, presence of aquatic macrophytes, and zooplankton sources can all influence the zooplankton communities of the Upper Mississippi River. Characterization of the zooplankton communities provides a basis for understanding changes in the river ecosystem and examination of zooplankton communities among habitats provides insight into the mechanisms affecting zooplankton dynamics.  相似文献   

16.
谈金豪  蔺丹清  代培  张家路  刘凯 《生态学报》2021,41(16):6494-6505
江苏镇江长江豚类省级自然保护区是长江下游江段长江江豚的最主要的栖息地之一。为了解江豚主要栖息地的浮游动物群落结构,于2016年1月至2018年10月对保护区水域浮游动物进行了现状调查,分析了浮游动物群落时空结构变化特征及其与环境因子的关系。研究共发现浮游动物4门41属90种,其中原生动物种类数最多,为40种,其次为桡足类和枝角类,而轮虫类较少。三年共确定优势种8种,以食藻类原生动物为主要优势类群。保护区浮游动物群落小型化趋势明显。浮游动物密度和生物量季节性差异显著(P<0.05),总体上呈现夏、秋季较春、冬季高的现象。Pearson相关性和RDA分析结果显示,水温、溶氧、pH和氮营养盐是造成浮游动物群落显著差异的主要环境因子。根据浮游动物群落结构特征及渔产潜力综合评估结果显示,与历史资料相比,保护区水生态环境有所改善,但渔业资源匮乏的局面没有得到根本性的改变,江豚的食物资源状况依然不容乐观。本研究结果为镇江保护区江豚栖息地生态环境的监测和保护研究提供了数据资料和理论依据。  相似文献   

17.
18.
The effects of cyanobacteria on zooplankton abundance, structure and diversity were investigated, based on a systematic study on spatial and temporal variations of cyanobacteria and zooplankton in Lake Taihu from 1998 to 2007. It was found that similar increasing trends of cyanobacteria/phytoplankton ratios were accompanied by different trends in biomass, composition and biodiversity of zooplankton in different regions of the lake; the cladocerans benefitted from the increase in cyanobacteria; however, rotifers and protozoans were negatively affected by cyanobacteria. The biomass-based biodiversity of phytoplankton and zooplankton was negatively affected by cyanobacteria as well, and the adverse effects were in proportion to the cyanobacteria/phytoplankton ratio. These results indicated interestingly that higher amounts of cyanobacteria do not necessarily reduce zooplankton biomass, as the biomass of larger zooplankton such as cladocerans was positively related to cyanobacteria. The findings are essential to understand the complex ecological effects of cyanobacteria blooms in lakes.  相似文献   

19.
20.
The habitat heterogeneity generated and sustained by the connectivity of floodplain habitats, the seasonal flood pulse, and the variability of the physical structures typically found in floodplains of large rivers results in a variable space–time mosaic of water sources that results in a high biodiversity of the river-floodplain system. In order to assess the implications of natural connectivity and the heterogeneity on the patterns of macroinvertebrate assemblages at different spatial scales, monthly samplings in six different mesohabitats (lakes with different hydrological connection and secondary channels with permanently and intermittent flow) of the Paraná River floodplain were performed from April 2005 to March 2006. The mesohabitats had different granulometry and detritus composition of their bottom sediments. They also had different conductivity, transparency, and depth in relation to the different connectivity degrees. Mesohabitats differed in the abundance of macroinvertebrates of different taxonomic groups and diversity. The environmental variables were correlated to the patterns of macroinvertebrate abundance, with dominance of different species of annelids and mollusks at the patch, mesohabitats, and island scales. An alpha diversity gradient from the isolated lake (65 taxonomic units) to the secondary channels (25 taxonomic units) was obtained. The analyzed mesohabitats showed a high taxa turnover, with high values not only among the mesohabitats located in the different islands, but also among the mesohabitats in relation to different connectivity degrees. The mesohabitats showed negative co-occurrence of macroinvertebrate assemblages. The spatial heterogeneity, sustained by the connectivity degree, played a key role in structuring benthic assemblages at different scales, positively influencing the regional diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号