首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo rodent tail models are becoming more widely used for exploring the role of mechanical loading on the initiation and progression of intervertebral disc degeneration. Historically, finite element models (FEMs) have been useful for predicting disc mechanics in humans. However, differences in geometry and tissue properties may limit the predictive utility of these models for rodent discs. Clearly, models that are specific for rodent tail discs and accurately simulate the disc's transient mechanical behavior would serve as important tools for clarifying disc mechanics in these animal models. An FEM was developed based on the structure, geometry, and scale of the mouse tail disc. Importantly, two sources of time-dependent mechanical behavior were incorporated: viscoelasticity of the matrix, and fluid permeation. In addition, a novel strain-dependent swelling pressure was implemented through the introduction of a dilatational stress in nuclear elements. The model was then validated against data from quasi-static tension-compression and compressive creep experiments performed previously using mouse tail discs. Finally, sensitivity analyses were performed in which material parameters of each disc subregion were individually varied. During disc compression, matrix consolidation was observed to occur preferentially at the periphery of the nucleus pulposus. Sensitivity analyses revealed that disc mechanics was greatly influenced by changes in nucleus pulposus material properties, but rather insensitive to variations in any of the endplate properties. Moreover, three key features of the model-nuclear swelling pressure, lamellar collagen viscoelasticity, and interstitial fluid permeation-were found to be critical for accurate simulation of disc mechanics. In particular, collagen viscoelasticity dominated the transient behavior of the disc during the initial 2200 s of creep loading, while fluid permeation governed disc deformation thereafter. The FEM developed in this study exhibited excellent agreement with transient creep behavior of intact mouse tail motion segments. Notably, the model was able to produce spatial variations in nucleus pulposus matrix consolidation that are consistent with previous observations in nuclear cell morphology made in mouse discs using confocal microscopy. Results of this study emphasize the need for including nucleus swelling pressure, collagen viscoelasticity, and fluid permeation when simulating transient changes in matrix and fluid stress/strain. Sensitivity analyses suggest that further characterization of nucleus pulposus material properties should be pursued, due to its significance in steady-state and transient disc mechanical response.  相似文献   

2.
The lack of standardization in experimental protocols for unconfined compression tests of intervertebral discs (IVD) tissues is a major issue in the quantification of their mechanical properties. Our hypothesis is that the experimental protocols influence the mechanical properties of both annulus fibrosus and nucleus pulposus. IVD extracted from bovine tails were tested in unconfined compression stress-relaxation experiments according to six different protocols, where for each protocol, the initial swelling of the samples and the applied preload were different. The Young's modulus was calculated from a viscoelastic model, and the permeability from a linear biphasic poroviscoelastic model. Important differences were observed in the prediction of the mechanical properties of the IVD according to the initial experimental conditions, in agreement with our hypothesis. The protocol including an initial swelling, a 5% strain preload, and a 5% strain ramp is the most relevant protocol to test the annulus fibrosus in unconfined compression, and provides a permeability of 5.0 ± 4.2e(-14)m(4)/N[middle dot]s and a Young's modulus of 7.6 ± 4.7 kPa. The protocol with semi confined swelling and a 5% strain ramp is the most relevant protocol for the nucleus pulposus and provides a permeability of 10.7 ± 3.1 e(-14)m(4)/N[middle dot]s and a Young's modulus of 6.0 ± 2.5 kPa.  相似文献   

3.
Degenerate intervertebral discs exhibit both material and structural changes. Structural defects (lesions) develop in the anulus fibrosus with age. While degeneration has been simulated in numerous previous studies, the effects of structural lesions on disc mechanics are not well known. In this study, a finite element model (FEM) of the L4/5 intervertebral disc was developed in order to study the effects of anular lesions and loss of hydrostatic pressure in the nucleus pulposus on the disc mechanics. Models were developed to simulate both healthy and degenerate discs. Degeneration was simulated with either rim, radial or circumferential anular lesions and by equating nucleus pressure to zero. The anulus fibrosus ground substance was represented as a nonlinear incompressible material using a second-order polynomial, hyperelastic strain energy equation. Hyperelastic material parameters were derived from experimentation on sheep discs. Endplates were assumed to be rigid, and annulus lamellae were assumed to be vertical in the unloaded state. Loading conditions corresponding to physiological ranges of rotational motion were applied to the models and peak rotation moments compared between models. Loss of nucleus pulposus pressure had a much greater effect on the disc mechanics than the presence of anular lesions. This indicated that the development of anular lesions alone (prior to degeneration of the nucleus) has minimal effect on disc mechanics, but that disc stiffness is significantly reduced by the loss of hydrostatic pressure in the nucleus. With the degeneration of the nucleus, the outer innervated anulus or surrounding osteo-ligamentous anatomy may therefore experience increased strains.  相似文献   

4.
On the mechanical properties of human intervertebral disc material.   总被引:1,自引:0,他引:1  
  相似文献   

5.
The intervertebral disc (IVD) is avascular, receiving nutrition from surrounding vasculature. Theoretical modelling can supplement experimental results to understand nutrition to IVD more clearly. A new, 3D finite element model of the IVD was developed to investigate effects of endplate calcification and mechanical deformation on glucose distributions in IVD. The model included anatomical disc geometry, non-linear coupling of cellular metabolism with pH and oxygen concentration and strain-dependent properties of the extracellular matrix. Calcification was simulated by reducing endplate permeability (~79%). Mechanical loading was applied based on in vivo disc deformation during the transition from supine to standing positions. Three static strain conditions were considered: supine, standing and weight-bearing standing. Minimum glucose concentrations decreased 45% with endplate calcification, whereas disc deformation led to a 4.8-63% decrease, depending on the endplate condition (i.e. normal vs. calcified). Furthermore, calcification more strongly affected glucose concentrations in the nucleus compared to the annulus fibrous region. This study provides important insight into nutrient distributions in IVD under mechanical deformation.  相似文献   

6.
7.
It is difficult to study the breakdown of disc tissue over several years of exposure to bending and lifting by experimental methods. There is also no finite element model that elucidates the failure mechanism due to repetitive loading of the lumbar motion segment. The aim of this study was to refine an already validated poro-elastic finite element model of lumbar motion segment to investigate the initiation and progression of mechanical damage in the disc under simple and complex cyclic loading conditions. Continuum damage mechanics methodology was incorporated into the finite element model to track the damage accumulation in the annulus in response to the repetitive loading. The analyses showed that the damage initiated at the posterior inner annulus adjacent to the endplates and propagated outwards towards its periphery under all loading conditions simulated. The damage accumulated preferentially in the posterior region of the annulus. The analyses also showed that the disc failure is unlikely to happen with repetitive bending in the absence of compressive load. Compressive cyclic loading with low peak load magnitude also did not create the failure of the disc. The finite element model results were consistent with the experimental and clinical observations in terms of the region of failure, magnitude of applied loads and the number of load cycles survived.  相似文献   

8.
The purpose of this paper was to study the influence of surgical herniation on the viscoelastic properties of the intervertebral disc. The work was broken down into two phases: experimentation and analysis. In the first step of experimentation, five specimens were excised from the L1-L2 level of young adult rhesus monkeys. The prepared specimen consisted of the intervertebral joint and the two adjacent vertebral centrums without either the posterior elements or associated soft tissue. The specimens were subjected to a constant compressive load for eight hours followed by a sixteen hour relaxation time. During all the load cycles, displacement of the specimens was measured with an LVDT. After the first compressive test, the specimens were herniated and then the compressive test repeated. In the second phase of the work, a viscoelastic axisymmetric finite element model was used to quantify the experimental data. A three parameter Kelvin solid was employed in the finite element model. The results of this paper will be used to construct a dynamic model for the vertebral column.  相似文献   

9.
The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.  相似文献   

10.
The main objective of this work is to develop a three-dimensional finite element model of the L5-S1 segment that is able to simulate its passive mobility measured in vitro. Due to their limited role in segment mobility, an isotropic linear elastic constitutive law was used for cartilage, cancellous and cortical bone. The intervertebral disk ground substance was modeled with a non-linear hyperelastic polynomial law. Fibers of the disk, as well as ligaments, were modeled with piecewise linear springs. Flexion-extension, axial rotation, and lateral bending torques were applied to the model. A comparison with the experimental results obtained on the same segment for these three major motions was conducted. The compliance of the segment subjected to pure torques was found to be similar between numerical and experimental results for all major motions. Coupled motions and translations were also similar, even in their amplitude. For lateral bending, the normal coupled motions originate from the geometry of the disk and not from the facet geometry.  相似文献   

11.
Compared to a healthy intervertebral disc, the geometry and the material properties of the involved tissues are altered in a degenerated disc. It is not completely understood how this affects the mechanical behaviour of a motion segment. In order to study the influence of disc degeneration on motion segment mechanics a three-dimensional, nonlinear finite element model of the L3/L4 functional unit was used. Different grades of disc degeneration were simulated by varying disc height and bulk modulus of the nucleus pulposus. The model was loaded with pure moments of 10Nm in the three main anatomic planes. The finite element model predicted the same trends for intersegmental rotation and intradiscal pressure as described in the literature for in vitro studies. A comparison between calculated intersegmental rotation and experimental data showed a mean difference of 1.9 degrees while the mean standard deviation was 2.5 degrees . A mildly degenerated disc increases intersegmental rotation for all loading cases. With further increasing disc degeneration intersegmental rotation is decreased. For axial rotation the decrease takes place in the final stage. Intradiscal pressure is lower while facet joint force and maximum von Mises stress in the annulus are higher in a degenerated compared to a healthy disc.  相似文献   

12.
A simple axisymmetric finite element model of a human spine segment containing two adjacent vertebrae and the intervening intervertebral disc was constructed. The bodies and disc were modeled by three substructures; one to represent each of the vertebral bodies, the annulus fibrosus, and the nucleus pulposus. A semi-analytic technique was used to maintain the computational economies of a two-dimensional analysis when non- axisymmetric loads were imposed on the model. The response of the model to compression, shear, torsion and bending loads applied to the superior vertebral body was examined to determine the effects of disc geometry and material properties on response. Comparisons of model responses with experimentally measured responses were made to estimate material property values for which model behaviors are in agreement with measured behaviors.  相似文献   

13.
Bone remodelling is the process that maintains bone structure and strength through adaptation of bone tissue mechanical properties to applied loads. Bone can be modelled as a porous deformable material whose pores are filled with cells, organic material and interstitial fluid. Fluid flow is believed to play a role in the mechanotransduction of signals for bone remodelling. In this work, an osteon, the elementary unit of cortical bone, is idealized as a hollow cylinder made of a deformable porous matrix saturated with an interstitial fluid. We use Biot’s poroelasticity theory to model the mechanical behaviour of bone tissue taking into account transverse isotropic mechanical properties. A finite element poroelastic model is developed in the COMSOL Multiphysics software. Elasticity equations and Darcy’s law are implemented in this software; they are coupled through the introduction of an interaction term to obtain poroelasticity equations. Using numerical simulations, the investigation of the effect of spatial gradients of permeability or Poisson’s ratio is performed. Results are discussed for their implication on fluid flow in osteons: (i) a permeability gradient affects more the fluid pressure than the velocity profile; (ii) focusing on the fluid flow, the key element of loading is the strain rate; (iii) a Poisson’s ratio gradient affects both fluid pressure and fluid velocity. The influence of textural and mechanical properties of bone on mechanotransduction signals for bone remodelling is also discussed.  相似文献   

14.
Torsion as a cause of failure in the lumbar intervertebral joint was studied using a three-dimensional nonlinear finite element model. The role of facets and ligaments as well as the stress distributions in the posterior elements, the disk, the ligaments, and the vertebral body were examined. For physiological range of torsion, the facets carried 10 to 40 percent of the torque. The fiber stresses in the disk were the highest at the lateral margin of the outer layer of the annulus. Therefore, torsion itself is unlikely to cause posterior or posterolateral disk prolapse.  相似文献   

15.
The objective of this study was to examine the effects of mechanical compression on metabolism and distributions of oxygen and lactate in the intervertebral disc (IVD) using a new formulation of the triphasic theory. In this study, the cellular metabolic rates of oxygen and lactate were incorporated into the newly developed formulation of the mechano-electrochemical mixture model [Huang, C.-Y., Gu, W.Y., 2007. Effect of tension-compression nonlinearity on solute transport in charged hydrated fibrosus tissues under dynamic unconfined compression. Journal of Biomechanical Engineering 129, 423-429]. The model was used to numerically analyze metabolism and transport of oxygen and lactate in the IVD under static or dynamic compression. The theoretical analyses demonstrated that compressive loading could affect transport and metabolism of nutrients. Dynamic compression increased oxygen concentration, reduced lactate accumulation, and promoted oxygen consumption and lactate production (i.e., energy conversion) within the IVD. Such effects of dynamic loading were dependent on strain level and loading frequency, and more pronounced in the IVD with less permeable endplate. In contrast, static compression exhibited inverse effects on transport and metabolism of oxygen and lactate. The theoretical predictions in this study are in good agreement with those in the literature. This study established a new theoretical model for analyzing cellular metabolism of nutrients in hydrated, fibrous soft tissues under mechanical compression.  相似文献   

16.
A statistical factorial analysis approach was conducted on a poroelastic finite element model of a lumbar intervertebral disc to analyse the influence of six material parameters (permeabilities of annulus, nucleus, trabecular vertebral bone, cartilage endplate and Young's moduli of annulus and nucleus) on the displacement, fluid pore pressure and velocity fields. Three different loading modes were investigated: compression, flexion and axial rotation. Parameters were varied considering low and high levels in agreement with values found in the literature for both healthy and degenerated lumbar discs. Results indicated that annulus stiffness and cartilage endplate permeability have a strong effect on the overall fluid- and solid-phase responses in all loading conditions studied. Nucleus stiffness showed its main relevance in compression while annulus permeability influenced mainly the annular pressure field. This study confirms the permeability's central role in biphasic modelling and highlights for the lumbar disc which experiments of material property characterization should be performed. Moreover, such sensitivity study gives important guidelines in poroelastic material modelling and finite element disc validation.  相似文献   

17.
Intervertebral disc degeneration involves changes in the spinal anatomical structures. The mechanical relevance of the following changes was investigated: disc height, endplate sclerosis, disc water content, permeability and depressurisation. A poroelastic nonlinear finite element model of the L4-L5 human spine segments was employed. Loads represented a daily cycle (500 N compression combined with flexion-extension motion for 16 h followed by 200 N compression for 8 h). In non-degenerative conditions, the model predicted a diurnal axial displacement of 1.32 mm and a peak intradiscal pressure of 0.47 MPa. Axial displacement, facet force and range of motion in flexion-extension are decreased by decreasing disc height. By decreasing the initial water content, axial displacement, facet force and fluid loss were all reduced. Endplate sclerosis did not have a significant influence on the calculated results. Depressurisation determined an increase of the disc effective stress, possibly inducing failure. Degenerative instability was not calculated in any simulations.  相似文献   

18.
Intervertebral disc degeneration involves changes in the spinal anatomical structures. The mechanical relevance of the following changes was investigated: disc height, endplate sclerosis, disc water content, permeability and depressurisation. A poroelastic nonlinear finite element model of the L4–L5 human spine segments was employed. Loads represented a daily cycle (500 N compression combined with flexion–extension motion for 16 h followed by 200 N compression for 8 h). In non-degenerative conditions, the model predicted a diurnal axial displacement of 1.32 mm and a peak intradiscal pressure of 0.47 MPa. Axial displacement, facet force and range of motion in flexion–extension are decreased by decreasing disc height. By decreasing the initial water content, axial displacement, facet force and fluid loss were all reduced. Endplate sclerosis did not have a significant influence on the calculated results. Depressurisation determined an increase of the disc effective stress, possibly inducing failure. Degenerative instability was not calculated in any simulations.  相似文献   

19.
The development of heterotopic ossification (HO) is considered one of the major complications following cervical total disc replacement (TDR). Even though previous studies have identified clinical and biomechanical conditions that may stimulate HO, the mechanism of HO formation has not been fully elucidated. The objective of this study is to investigate whether mechanical loading is a biomechanical condition that plays a substantial role to decide the HO formation. A finite element model of TDR on the C5–C6 was developed, and HO formation was predicted by simulating a bone adaptation process under various physiological mechanical loadings. The distributions of strain energy on vertebrae were assessed after HO formation. For the compressive force, most of the HO formation occurred on the vertebral endplates uncovered by the implant footplate which was similar to the Type 1 HO. For the anteriorly directed shear force, the HO was predominantly formed in the anterior parts of both the upper and lower vertebrae as the Type 2 HO. For both the flexion and extension moments, the HO shapes were similar to those for the shear force. The total strain energy was reduced after HO formation for all loading conditions. Two distinct types of HO were predicted based on mechanically induced bone adaptation processes, and our findings were consistent with those of previous clinical studies. HO formation might have a role in compensating for the non-uniform strain energy distribution which is one of the mechanical parameters related to the bone remodeling after cervical TDR.  相似文献   

20.
Statistical methods allow the effects of uncertainty to be incorporated into finite element models. This has potential benefits for the analysis of biological systems where natural variability can give rise to substantial uncertainty in both material and geometrical properties. In this study, a simple model of the intervertebral disc under compression was created and analysed as both a deterministic and a stochastic system. Factorial analysis was used to determine the important parameters to be included in the stochastic analysis. The predictions from the model were compared to experimental results from 21 sheep discs. The size and shape of the distribution of the axial deformations predicted by the model was consistent with the experimental results given that the number of model solutions far exceeded the number of experimental results. Stochastic models could be valuable in determining the range and most likely value of stress in a tissue or implant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号