首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of current study was to elucidate whether aquaporin-9 (AQP9) expression was involved in the progression of bone loss induced by microgravity. We used the hind-limb suspension (HLS) mice model to simulate microgravity and induce bone loss. It was found that HLS exposure decreased femur bone mineral density (BMD), and enhanced femur AQP9 mRNA and protein levels. Then, the relationship between AQP9 mRNA expression and BMD was studied and it was showed that femur AQP9 mRNA level was negatively related to femur BMD in mice exposed to HLS. We sought to exam the function of AQP9 in the femur using the AQP9-null mice. It was found that AQP9 knockout attenuated bone loss and inhibited osteoclastogenesis under the condition of HLS exposure, but had no similar effect on bone under normal physiological conditions. In addition, it was found that exposure to simulated hypergravity or exercise training, main countermeasures against microgravity, reduced AQP9 mRNA and protein levels in femur of mice. Moreover, it was found that both aging and estrogen deprivation, another two risk factors of bone loss, had no significant effect on femur AQP9 expression. In conclusion, AQP9 plays an important role in the development of microgravity-induced bone loss, and may be a potential target for the prevention or management of microgravity-induced bone loss.  相似文献   

2.
To determine the response of human cortical bone to projectile impact, 364 projectile impact tests were conducted on the shafts of embalmed human femurs. Chrome steel spherical projectiles in two diameters, 0·250 and 0·406 in., were employed to differentiate the effects of projectiles of varied sizes and masses in impacts at the same velocity. It was found that the larger projectiles expended significantly more energy in fracturing a femur than the smaller projectiles did at an identical impact velocity. Also, when impacts in which larger and smaller spheres possessed identical kinetic energies were compared, it was found that the larger spheres still expended more energy in fracturing the femur. Finally, it was clearly demonstrated by these experiments that impacts to cortical bone of the femoral shaft by either size projectile caused greater energy expenditure than impacts to the distal end of the femur, which is composed almost entirely of cancellous bone.  相似文献   

3.
Functional adaptation of the femur has been investigated in several studies by embedding bone remodelling algorithms in finite element (FE) models, with simplifications often made to the representation of bone’s material symmetry and mechanical environment. An orthotropic strain-driven adaptation algorithm is proposed in order to predict the femur’s volumetric material property distribution and directionality of its internal structures within a continuum. The algorithm was applied to a FE model of the femur, with muscles, ligaments and joints included explicitly. Multiple load cases representing distinct frames of two activities of daily living (walking and stair climbing) were considered. It is hypothesised that low shear moduli occur in areas of bone that are simply loaded and high shear moduli in areas subjected to complex loading conditions. In addition, it is investigated whether material properties of different femoral regions are stimulated by different activities. The loading and boundary conditions were considered to provide a physiological mechanical environment. The resulting volumetric material property distribution and directionalities agreed with ex vivo imaging data for the whole femur. Regions where non-orthogonal trabecular crossing has been documented coincided with higher values of predicted shear moduli. The topological influence of the different activities modelled was analysed. The influence of stair climbing on the properties of the femoral neck region is highlighted. It is recommended that multiple load cases should be considered when modelling bone adaptation. The orthotropic model of the complete femur is released with this study.  相似文献   

4.
In this study, we developed a numerical framework that computationally determines simultaneous and interactive structural changes of cortical and trabecular bone types during bone remodeling, and we investigated the structural correlation between the two bone types in human proximal femur. We implemented a surface remodeling technique that performs bone remodeling in the exterior layer of the cortical bone while keeping its interior area unchanged. A micro-finite element (μFE) model was constructed that represents the entire cortical bone and full trabecular architecture in human proximal femur. This study simulated and compared the bone adaptation processes of two different structures: (1) femoral bone that has normal cortical bone shape and (2) perturbed femoral bone that has an artificial bone lump in the inferomedial cortex. Using the proposed numerical method in conjunction with design space optimization, we successfully obtained numerical results that resemble actual human proximal femur. The results revealed that actual cortical bone, as well as the trabecular bone, in human proximal femur has structurally optimal shapes, and it was also shown that a bone abnormality that has little contribution to bone structural integrity tends to disappear. This study also quantitatively determined the structural contribution of each bone: when the trabecular adaptation was complete, the trabecular bone supported 54% of the total load in the human proximal femur while the cortical bone carried 46%.  相似文献   

5.
Strain shielding, a mechanical effect occurring in structures combining stiff with more flexible materials, is considered to lead to a reduction of density in bone surrounding the implant. This effect can be related to the weakness of the implant fixation, which can promote implant loosening. Several studies describe a significant decrease in postoperative bone mineral density adjacent to joint implants, which can compromise their long-term fixation. The aim of the present study was to quantify the strain shielding effect on the distal femur after patellofemoral arthroplasty. For this purpose three activities of daily living were considered: level walking, stair climbing and deep bending at different angles of knee flexion. To determine the strain shielding effect, cortical bone strains were measured experimentally with triaxial strain gauges in synthetic femurs before and after patellofemoral arthroplasty for each of the different daily activities. The results showed that the patellofemoral arthroplasty in general reduced the strains in the medial and distal regions of the femur when deep bending activity occurred, consequently, strain shielding in these regions, with strain decreases of ?72.0% and ?67.5% were measured. On the other side, higher values of strain were found in the anterior region after patellofemoral replacement for this activity with an increase of +182.0%. The occurrence of strain shielding seems to be more significant when the angle of knee flexion and applied load increases. Strain shielding and over-loading may have relevant effects on bone remodeling surrounding the patellofemoral implant, suggesting a potential effect of later bone resorption in the medial and distal femur regions in case of regular deep bending activity.  相似文献   

6.
Metabolic bone disease has been reported in free-living red squirrels (Sciurus vulgaris) in the United Kingdom but the prevalence of this disease is unknown. In this study the bone quality of free-living red squirrels in the UK was assessed by radiology and bone densitometry. The study comprised 20 red squirrels found dead and submitted to the Zoological Society of London (UK) between 1997 and 1998, 10 were from the Isle of Wight (IoW), where gray squirrels (Sciurus carolinensis) are absent, and 10 were from Cumbria (Cu), where gray squirrels are present. Gray squirrels are considered potential competitors for red squirrels. Radiologic evaluation of humerus, femur, tibia, radius, and ilium revealed a slightly lower bone density and thinner cortices in red squirrels from the IoW when compared with those from Cu. Dual-energy X-ray absorptiometry was used to measure bone mineral content and density of the isolated right humerus and femur of 19 of the 20 red squirrels. The bone densitometry study reinforced the radiographic findings. The IoW specimens had lower bone mineral density values, although statistical significance (P<0.05) between animals from the IoW and Cu was only reached for the proximal epiphysis of the femur and between males from the IoW and males from Cu for the proximal epiphysis of the humerus. A highly positive correlation (r>0.94) was found when the bone mineral content and density between the femur and the humerus among groups and within each group were compared, showing a uniform level of mineralization between upper and lower limbs. These findings suggested generalized bone loss for the IoW red squirrels that may be compatible with some degree of osteopenia. Within the wide range of causes that lead to osteopenia, malnutrition (especially protein deficiency), calcium and copper deficiencies, and genetic factors remain as possible etiologies.  相似文献   

7.
Bone is an anisotropic material with a hierarchical structure consisting of organic matrix, minerals and water. Fracture toughness (K(C)) has been shown to be a good index to assess the mechanical performance of bone. A chevron-notched (CN) beam test, a standard fracture mechanics test successfully applied to many other materials, was used to determine the transverse-direction fracture toughness in manatee rib and bovine femur cortical bone. Although human and bovine bone has been well studied, there is virtually no information on the toughness of manatee rib bone. As a biological material, manatee rib is interesting for study in that it is a highly mineralized bone. Three major advantages of the CN specimen test are: (1) it is easier to reach plane strain condition; (2) there is no fatigue-precracking needed; and (3) it is relatively easy to produce stable crack propagation before catastrophic fracture. The fracture toughness values of manatee rib and bovine femur were measured to be 4.5 +/- 0.5 MPa m(1/2) and 5.8 +/- 0.5 MPa m(1/2), respectively. Based on the microstructures shown in SEM images, two features that contributed to the greater fracture toughness of bovine femur were identified as greater osteon density and lesser porosity.  相似文献   

8.
The paper presents a novel method for recording amplitude and phase of 6D-vibrations of a spatial pendulum over a wide frequency range (10 Hz up to 20 kHz). The six degrees of freedom of the pendulum mass were monitored by three electrodynamic stereo pickups. At rest, the tips of the needles and the pendulum's center of mass defined the reference system with respect to which the oscillations of the mass were recorded in terms of their amplitudes and phases. Its small dimensions, constant transfer characteristics, linearity, high dynamics, and virtual lack of reaction onto the moving system over the entire frequency range provided the advantages of the measuring system. This method was used to analyze the spatial 6D-vibrations of the head of a cemented femoral hip endoprosthesis when the femur was stimulated to bending vibrations. The head of the prosthesis carried out axial rotational vibrations at every frequency used to stimulate the femur. The amplitudes of the axial rotations of the cortical bone were small in comparison to the ones of the prosthesis head, indicating that axial rotational vibrations following femur bending vibrations mainly stressed the spongiosa and the cement layer. This was observed over the entire frequency range, including at the low frequencies relevant for gait. Over the low-frequency range, as well as at some of the higher resonance frequencies, stationary instantaneous helical axes characterized the vibrations. The measurements suggest the mechanism that the interface "implant-bone" may already be stressed by axial torsional loads when the femur is loaded by bending impacts that are known to occur during walking.  相似文献   

9.
Bone involvement of hydatid disease is uncommon but when encountered, it presents few unique pathological features. The pattern of tissue involvement is largely different from that of visceral hydatid cyst. We describe the case of a 47 year-old man from northern India, a case of systemic hydatidosis including the liver and the right lung, presenting with an abscess like lesion in the left gluteal region with pathological fractures of the left femur. Radiographs and CT-scan images showed extensive invasion of the left hemi-pelvis and left proximal femur. Debridement of the honeycombed ilium yielded hydatid fluid, numerous small cysts and necrotic material. Multiple large devitalized and sequestrated bone pieces were recovered from the bone cavity of the affected ilium. A histopathological study of the bone sequestrums revealed the unique pattern of bone invasion by the characteristic laminated multi-layered cyst walls into areas of least resistance. Bone sequestration has not often been described or demonstrated elaborately in published studies of the past. The bone defects formed after debridement of the ilium and proximal femur were filled with bone cement along with augmentation of the femur using intra-medullary nail. The surgical technique adopted in our case although was not expected to be curative owing to the multi-system disease; it did result in significant functional improvement in the patient.  相似文献   

10.
We have used the low frequency solver of the computer program SEMCAD‐X to model the induced electric field and current density patterns in simple models of a fractured femur embedded off‐center in cylindrical muscle tissue; a 1 cm fracture gap is filled with callus. The model is exposed to a 1 kHz, 1 mT sinusoidal magnetic field. The frequency chosen is typical of the major Fourier components of many waveforms used to stimulate fracture healing using pulsed magnetic fields; the intensity is also a typical level. Models include fractures perpendicular to the bone and at an angle from the perpendicular, each exposed to a field applied parallel to the bone or parallel to either of the two axes perpendicular to it. We find that all directions of applied magnetic fields produce essentially parallel induced electric fields and current densities through the plane of the callus, but that a magnetic field applied parallel to the bone induces considerably higher fields and currents than the same strength field applied in either perpendicular direction. Because investigations of pulsed‐field devices, including modeling of induced fields and currents, peaked more than a decade ago, this is the first application to our knowledge of the current capabilities of computer modeling systems to biological systems at low frequencies. Bioelectromagnetics 33:585–593, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
We propose a multiscale mechanobiological model of bone remodelling to investigate the site-specific evolution of bone volume fraction across the midshaft of a femur. The model includes hormonal regulation and biochemical coupling of bone cell populations, the influence of the microstructure on bone turnover rate, and mechanical adaptation of the tissue. Both microscopic and tissue-scale stress/strain states of the tissue are calculated from macroscopic loads by a combination of beam theory and micromechanical homogenisation. This model is applied to simulate the spatio-temporal evolution of a human midshaft femur scan subjected to two deregulating circumstances: (i) osteoporosis and (ii) mechanical disuse. Both simulated deregulations led to endocortical bone loss, cortical wall thinning and expansion of the medullary cavity, in accordance with experimental findings. Our model suggests that these observations are attributable to a large extent to the influence of the microstructure on bone turnover rate. Mechanical adaptation is found to help preserve intracortical bone matrix near the periosteum. Moreover, it leads to non-uniform cortical wall thickness due to the asymmetry of macroscopic loads introduced by the bending moment. The effect of mechanical adaptation near the endosteum can be greatly affected by whether the mechanical stimulus includes stress concentration effects or not.  相似文献   

12.
ABSTRACT. Four groups of campaniform sensilla are found on the trochanter of Cuniculina impigra Tedtenbacher (Phasmidae). One of these groups can be divided into two sub-groups. The sensilla are approximately parallel within each group or sub-group. As sensilla with parallel orientation will respond to the same direction of shear force, each group or sub-group of campaniform sensilla should act as one unit. When the coxa is fixed, activity in the nerve supplying the campaniform sensilla can be released by bending the femur forwards and backwards. The sensilla are sensitive to movement only in one direction. The investigated sensilla react to the stimulus with phasic-tonic discharge patterns. The dependence of the phasic component upon the velocity of the stimulus can be described by a power function. The tonic component depends on the amplitude of the stimulus. By mechanical stimulation of individual groups of sensilla it can be shown that at least two groups of campaniform sensilla contain units which respond to bending the femur backwards. The activity of some motor neurones can be influenced by slightly bending the leg in the horizontal plane. The levator trochanteris muscle is activated when the femur is bent forwards, and the frequency of the slow extensor tibiae motor neurone is increased when the femur is bent backwards. The reaction of both muscles is phasic. There is no detectable reaction in the protractor or the retractor of the coxa or the depressor trochanteris.  相似文献   

13.
Julius Wolff originally proposed that trabecular bone was influenced by mechanical stresses during the formative processes of growth and repair such that trabeculae were required to intersect at right angles. In this work, we have developed an analytical parametric microstructural model, which captures this restriction. Using homogenisation theory, a global material model was obtained. An optimal structure constructed of the homogenised material could then be found by optimising a cost function accounting for both the structural stiffness and the biological cost associated with metabolic maintenance of the bone tissue. The formulation was applied to an example problem of the proximal femur. Optimal densities and orientations were obtained for single load cases. The situation of multiple loads was also considered. In this case, we observe that the alignment of principal strains with the material orthotropy direction is, in general, not possible for all load cases. Thus less restrictive microstructures (nonorthotropic) will yield higher structural stiffnesses than strictly orthotropic microstructures.  相似文献   

14.
Trabecular bone adaptation with an orthotropic material model.   总被引:3,自引:0,他引:3  
Most bone adaptation algorithms, that attempt to explain the connection between bone morphology and loads, assume that bone is effectively isotropic. An isotropic material model can explain the bone density distribution, but not the structure and pattern of trabecular bone, which clearly has a mechanical significance. In this paper, an orthotropic material model is utilized to predict the proximal femur trabecular structure. Two hypotheses are combined to determine the local orientation and material properties of each element in the model. First, it is suggested that trabecular directions, which correspond to the orthotropic material axes, are determined locally by the maximal principal stress directions due to the multiple load cases (MLC) the femur is subject to. The second hypothesis is that material properties in each material direction can be determined using directional stimuli, thus extending existing adaptation algorithms to include directionality. An algorithm is utilized, where each iteration comprises of two stages. First, material axes are rotated to the direction of the largest principal stress that occurs from a multiple load scheme applied to the proximal femur. Next, material properties are modified in each material direction, according to a directional stimulus. Results show that local material directions correspond with known trabecular patterns, reproducing all main groups of trabeculae very well. The local directional stiffnesses, degree of anisotropy and density distribution are shown to conform to real femur morphology.  相似文献   

15.
With the prevalent use of DXA-measured BMD to assess pathologic hip fractures and its recently reported lack of reliability to predict fracture or account for efficacy of anti-resorptive therapy, it is reasonable to assess whether variations in the primary and secondary tensile and compressive trabecular microstructure can account for variations in proximal femur strength in comparison to DXA-measured BMD. To that end, microstructural and densitometric measures of trabecular bone specimens, from discrete sites within the proximal femur, were correlated with their mechanical properties. We hypothesize that accounting for regional variations in trabecular microstructure will improve predictions of proximal femur strength and stiffness compared to bone density measured by DXA. Forty-seven samples (seven donors) from seven distinct sites of human proximal femur underwent DXA and muCT imaging and mechanical testing. The results revealed significant variations in BMC, morphometric indices and mechanical properties within the proximal femur. This work has demonstrated that the mechanical performance of each sub-region is highly dependent on the corresponding trabecular microstructure. BMD measured by DXA at standard regions of interest cannot resolve the variations in trabecular density and microstructure that govern the mechanical behavior of the proximal femur. This work suggests that a quantitative Singh index that uses high resolution QCT to monitor the trabecular microstructure at specific sub-regions of the proximal femur may allow better predictions of hip fracture risk in individual patients and an improved assessment of changing bone structure in response to pharmacological interventions.  相似文献   

16.
The following is Part B of a two-part study. Part A evaluated, biomechanically, intramedullary (IM) nails versus locking plates for fixation of an extra-articular, metaphyseal wedge fracture in synthetic osteoporotic bone. Part B of this study introduces deterministic finite element (FE) models of each construct type in synthetic osteoporotic bone and investigates the probability of periprosthetic fracture of the locking plate compared with the retrograde IM nail using Monte Carlo simulation. Deterministic FE models of the fractured femur implanted with IM nail and locking plate, respectively, were developed and validated using experimental data presented in Part A of this study. The models were validated by comparing the load-displacement curve of the experimental data with the load-displacement curve of the FE simulation with a root-mean square error of less than 3?mm. The validated FE models were then modified by defining the cortical and cancellous bone modulus of elasticity as uncertain variables that could be assumed to vary randomly. Monte Carlo simulation was used to evaluate the probability of fracture (POF) of each fixation. The POF represents the cumulative probability that the predicted shear stresses in the cortical bone will exceed the expected shear strength of the cortical bone. This investigation provides information regarding the significance of post-operative damage accumulation on the POF of the implanted bones when the two fixations are used. The probabilistic analysis found the locking plate fixation to have a higher POF than the IM nail fixation under the applied loading conditions (locking plate 21.8% versus IM nail 0.019%).  相似文献   

17.
Diffuse small-angle X-ray scattering of oriented bone from bovine femur and canine femur was described in terms of an ideal isotropic two-dimensional two-phase system which consists of mineral phase and organic phase. The microstructure of powdered, randomly-oriented bone from bovine femur was found to be affected by grinding. An analysis of small-angle scattering from oriented bone showed that bone mineral was to a large extent in the form of needle-like particles with a 50-60 A the diameter, and the dimension of organic phase transverse to the longitudinal axis of long bone was in the range 45-55 A. The intersect distribution function was directly calculated from the scattering intensities, and the results strongly suggested the presence of needle-like mineral with sharp edges.  相似文献   

18.
Using EDTA extraction procedure, compact and spongy bone from human femur, rib and iliac crest were compared in terms of their content in collagen, sialoprotein, proteoglycan and carbohydrate. The bone matrix sizes displayed significant variations, the femur having the smallest size and iliac crest the largest one. No significant difference in the matrix size has been found between the spongy and compact bone. The EDTA extractability of the spongy bone was higher than that of the compact bone, with femur showing the lowest extractability. The collagen content of the 3 bones studied was similar although the femur had slightly lower values. The sialic and uronic acids and hexose contents were higher in the femur than in the rib and iliac crest. The collagen/hexose, collagen/sialic acid and collagen/uronic acid ratios in the bone matrix were highest in the iliac crest and lowest in the femur, suggesting that alterations in the amounts of bone matrix can affect the mechanical properties of different parts of the bony skeleton and vice versa.  相似文献   

19.
O. Vos 《Cell proliferation》1972,5(4):341-350
Kinetics of the multiplication of haemopoietic CFUs was studied in lethally irradiated mice receiving various numbers of syngeneic bone marrow cells. After transplantation of a small number of bone marrow cells, the growth rate of CFU in femoral bone marrow appeared to decrease after about 10 days after transplantation, before the normal level of CFU in the femur was attained. In the spleen it was found that the overshoot which was observed about 10 days after transplantation of a large number of bone marrow cells is smaller or absent when a small number of cells is transplanted. Experiments dealing with transplantation of 50 x 106 bone marrow cells 0, 4 or 10 days after a lethal irradiation indicated that the decline in growth rate of CFUs about 10 days after irradiation could not be attributed to environmental changes in the host.
The results are explained by the hypothesis that a previous excessive proliferation of CFUs diminishes the growth rate thereafter. This hypothesis is supported by experiments in which 50 x 106 bone marrow cells derived from normal mice or from syngeneic chimaeras were transplanted. The slowest growth rate was observed when bone marrow that had been subjected to the most excessive proliferation in the weeks preceding the experiment was transplanted.  相似文献   

20.
黄枫  曾志奎  黄学员  曾展鹏 《生物磁学》2011,(23):4478-4480
目的:探讨膝关节不稳对骨折愈合的影响。方法:回顾性分析我院收治3例患者因早期未能准确诊治膝关节交叉韧带损伤,而导致同侧股骨干骨折术后不愈合的临床资料。我们从生物力学角度分析,交叉韧带对膝关节生理性制导及稳定作用,反之损伤后膝关节的生理运动一定程度的丧失,以及随之而来的载荷传导紊乱,从而导致膝关节不稳。膝关节不稳所引起骨折端应力改变,其对骨折愈合将产生怎样的影响。结果:如未能及时修复交叉韧带在患者股骨干骨折术后行CPM锻炼及部分负重行走时将传导以骨折断端以一种剪切、旋转的应力,同时下肢垂直的纵向压应力将难以传导至骨折端,可能导致股骨干骨折术后的延缓愈合甚至不愈合。结论:膝关节不稳定可引起同侧肢体骨折端的应力改变,可能导致骨折的延缓愈合甚至不愈合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号